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Preface

My involvement in printed electronics started in 2009 when I returned to China, after 20 years 
of working in the UK. My previous career was centered around the development and applica-
tion of microfabrication and nanofabrication technologies. Going back to China gave me the 
opportunity to do something different. I joined the Suzhou Institute of Nano-Tech and Nano-
Bionics, which is one of the research institutes within the Chinese Academy of Sciences, and set 
up the Printable Electronics Research Center (PERC) there with the help of start‐up funds from 
the Institute and from the Administration of Suzhou Industrial Park where the Institute is located. 
Six years ago, printed electronics was quite a new field, particularly in China. The PERC that I 
set up was then the first research center dedicated to printed electronics R&D in China. Although 
I started on printed electronics from scratch, my previous years of experience on micro‐
nanofabrication helped me to understand printed electronics from the manufacturing per-
spective, which is different from those with a background in materials science. Printing is, after 
all, an additive fabrication similar to lithography‐based micro‐nanofabrication.

Over the last six years, PERC has built up a multidisciplinary research team and well‐
equipped laboratories. We decided to develop the technology from all directions, including 
synthesis and formulation of electronic inks, development of printing processes, printable 
thin‐film transistors, photovoltaic, and organic light emission. We have even worked on encap-
sulation technology for organic electronic devices which are known to be susceptible to water 
and oxygen. The ultimate goal of PERC is to develop those technologies that could be useful 
and practical, eventually leading to some products that the market needs. With our efforts, we 
have achieved a great deal in the last six years. We developed a range of electronic inks from 
inorganic materials such as carbon nanotubes, metal oxides, copper and aluminum, and dielec-
trics, to organic photovoltaic and organic light‐emitting materials. We developed a range of 
printing processes including inkjet printing, aerosol jet printing, gravure printing, gravure 
offset printing and screen printing. We succeeded in making thin‐film transistors on flexible 
substrates using inorganic inks, making gravure and inkjet‐printed organic solar cells, and 
making flexible organic light emitting diodes, as well as barrier films for encapsulation of 
organic devices. An innovative hybrid printing technique we developed has been implemented 
by industry to realize mass production of transparent conductive films for touch panels. We 
are very proud of what we have achieved in this new and exciting field.
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When we started working on printed electronics, we were very much aware that the field 
was not only new to us but also new to the majority of other scientists and engineers. This was 
particularly the case in China. We felt from very early on that more people should know about 
printed electronics and more researchers should get involved in the development, which is the 
only way to push the technology forward. So we began to plan a book. With the diligent work 
of my team, the Chinese book, Printed Electronics: Materials, Technologies and Applications, 
was published by the Chinese Higher Education Press in March 2012. This was the first book 
on printed electronics ever published in China. Three years have passed since this book was 
published. On the one hand, technology has moved on with new advances in the last three 
years. On the other hand, the authors of the first Chinese book have gained more experience 
by working directly in the field. It was time to update the book and we decided to write an 
English version to share the knowledge and information about printed electronics not only 
with readers in China but also with readers around the world. This English book is not simply 
a translation of the previously published Chinese book, but has newly updated information 
including some of our own work carried out at PERC in the past three years.

This book is written with members of my own research team, which is a multidisciplinary 
team with diverse backgrounds from physics to chemistry and to electronic engineering. 
Dr. Chunshan Zhou (author of Chapter 2 – the Chinese version of this chapter was written by 
Dr. Song Qiu who used to work at PERC) is an organic chemist at PERC working on organic 
semiconductor materials synthesis; Dr. Zheng Chen (author of Chapter  3) is leading the 
research at PERC on inorganic nanomaterials for electronic inks and printable inorganic thin‐
film transistors; Dr. Jian Lin (author of Chapter 4) is the expert on printing processes at PERC; 
Dr. Jianwen Zhao (author of Chapter 5) has been working on printed carbon nanotubes thin‐
film transistors since he was a postdoctoral researcher in Singapore six years ago. He has 
developed a range of techniques to purify and formulate single‐walled semiconductor carbon 
nanotube inks and successfully printed high performance thin‐film transistors; Dr. Changqi 
Ma (author of Chapter 6) is the leader of the organic photovoltaic group at PERC. With organic 
chemistry training during his Ph.D studies and a number of years of working in Germany, he 
has developed some new organic photovoltaic materials and is recently working on perovskite 
solar cells; Dr. Wenming Su (author of Chapters 7 and 8) is the expert on organic light‐emitting 
diodes (OLED) and thin‐film encapsulation at PERC, and is leading the engineering group at 
PERC. Since the authors themselves are directly practicing in their relevant topic area, they 
are well qualified to write on the topics. We put into the book not only the information and 
knowledge published by others, but also our own research experience and results. As the 
leader of PERC and the organizer of this book, I myself contributed Chapters 1 and 9, which 
reflect my understanding of printed electronics and my observation of the technological 
progress in the last six years with my deep involvement in the field. I also took charge of the 
English editing of all chapters.

There are already books published on organic electronics and flexible electronics. Printing 
as an alternative manufacturing technology gives organic electronics and flexible electronics 
extra dimensions and new application possibilities. We tried not to have too much overlap with 
organic electronics and flexible electronics. We organized the information we gathered specif-
ically on printing and printed aspects of making electronics with or without organic materials 
and with or without flexible substrates. Printed electronics is still a growing field. The tech-
nology is still in its early stage of development. We hope that we have put together a compre-
hensive set of information and knowledge so that readers of the book will gain a general 
understanding of printed electronics, the materials and technologies that are involved in this 
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field and the potential applications. The contents have been organized and presented in a 
logical way so that people with a general knowledge of physics, chemistry and electronics will 
be able to comprehend. We hope that this book will serve as a guide for anyone who is inter-
ested in printed electronics and that useful information may be found in the book. Due to the 
limitations of our own experience and knowledge, there may inevitably be errors and inaccu-
racy of information in this book; we sincerely welcome comments and criticisms on the book 
from experts in the field.

Finally, I would like to give my sincere thanks to my team members at the Printable 
Electronics Research Center (PERC), Suzhou Institute of Nano-Tech and Nano-Bionics 
(SINANO), Chinese Academy of Sciences (CAS). This book is truly the fruit of team effort. 
My acknowledgement also goes to the funding bodies that have provided major financial 
supports to my research team in the last five years under the National Key Basic Research 
Program of China (2015CB351900), the Strategic Priority Research Program of the Chinese 
Academy of Sciences (XDA01020304) and the National Natural Science Foundation of China 
(91123034).

Zheng Cui
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Introduction
Zheng Cui

1.1  What is Printed Electronics?

Printed electronics, as the name implies, is a type of electronics that are created by printing 
technology. To be more specific, it is an electronic science and technology based on conven-
tional printing techniques as the means to manufacture electronics devices and systems. To 
most people, “printed electronics” is an unfamiliar phrase. Even experts in electronics may not 
have heard it. Many people may have it confused with conventional printing technology or 
mixed up with electronic printing. Conventional printing is for printing paper media, such as 
books, newspapers, and magazines. Even electronic printing is not printed electronics. 
Electronic printing is still conventional media printing but with more use of computers and 
electronic typesetting. A closer analogy to printed electronics would be electronics or integrated 
circuit (IC)‐based electronics, rather than conventional printing. The aim of printed electronics 
is to make integrated electronic systems using printing technology instead of much more 
expensive and complex IC manufacturing technology.

Silicon‐based IC technology has been in use for nearly 60 years. Modern silicon microelec-
tronics and its manufacturing technology have evolved into an extremely complicated process. 
There are several hundreds of steps involved in producing a silicon IC chip, from the preparation 
of single crystal silicon substrates to making billions of transistors and getting these transistors 
interconnected, including repeated thin film deposition, lithography, etching, and packaging [1]. 
IC manufacturing has become so expensive that the latest deep UV photolithography system can 
cost tens of millions of dollars, whereas an extreme UV lithography system for making silicon 
chips at below 32 nm feature size has a price tag of more than $120 million [2]. The IC industry 
has become so investment intensive that only a handful companies in the world can afford to play 
in the field. On the other hand, printing is a very simple process compared to the IC manufacturing 
process, as illustrated in Figure 1.1 In order to turn a functional material into a functional structure 
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2	 Printed Electronics

or pattern on a silicon substrate, IC manufacturing has to go through thin film deposition, spin-
coating photoresist layer, baking, photolithography, baking, developing, etching, and stripping of 
the photoresist masking layer. If printing is employed, the functional material can be directly 
printed as patterns onto the substrate. Only a subsequent annealing/sintering process is needed.

Printing is an additive manufacturing process, similar to the deposition process in micro‐ 
and nanofabrication [3] but combined with patterning. In printed electronics, the components 
of an electronic device or a system can be made by printing in additive fashion. For example, 
for a field‐effect transistor, the source, drain, and gate electrodes, as well as semiconductor 
and insulating layers, can all be printed in ink forms and layer by layer onto a substrate. It is 
very much like color printing in a conventional printing press, where each color ink is printed 
sequentially and several color layers are overlaid to form the final color print. Because of its 
similarity to the printing process, the machine to print electronics is not much different from 
a conventional media printer. Figure  1.2 compares a conventional roll‐to‐roll paper media 

(a)

(b)

Coating functional
thin film Baking exposed

photoresist

Developing exposed
photoresist

Etching

Stripping
photoresist

Coating photoresist
layer

Baking photoresists

Photolithography

Printing

Annealing/
Sintering

Figure 1.1  Comparison of IC manufacturing and printing processes. (a) Conventional IC manufacturing; 
and (b) printing process
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printer and an electronics printer. They look almost the same. The only difference is the inks 
they use. The inks for printing electronics have conducting, semiconducting, or dielectric 
properties. They are electronic materials, not pigment, which is the key for printing to be used 
for printed electronics.

Printed electronics originated from organic electronics. In 1977, Alan Heeger, together with 
Alan G. MacDiarmid and Hideki Shirakawa, discovered that polymer could be conductive by 
doping certain molecules [4], which earned them the Nobel Prize in Chemistry in 2000. This 
discovery completely overthrew the conventional wisdom that organic polymer materials are 
always insulators. Following the discovery of conductive polymers, organic semiconductor 
materials were developed in 1983 [5] and organic field‐effect transistors (OFETs) were first 

(b)

(a)

Figure 1.2  Comparison of (a) conventional paper media printer; and (b) electronics printer. (Courtesy 
of iPEN Co. Ltd.)
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made in 1986 [6]. In the same period, Dr. C.W. Tang at Kodak developed organic photovoltaic 
(OPV) materials [7] and later invented the organic light‐emitting diode (OLED) [8], from 
which organic electronics as a field of scientific interest started.

The reason the scientific community got interested in organic electronics was not only due 
to scientific curiosity but more importantly that they foresaw the prospect of printing electronic 
devices from organic polymers that could be naturally made into ink forms. Once they could 
be printed, electronic devices could be made on a massive scale at low cost, very much like 
printing newspapers. So from the early stage of development, people made attempts to process 
organic electronic materials in solution forms to make transistors [9]. In 1994, a research 
group led by Francis Garnier first reported OFETs made on plastic substrates [10]. Although 
only electrodes were printed and the organic semiconductors were deposited by vacuum evap-
oration, the significance of the work was that it proved transistors could be made on plastic 
substrates, opening the era of plastic electronics. Fully printed transistors were reported in 
1997 when Dr. Zhenan Bao, working at Bell Labs, printed all layers including conductor, 
semiconductor, and dielectrics onto polyester (PET) film by a screen printing technique [11]. 
More recently, Professor Sirringhaus at Cambridge University made fully printed organic 
transistors by the inject printing technique [12].

It is apparent that organic electronics had its eye on low cost printing electronics from the 
beginning of its development. However, for a very long period, printing did not become the 
mainstream fabrication means for making organic electronic devices. The main reason lies in 
the fact that the charge mobility, which is a key property of semiconductor material, for the 
solution form of organic semiconductors is always lower than those small molecular organic 
semiconductors that cannot be made into solution form and have to be deposited by vacuum 
evaporation. In other words, transistors made by printable organic materials are not as good as 
those made by vacuum evaporated organic materials.

Charge mobility is the speed of electronic charge (electrons for n‐type semiconductor or 
holes for p‐type semiconductor) movement in semiconductor materials. It determines how fast 
a transistor switches at an applied external electric field. Table 1.1 lists the charge mobility of 
commonly used inorganic semiconductor materials, in comparison with organic semicon-
ductor. It shows that the charge mobility of organic semiconductor materials is far lower than 
inorganic semiconductors.

The research in organic electronics in its over 3 decades of development history has been 
mainly focused on how to improve the charge mobility, as it is obvious that only high mobility 
organic semiconductors have value in any practical applications. The last 25 years have indeed 
seen the steady improvement of charge mobility in organic semiconductors, as shown in 

Table 1.1  Charge mobility of organic and inorganic 
semiconductor materials

Semiconductor materials Charge mobility (cm2v−1s−1)

GaAs 104

Single‐crystal silicon 103

Poly silicon 10
Amorphous silicon   0.1–1
Organic semiconductor 10−4–1
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Figure 1.3, which indicates the evolution of charge mobility from 1985 to 2010 for three dif-
ferent types of organic p‐channel and n‐channel semiconductor materials: vacuum‐deposited 
small molecular organic materials, solution‐processed small molecular organic materials, and 
solution‐processed polymer materials [13].

The evolution curves reveal two things: first, there has been tremendous progress in improv
ing the charge mobility of organic semiconductor materials. The mobility has increased 
6 orders of magnitudes in the last 25 years. Second, the charge mobility of solution‐processed 
polymeric organic semiconductor materials, though continuously improved, was always an 
order of magnitude lower than that of vacuum‐deposited small molecular materials throughout 
the 25 years of development. Though the gap became smaller in the last few years due to the 
efforts in solution forms of organic semiconductors, small molecular organic semiconductor 
materials are still far better in terms of charge mobility [14]. As the ability to process organic 
semiconductor in solution form is the prerequisite of printing fabrication, low performance has 
prevented printing from becoming the preferred means of making organic electronic devices, 
although to be able to print electronic devices was originally the goal of organic electronics 
development.

Comparing the charge mobility of organic electronic materials in Figure 1.3 with that of 
inorganic semiconductor materials in Table 1.1, one can see that the mobility of organic semi-
conductors only barely catches up with that of amorphous silicon and is 3 orders of magnitude 
lower than single crystal silicon, which is the most common semiconductor material in IC 
microelectronics. According to the roadmap of organic semiconductors published in 2013 by 
the Organic Electronics Association (OE‐A), as shown in Figure 1.4, the charge mobility of 
organic semiconductor materials may increase an order of magnitude higher than the current 
level in the next 10 years. Beyond that, organic semiconductors may reach their limits and 
inorganic or nanomaterials may come into play [15]. Besides, it would be difficult to change 
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the fact that vacuum deposited small molecular organic semiconductors are always better 
than  the printed solution form of organic semiconductors. The most obvious example is 
OLEDs. The best‐performing OLED devices, no matter for lighting or for display, are still 
manufactured by vacuum deposition instead of printing. Printing has not succeeded in 
becoming the mainstream manufacturing technology for organic electronic devices, though 
some promising developments have been reported recently in printed OLEDs.

Printed electronics gained attention only in the last 8 years or so, largely due to the development 
and maturity of inorganic nanomaterials. Nanoscale inorganic materials (nanoparticles, 
nanowires, nanotubes, etc.) can be made into ink forms that can then be printed into patterns. 
The properties of those nanomaterials give the printed patterns and structures the conducting, 
semiconducting, dielectric, and optoelectronic properties that form a variety of electronic, opto-
electronic, or photovoltaic devices, demonstrating that printing can be truly a low cost electronic 
manufacturing technology. Printed electronics began to establish itself as an independent 
scientific discipline and technology field. Scientific publications related to printed electronics 
started to increase, as indicated by the number of papers listed in the Web of Science database 
in the 10‐year period up to 2013 (Fig. 1.5). International conferences and trade fairs in the theme 
of printed electronics began to appear. The first International Exhibition and Conference for 
the Printed Electronics Industry (LOPE‐C) was held in 2009 in Germany. In the same year, 
South Korea hosted the first International Conference on Flexible and Printed Electronics 
(ICFPE). These conferences have become the focus of the printed electronics research 
community and industry. The 2015 LOPE‐C drew more than 2,300 visitors from 42 countries. 
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An article published in +Plastic Electronics magazine in 2011, titled “Nanomaterials Are 
Becoming Synonymous with Printed Electronics” [16], reflected the view that inorganic nano-
materials have revived printed electronics.

The earliest adopted inorganic nanomaterial in printed electronics is nanosilver. It is known 
that silver is the best conductive material, far better than organic conductive polymers. Silver 
nanoparticles can be made into paste or ink and printed. After sintering, the printed silver pat-
terns become solid silver, which serves as a conductive track in a variety of electronic circuits. 
In fact, silver paste has long been used in silicon solar cell manufacturing. Figure 1.6 shows a 
silicon solar cell where those bright tracks are silver electrodes made by screen printing of 
silver paste. Although printed, the silver paste used in silicon solar cell manufacturing is not 
made of silver nanoparticles but microsize particles. The difference between nansilver and 
microsilver is the sintering temperature. For microsilver, the sintering temperature needs to be 
more than 400°C in order to turn the silver paste into solid silver. Such high temperature is, 
however, not applicable to plastic substrates. Silver paste or ink made from nanosilver with 
particle size below 100 nm, on the other hand, can be sintered at below 150°C, which is the 
temperature most plastic film substrates can bear.

Nanosilver inks can be printed by a variety of printing methods such as inkjet printer, screen 
printer, gravure printer, or flexographic printer. Figure 1.7 shows a flexible circuit made by 
printing nanosilver ink on PET substrate. The emergence of nanosilver inks opens the route to 
printing conductive patterns onto plastic or even paper substrates with performance near or 
better than conventional copper‐based conductive circuits. The electronics industry has already 
been testing the feasibility of printing electronic circuit boards, antennas of radio frequency 
identification (RFID) tags. Recently, inks made of silver nanoparticles or silver nanowires have 
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been applied to make transparent conductive films that can replace indium tin oxide (ITO) to 
be used in touch panels for mobile phones and tablet computers. These are the products conven-
tionally made by photolithography and etching processes that are wasting large quantities of 
materials and polluting the environment.

In addition to conductive nanomaterials, inorganic semiconducting nanomaterials also dem-
onstrated their superior performance in printed electronics. Although organic semiconductor 

Figure  1.6  Picture of silicon solar cell where the front conductive electrodes are made by screen 
printing silver paste

Figure 1.7  Flexible circuits on transparent plastic film made by inkjet printing of nanosilver ink
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materials have advanced considerably in the last 5 years with charge mobility approaching 
10 cm2v−1s−1 [17], single‐walled semiconducting carbon nanotubes can have charge mobility 
exceeding 104 cm2v−1s−1. Such high charge mobility has been proved in field‐effect transistors 
made of single carbon nanotube. They have also been made into ink forms and printed to make 
field‐effect transistors. Though not as high as that of single carbon nanotube, the charge mobility 
of printed transistors using carbon nanotube ink can easily get to more than 30 cm2v−1s−1 [18]. 
Inks made of nanosilicon have been successfully printed to make fully functional 128 bits RFID 
with effective charge mobility exceeding 100 cm2v−1s−1 [19]. Another family of inorganic semi-
conductor inks based on doped InO or ZnO has also found applications in printed transistors 
and demonstrated high charge mobility [20, 21].

Besides charge mobility, another critical issue concerning organic semiconductor materials 
is the environmental stability. Most organic semiconductors are very sensitive to oxygen and 
water vapor, which can kill their charge transportation ability. For OPV materials, the water 
vapor transmission rate (WVTR) should not exceed 10−4 g/day/m2. For OLED, the WVTR should 
be less than 10−6 g/day/m2, which is equivalent to less than a drop of water on a 50 × 100 m foot-
ball pitch for a month. With such a strict requirement, any devices employing the organic mate-
rials have to be made in an oxygen‐free and moisture‐free environment and tightly encapsulated. 
For devices made on glass substrates, this requirement is relatively easy to realize because the 
sealing only needs to be implemented at the edges between two glass panels. For devices made 
on flexible plastic substrates, it is difficult to fulfill the requirement, and barrier layers have to 
be applied to the entire surface of plastic substrates. Effective barrier materials and coating 
techniques should meet the 10−6 g/day/m2 WVTR requirement. Therefore, one of  the inten-
sively studied areas in organic electronics is to develop environmentally stable organic 
electronic materials as well as effective barrier‐coating techniques. In contrast to organic elec
tronic materials, inorganic materials do not have the environmental stability issue. Printing of 
inorganic nanomaterial inks can be done in an ambient environment and printed devices do not 
need special care for encapsulation. Therefore, printed electronics is relatively easy to imple-
ment with inorganic nanomaterials. It is fair to say that the use of inorganic nanomaterials has 
brought printed electronics closer to market.

Organic electronic materials have their own merits when applied to printed electronics, 
despite the above‐mentioned problems. Though inorganic nanomaterials have their distinctive 
advantages over organic materials, they have their own issues when applied to printed elec-
tronics. The advantages and disadvantages of both categories of materials are summarized in 
Table 1.2 and 1.3. Detailed explanation for the tables will be given in Chapters 2 and 3 of this 
book. One can see from the tables that these materials are far from perfect and mature for 
printed electronics. A lot of research and development needs to be done in printable electronic 
materials, as well as in printing technologies and in various applications.

Table 1.2  Pros and cons of organic materials for printed electronics

Advantages Disadvantages

Designability of organic molecules
Low annealing temperature
Flexibility
Better printability of polymer materials

Low charge mobility
Poor environment stability
Poor printability of small molecular materials
Batch to batch inconsistency
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When defining printed electronics, one should be aware of a few other newly emerged 
electronics; for example, organic electronics, plastic electronics, flexible electronics, paper 
electronics, transparent electronics, textile electronics, and wearable electronics. They all 
represent a new class of electronic technologies that are different from the silicon‐based 
microelectronics. Table 1.4 gives a rough guide on what the key features are for each category 
of the new electronics.

Organic electronics refers to those electronic devices whose active materials, that is, the 
materials enabling electronic charge transport in a device, are organic in nature, whether they 
are organic polymers or organic small molecules. Organic electronic devices are not necessarily 
flexible. They can be made on glass or silicon substrates as well. Plastic electronics, though 
almost the same as organic electronics, refers exclusively to organic electronics on plastic 
substrates. The key feature of flexible electronics is the flexibility. To be flexible does not have 
to be on plastics. Thin sheet of metals or glass can be flexible. The reason that metals or glass 
are used as the substrates is their ability to withstand high annealing or sintering temperature. 
As one will learn from the rest of this book, some electronic inks, especially inks made of inor-
ganic materials, require high temperature to sinter. To make electronics flexible, one can also 

Table 1.3  Pros and cons of inorganic nanomaterials for printed electronics

Advantages Disadvantages

Inherently high charge mobility
Environmental stability
Mature manufacturing technology
Abundantly available
Batch to batch consistency

Difficulty in ink formulation 
(separation and dispersion issues)
Impurity due to surfactants
High post‐processing temperature
“Coffee‐ring” effect
Inferior property compared to their 
bulk form

Table 1.4  New classes of electronics and their key features

Terms Active materials Substrate materials Fabrication methods

Organic 
electronics

Organic polymers or 
small molecules

Any rigid or flexible 
materials

Thermal evaporation, 
coating, or printing

Plastic electronics Organic polymers Plastics Coating or printing
Flexible 
electronics

Organic or inorganic 
materials

Flexible metals, 
plastics, or glass

Coating, printing, 
or surface mounting

Paper electronics Organic or inorganic 
inks or pastes

Paper Coating or printing

Transparent 
electronics

Transparent organic 
or inorganic materials

Transparent rigid or 
flexible materials

Printing or 
photolithograpy

Textile 
electronics

Organic or inorganic 
inks or pastes

Textile or fabric 
materials

Printing or weaving

Wearable 
electronics

Organic or inorganic 
inks or pastes

Flexible and 
stretchable materials

Coating, printing, 
or surface mounting

Printed 
electronics

Organic or inorganic 
inks or pastes

Any rigid or flexible 
materials

Coating or printing
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simply mount silicon chips onto plastic substrates. Though not flexible microscopically, the 
whole electronic system can be flexible macroscopically [22]. Paper electronics is quite straight-
forward to understand. No matter what materials are used to make the devices, they have to be 
on paper substrate. Transparent electronics requires not only transparent substrates but all the 
electronic materials have to be transparent. Textile electronics is electronic devices or systems 
on cloth, either weaved into a cloth with electronically functionalized fabrics or printed/mounted 
onto the surface of cloth. Wearable electronics generally refers to electronic devices that are 
small and lightweight and can be wearable, for example, the Google Glass and the Apple Watch. 
Compared to all the aforementioned electronics, printed electronics differs from all the others 
only in the way the electronic devices are fabricated. Printed electronics encompasses the other 
electronics, because both organic and inorganic electronic materials can be printed and electronic 
devices can be printed either on rigid substrates or flexible substrates, whether on papers, 
plastics, textiles, or glass.

1.2  The Importance of Developing Printed Electronics

Why are organic electronics, flexible electronics, or printed electronics being developed? It is 
because these electronics are different from the familiar silicon microelectronics with two 
distinctive features: one is the additive fabrication process in which electronic materials are 
added layer by layer to make a device; the other is that the functionality of a device is independent 
of substrate materials. The first feature enables printing as a means of device fabrication, which 
is less waste of materials and less energy consumption compared to thermal evaporation or sput-
tering deposition. The second feature enables many cheap materials other than silicon to be used 
as substrates. The combination of these two features makes it possible to manufacture large‐area, 
flexible, green manufacturing, and low cost electronic products. For example, the largest size of 
silicon wafer by far in IC manufacturing is 12 inch (300 mm), whereas printing can work with 
sheet size of easily over meters; using plastic films as substrates, whether information displays 
or solar cells or lighting panels, can be flexible, lightweight, or even transparent; printing manu-
facturing, with its high throughput capability and low cost of equipment and ink materials, can 
significantly lower the cost of final products. In addition, the additive manufacturing process is 
green, meaning no subtractive etching involved, no high temperature processes needed, hence 
low in energy consumption, material waste, and environment pollution.

Can printed electronics replace silicon microelectronics? The answer is no. There is no doubt 
that printing is a simpler and faster manufacturing technique than lithographic patterning for 
silicon microelectronics, as illustrated in Figure 1.1. However, printing does not have the accu-
racy and resolution capability of modern lithography techniques widely used in the IC industry. 
Modern IC chips have minimum circuit feature size less than 20 nm, whereas modern printing 
machines can only print features of a few micrometers at best, which is a thousand times larger. 
The best organic or inorganic semiconductor materials that are printable are still 2 orders of 
magnitude poorer than the basic semiconductor materials used in IC chips. Therefore, the 
performance of printed electronic devices is nowhere near the performance of silicon microelec-
tronics. Performance versus cost when comparing printed electronics with silicon microelec-
tronics could be shown as in Figure 1.8. Though the performance of printed electronics is poorer, 
it is cheaper. In addition, printed electronics can offer large size and flexibility that silicon 
microelectronics cannot. They are not to replace each other but complementary to each other.
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It is those unique features that earn printed electronics a place in the vast electronic applica-
tion market. Some market research firms have been tracking the growth of printed electronics 
over the years. For example, IDTechEx, a British market research firm, started charting and 
forecasting the market growth of printed, organic, and flexible electronics in 2008. Their latest 
market report showed the combined market for printed, organic, and flexible electronics will 
be $80 billion by 2023 [23]. In the combined market, printed electronics will take a 25% share 
by 2023, which is around $20 billion. Another market research firm, Display Bank, published 
their report in June 2013, which specifically targets the printed electronics market, forecasting 
that the printed electronics market will grow to $24.3 billion by 2020 [24]. Figure 1.9 is the 
chart of year‐to‐year growth from the report.
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Figure 1.8  Printed electronics vs. silicon microelectronics
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The forecasted growth rate is not surprising because printed, organic, and flexible 
electronics are already around us. Samsung and LG, the Korean electronics giants, 
are already shipping OLED TVs to customers. Panasonic in Japan and AUO in Taiwan 
have both demonstrated OLED TVs using inkjet printing as one of the manufacturing 
techniques. Wall size, transparent, and interactive touch‐controlled displays are no longer 
only seen in the movie Avatar but commercially available. There will be more of these 
products in the market, as printing enables a large volume of them to be produced at 
lower cost. With the Internet of Things (IoT) gaining more widespread use, it is estimated 
the world will need a trillion sensors by 2023 to connect most things around us [25]. 
Current manufacturing technologies for silicon microelectronics would be prohibitively 
high cost. Printed electronics could offer an alternative solution to meet the demand for 
trillion sensors.

Developing printed electronics is important not only because it represents a fast‐growing 
market but also because it represents a paradigm shift in electronic manufacturing. Conventional 
subtractive manufacturing takes away materials, which involves lithographic patterning 
and acidic etching. A perfect example is the manufacturing of printed circuit boards (PCBs). 
A PCB is not made by printing but by lithographic patterning and acidic etching of copper‐
coated sheets. Acidic etching not only produces highly polluting waste solutions but also 
wastes 90% of copper material. China is the world’s largest producer of PCBs. The price China 
pays for such a production capacity is the widespread pollution of soil and water. If the additive 
printing method can partly replace the subtractive etching, not only the pollution and waste of 
materials can be reduced—the cost of manufacturing also can be lowered because of simplified 
manufacturing processes. Printing can potentially make finer lines, which can increase the cir-
cuit connection density. The concept of green manufacturing is already being heavily promoted 
in China. Printing is beginning to be used for making RFID antennas, which are traditionally 
made by acidic etching.

Like 3D printing, which is hotly pursued worldwide, printed electronics can change the 
face of many conventional electronic manufacturing processes. Some industries already 
employed printing to replace some existing manufacturing steps; for example, to print color 
filters in LCD panel manufacturing and to print e‐ink in e‐paper manufacturing. Panasonic 
unveiled their printed 55” high definition colored polymer OLED TV in 2013, and AU 
Optronics Corp. in Taiwan demonstrated their printed 65” OLED TV in 2014 [26], as shown 
in Figure 1.10. Though still a prototype, it demonstrated that a TV can be manufactured by 
printing. The silicon solar cell industry already widely uses screen printing for front electrode 
manufacturing. Other industries are beginning to consider printing as an alternative manufac-
turing technology.

The importance of printed electronics gained notice in recent years both in the academic 
community and the electronic industry. The OE‐A, which was established in 2004 in Germany 
and initially focused on organic electronics, has expanded rapidly in recent years because 
printed electronics is a main area of focus. OE‐A now has 223 members across the globe from 
31 countries, covering both academic institutions and industries. Scientific publications in the 
area of printed electronics started to appear in 2003 and increased significantly in the last few 
years, as shown in Figure 1.5. The similar trend is seen for patent applications, as shown 
in Figure 1.11 which is the search results from the Derwent Innovation Index database. The 
search key words are “organic electronics,” “plastic electronics,” “printed electronics,” and 
“large‐area electronics.”
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Figure 1.10  Inkjet printed 65" OLED TV demonstrated by AU Optronics Corp. (Taiwan) in 2014

0

50

100

N
um

be
r 

of
 p

at
en

ts

150

200

250

300

2000 2001 2002 2003 2004 2005 2006

Issued years

2008 2009 2010 2011 2012 20132007

2 2

28

61
74

102

163

147

182

236 231

209 210

235

Figure 1.11  Patent applications by years related to organic, large‐area, and printed electronics


