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Preface

It is understood that there are many excellent books on system dynamics, control theory, and
control engineering. However, the lengths of the majority of these books are of the order of six
or seven hundred pages or more. There are, however, very few books that cover sufficient mate-
rial and are limited to around 300 pages. The present book is aimed at addressing the balance.
While it is more concise than those longer books, it does include many detailed steps in the
example solutions. The author does believe that the detailed steps in the example solutions
are essential in a first course textbook.
This book is based on lecture notes that have been developed and used by the author since

1986. These lecture notes have been employed in courses such asMechanical Control and Proc-
ess Control, as well as Dynamics and Control. The first two courses were taught by the author at
the University of Western Ontario, London, Ontario, Canada while the third course has been
given by the author at theUniversity ofNebraska, Lincoln,Nebraska,USA, since 1996.All three
courses have primarily been taken by junior undergraduateswithmajors inmechanical engineer-
ing and chemical engineering. Therefore, the subject matter dealt with in this book covers mate-
rial for a first course of three credit hours per semester in systemdynamics or control engineering.
For a course inMechanical Control or Process Control thematerial in the entire book, except the
second half of Chapter 4, has been used. For a course inDynamics andControl thematerial in the
entire book except Chapter 11 has been covered. For a four credit hour course, the component of
laboratory experiments has been omitted from the present book for two main reasons. First, the
inclusion of the laboratory experiments is not feasible in the sense that its inclusion would
increase drastically the length of the book. Second, nowadays many laboratory experiments
are computer-aided in the sense that major software is required. Exclusion of laboratory experi-
ments in the present book provides freedom for the instructors to select a particular software and
allows them to tailor the design of their experiments to the availability of laboratory instrumen-
tation in a particular department or engineering environment.
Under normal conditions, it is expected that the students using the present book have already

taken courses in their sophomore year. These courses include linear algebra and matrix theory,
a second course in mathematics with Laplace transformation, and engineering dynamics. In
addition, students are expected to be able to use MATLAB, which is introduced during their
first year or first semester of their sophomore year.
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1
Introduction

This book is concerned with the introduction to the dynamics and controls of engineering sys-
tems in general. The emphasis, however, is on mechanical engineering system modeling and
analysis.

• Dynamics is a branch of mechanics and is concerned with the studies of particles and bodies
in motion.

• The term control refers to the process ofmodifying the dynamic behavior of a system in order
to achieve some desired outputs.

• A system is a combination of components or elements so constructed to achieve an objective
or multiple objectives.

1.1 Important Difference between Static and Dynamic Responses

The question of why one studies engineering dynamics as well as control, and not statics, is best
answered by the fact that in control engineering it is the dynamic behavior of a system that is
modified instead of the static one. Furthermore, the most important difference between statics
and dynamics from the point of view of a mechanical engineering designer is in the responses of
a system to an applied force.
Consider a lightly damped, simple, single degree-of-freedom (dof ) system that is subjected

to a unit step load. The dynamic response is shown in Figure 1.1. Note that the largest peak or
overshoot is about 1.75 units, while the magnitude of the input is 1.0 unit. Owing to the positive
damping in the system, the dynamic response approaches asymptotically to its steady-state
(s.s.) value of unity. If one looks at the largest mean square value for the dynamic response,
it is about 3.06 units squared. On the other hand, the mean square value for the s.s. or static
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response is 1.0 unit squared. Thus, the largest mean square value, which is the main design
parameter, for the dynamic case is about 306% that of the static case, indicating the importance
of dynamic response compared with that of the static case.

1.2 Classification of Dynamic Systems

This book deals with the study of dynamic and control systems in the engineering or physical
world. In the latter many phenomena are nonlinear and random in nature, and therefore to
describe, study, and understand such phenomena one has to formulate these phenomena in
the conceptual or mathematical world as nonlinear differential equations. The latter, apart from
some special cases, are generally very difficult to solve mathematically, and therefore in many
situations these nonlinear differential equations are simplified to linear differential equations
such that they may be solved analytically or numerically.
The meaning of a linear phenomenon may better be understood by considering a simple uni-

form cantilever beam of length L under a dynamic point load f(t) applied transversely at the tip as
shown in Figure 1.2. If the tip deflection y(L,t), or simply written as y, satisfies the condition that

y ≤ ±
5
100

L

then y is said to be linear, and therefore a linear differential equation can be used to describe the
deflection y. If the deflection y is larger than 5% of the length L of the beam, a nonlinear dif-
ferential equation has to be employed instead. The word random mentioned in the foregoing
means that statistical analysis is required to study such phenomena, instead of the usual deter-
ministic approaches that are employed throughout in this book.
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Figure 1.1 Dynamic response of a single dof system under unity input
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For the cantilever beam shown in Figure 1.2, the transverse deflection y at any point x along
the length of the beam is a function of space x and time t, and therefore the differential equation
required to describe the deflection is a partial differential equation (p.d.e.). Such a system is
referred to as continuous. Continuous systems are also known as distributed parametermodels
and they possess an infinite number of dof.
On the other hand, for simplicity, if one approximates the uniform cantilever beam as mass-

less such that the elasticity of the beam may be considered as a spring of constant coefficient
k = 3EI/L3, where E is the Young’s modulus of elasticity of the material and I the second
moment of cross-sectional area of the beam, and the mass of the beam m is considered concen-
trated at the tip of the beam, then the dynamic deflection of this discrete or lumped-parameter
model, shown in Figure 1.3, can be described by an ordinary differential equation (o.d.e.).

1.3 Applications of Control Theory

It is believed that the first use of automatic control in Western civilization dated back to the
period of 300 BC [1]. In the Far East the best-known automatic control in ancient China is
the south-pointing chariot [1].
Fast forward to 1922, whenMinorsky [2] introduced his three-term controller for the steering

of ships, thereby becoming the first to use the proportional, integral, and derivative (PID)
controller. In this publication [2] he also considered nonlinear effects in the closed-loop system
(to be defined in Chapter 8). In modern times the theory of control has been applied in many
fields. The following representative applications are important examples.

f(t)

L

yx

Figure 1.2 Cantilever beam with a point load

f(t)

m

k y

Figure 1.3 A lumped-parameter model of a massless cantilever beam
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• The theory of control has been employed by economists, medical personnel, financial
experts, political scientists, biologists, chemists, and engineers, to name but a few.

• In automobile engineering, many components of a car, such as the steering system, and the
driverless car that has already appeared in the testing and refined design phase, employ many
feedback control devices.

• Within the field of mechanical engineering, the speed control and maintenance of a turbine,
and the heating system and water heater in a house, or the heating, ventilation and air con-
ditioning (HVAC) system in a modern building, employ automatic control systems.

• In aerospace, the control of aircraft, helicopters, satellites, and missiles requires very sophis-
ticated advanced control systems [3].

• In shipbuilding industries, control systems are often employed for steering and naviga-
tion [4].

1.4 Organization of Presentation

This book consists of 12 chapters. After this introduction, Chapter 2 is concerned with a brief
review of Laplace transforms. The emphasis is on their applications in the analysis and design
of dynamic and control systems. Use of the software MATLAB [5] provides several examples.
Chapter 3 presents the formulations and dynamic behaviors of hydraulic and pneumatic

systems. A simple nonlinear system together with the linearization technique is included.
Chapter 4 deals with the formulations and dynamic behaviors of mechanical oscillatory sys-

tems. The focus in this chapter is on the formulation and analysis of linear single dof and many
degree-of-freedom (mdof ) vibration systems. Modal analysis of mdof systems is introduced in
this chapter. Simple distributed-parameter models or continuous systems are included. Many
solved problems are presented in this chapter.
The formulations and dynamic behaviors of thermal systems are introduced in Chapter 5.

Dynamic equations of simple systems as well as the three-capacitance oven model are derived
and investigated.
For completeness, the most basic electrical elements, laws, and networks, their correspond-

ing dynamic equations, and derivations of transfer functions for various representative electro-
mechanical systems are presented in Chapter 6.
The basic dynamic characteristics, theories, and operating principles of sensors or transdu-

cers are included in Chapter 7. The emphasis in this chapter is, however, on applications and
derivations of dynamic equations of motion and their interpretations. Examples included in this
chapter are accelerometers, microphones, and a piezoelectric hydrophone.
Chapter 8 is concerned with the fundamentals of engineering control systems. Transfer func-

tions for open-loop and closed-loop feedback control systems are considered. System transfer
functions of dynamic systems by block diagram reduction are illustrated with examples.
Modeling and analysis of engineering control systems are presented in Chapter 9. The time

domain response of a unity feedback control system is developed and explained. Control types,
such as the PID controls, s.s. error analysis, performance indices, and sensitivity functions are
considered in this chapter.
The stability analysis of feedback control systems is introduced in Chapter 10. The focus in

this chapter is the application of the Routh-Hurwitz stability criterion. For illustration, various
examples are worked out in detail.
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Chapter 11 is concerned with graphical methods in control systems. The methods introduced
include the root locus method and root locus plots, polar and Bode plots, the Nyquist stability
criterion and Nyquist diagrams, gain, phase margins in relative stability analysis, contours of
magnitude, phase of system frequency response, the so-calledM and N circles, and the Nichols
chart. Various questions are solved by employing MATLAB at the end of this chapter. These
questions are selected to show the powerful capability of MATLAB in the context of response
computation.
The final chapter, Chapter 12, deals with modern control system analysis. The state space or

vector space method is presented. The relationship between the Laplace transformed state equa-
tion and transfer function of a feedback control system is derived. The concepts of controlla-
bility, observability, stabilizability, and detectability are introduced, so as to provide a
foundation for studies of multiple input and multiple outputs (MIMOs) feedback control sys-
tems. Various approximated system responses are obtained by employing MATLAB.

References
[1] Mayr, O. (1970). The Origins of Feedback. MIT Press, Cambridge, MA. (Published in German in 1969).
[2] Minorsky, N. (1922). Directional stability and automatically steered bodies. Journal of the American Society for

Naval Engineers, 34(2), 280–309.
[3] Siouris, G.M. (1993). Aerospace Avionics Systems: A Modern Synthesis. Academic Press, New York.
[4] Fossen, T.I. (1994). Guidance and Control of Ocean Vehicles. John Wiley & Sons, Ltd., Chichester.
[5] The Math Works, Inc. (2014). MATLAB R2014a, The Math Works, Inc., Natick, MA.
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2
Review of Laplace Transforms

Laplace transformation [1–3] is one of several powerful transformations that can be applied to
the analysis of signals and dynamic engineering problems. In the context of dynamic and
control system analysis, Laplace transforms are applied to obtain the transfer functions and,
in turn, the block diagram representation, and the solutions of linear differential equations.
Of course, they can be applied to obtain the solutions of partial differential equations (p.d.e.).
While the method of Laplace transformation can be applied to the solution of ordinary dif-

ferential equations (o.d.e.) and p.d.e., in this book it is applied to obtain the solutions of o.d.e.
since application of Laplace transformation to the solutions of p.d.e. is beyond the scope of this
book. The process of solution by application of Laplace transforms has the following three
stages:

• The given equation of motion is transformed into a subsidiary equation.
• The subsidiary equation is solved by purely algebraic manipulations.
• The solution of the subsidiary equation is transformed back (that is, taking the inverse
Laplace transform) to provide the solution of the given problem.

The above solution of the o.d.e. by algebraic operations instead of calculus operations is
referred to as operational mathematics [2].
This chapter begins with the definition of Laplace transforms and reviews of various

important concepts and theorems. These topics are dealt with in Sections 2.1–2.6. The Laplace
transforms of periodic functions and partial fraction method are considered in Sections 2.7 and
2.8, respectively. Section 2.9 is concerned with representative solved questions. These illustra-
tive examples are included to demonstrate the solution of o.d.e. by the use of Laplace trans-
forms. Applications of the software package MATLAB [4] for various problems are
presented in Section 2.10.
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2.1 Definition

The Laplace transform F(s) of f(t) is defined as [1,2]:

F s =

∞

0

f t e−st dt 2 1

in which the function f(t) is defined for all t ≥ 0.
The inverse of F(s) or inverse Laplace transform of F(s) is represented as:

f t =L−1 F s ,

where the symbol L−1 is applied to denote the inverse Laplace transform of the enclosing
quantity. In this book the uppercase represents the Laplace transform of the lower case function,
unless stated otherwise.

• The function f(t) in Equation (2.1) is linear. Thus, for example, one cannot operate:

∞

0

f t 3e−st dt

• If, however, [ f(t)]3 is convergent and has no multiple values then the Laplace transform of
[ f(t)]3 can be evaluated by the so-called multi-fold or multi-dimensional Laplace transform.
For the present course, this is not considered.

Some commonly applied Laplace transforms and properties of Laplace transforms are
included, respectively in Tables 2.1 and 2.2. More Laplace transforms and properties may eas-
ily be found in a mathematical handbook [5,6].

Table 2.1 Functions and their Laplace transforms

f(t), t ≥ 0 F(s)

1. δ(t), unit impulse at t = 0 1
2. u(t), unit step 1/s
3. tn n!/sn+1

4. e−at 1/(s + a)
5. tn−1 e−at/(n − 1)! 1/(s + a)n

6. 1 − e−at a/[s(s + a)]
7. (e−at − e−bt)/(b − a) 1/[(s + a) (s + b)]
8. [(c − a)e−at − (c − b)e−bt]/(b − a) (s + c)/[(s + a) (s + b)]
9. sin at a/(s2 + a2)
10. cos at s/(s2 + a2)
11. e−at sin bt b/[(s + a)2 + b2]
12. e−at cos bt (s + a)/[(s + a)2 + b2]
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Before leaving this section it may be appropriate to mention that, strictly speaking, for a
divergent function the integral defined by Equation (2.1) may not exist, so its Laplace transform
cannot be established. For example, if the function f(t) is the exponential eat where a is a pos-
itive constant parameter such that Equation (2.1) becomes:

F s =

∞

0

eate−stdt =

∞

0

e a−s tdt

then F(s) does not exist when a > s since the integrand grows with time, and therefore the inte-
gral is not defined. Of course, one can use the shifting theorem to obtain the same result.
On the other hand, if one starts with the exponentially decaying function e-at then the Laplace

transform does exist. Having found the Laplace transform of the exponentially decaying func-
tion, one can then replace a in the resulting expression with −a. The result is then the Laplace
transform of the exponentially rising function eat. In other words, the Laplace transform of

eat is
1

s−a
.

Table 2.2 Properties of Laplace transforms

f(t) F s =
∞

0
e−st f t dt

1. af(t) + bg(t) aF(s) + bG(s)

2.
df

dt
sF(s) − f(0)

3.
d2f

dt2
s2F s −sf 0 − f 0 ,

f 0 =
df

dt t = 0

4.
dnf

dtn
snF s −

n

k
sn−kf k−1

k−1 0 ,

f k−1
k−1 0 =

dk−1f t

dtk−1 t = 0

5.
t

0
f t dt

1
s
F s

6. g t =
0 t < 0
f t−a t ≥ a

G s = e−asF s

7. e−atf t F s+ a

8. f t
a

aF(as)

9. h t =
t

0
f τ g t−τ dτ=

t

0
f t−τ g τ dτ H s =F s G s
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Before leaving this section, it should be mentioned that there are many functions which do
not have their Laplace transforms. An example of such a function frequently encountered in

statistical analysis is f t = et
2
.

2.2 First and Second Shifting Theorems

If f(t) has the transform F(s), where s > k, then eatf(t) has the transform F(s− a), where s− a > k
with k being a constant. This is known as the first shifting theorem.
Symbolically,

L eatf t =F s−a 2 2

If one takes the inverse Laplace transform on both sides, one obtains

eatf t =L −1 F s−a 2 3

The second shifting theorem can be stated as follow. If f(t) has the transform F(s), then the
“shifting function”

f t = f t−a u t−a =
0 if t < 0

f t−a if t > a
2 4

has the transform e−asF s . That is,

L f t−a u t−a = e−asF s 2 5

If one takes the inverse Laplace transform on both sides of Equation (2.5), one has:

f t−a u t−a =L−1 e−asF s 2 6

In the foregoing u(t) is the unit step function which is also known as the Heaviside function
such that u(t − a) is defined as:

u t−a =
0 if t < a
1 if t > a

2 7

in which a ≥ 0.

2.3 Dirac Delta Function (Unit Impulse Function)

The Laplace transform of the so-called generalized function,

L δ t−a = e−as, 2 8
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