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Chapter 1

NGS for Sequence Variants

Shaolei Teng

Abstract Recent technological advances in next-generation sequencing (NGS)

provide unprecedented power to sequence personal genomes, characterize genomic

landscapes, and detect a large number of sequence variants. The discovery of

disease-causing variants in patients’ genomes has dramatically changed our per-

spective on precision medicine. This chapter provides an overview of sequence

variant detection and analysis in NGS study. We outline the general methods for

identifying different types of sequence variants from NGS data. We summarize the

common approaches for analyzing and visualizing casual variants associated with

complex diseases on precision medicine informatics.

Keywords Sequence variants • Next-generation sequencing • Sequence

alignment • Variant calling • Association testing • Visualization • Precision

medicine informatics

1.1 Introduction

Over the last decade, next-generation sequencing (NGS) has dramatically changed

the precision medicine field by characterizing patients’ genomic landscapes and

identifying the casual variants associated with human diseases. The Sanger-based

sequencing [48] (“first-generation sequencing”) was used to sequence the first

human reference genome for the Human Genome Project [3], which took

13 years to finish the draft genome at a total cost of $3 billion. NGS technologies

make the sequencing at remarkable price and unprecedented speed by carrying out

hundreds of millions of sequencing reactions at once [52, 57]. With the revolution-

ary technology, we can sequence thousands of genomes in just 1 month, address the

biological questions at a large scale, identify the genetic risk factors for human

diseases, and provide a more precise way to health care [24]. In particular, NGS can

be used to detect a large number of sequence variants in the patients’ genomes and

identify the casual variants associated with human diseases, which has dramatically
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changed our perspective on genetic variants, human diseases, and precision

medicine.

Discovery of casual sequence variants associated with certain traits or diseases

has become a fundamental aim of genetics and biomedical research. The sequence

variants can be classified to single nucleotide variants (SNVs), small insertions and

deletions (INDELs), and large structural variants (SVs) based on their sequences in

length. SNVs, the most common type of sequence variants, are single DNA base-

pair differences in individuals. INDELs are defined as small DNA polymorphisms

including both insertions and deletions ranging from 1 to 50 bp in length. SVs are

large genomic alterations (>50 bp) including unbalanced variants (deletions, inser-

tions, or duplications) and balanced changes (translocations and inversions). Copy

number variants (CNVs), a large category of unbalanced SVs, are DNA alterations

that result in the abnormal number of copies of particular DNA segments. Somatic

mutations are tumor-specific variants in cancer–normal sample pairs. The different

types of sequence variants play important roles in the development of human

complex diseases. For example, the SNVs associated with major depression were

found in the genes encoding serotonin transporter, serotonin receptor, catechol-o-

methyltransferase, tryptophan hydroxylase, and tyrosine hydroxylase [29]. These

sequence variants can influence the neurotransmitter functions in multiple ways

including changing gene expression level, altering substrate binding affinity, or

affecting transport kinetics [19]. A balanced t(1;11) (q42.1;q14.3) translocation in

disrupted in schizophrenia 1 (DISC1) gene was discovered in a large Scottish

family highly burdened for severe mental illnesses, and the family members with

the translocation showed a reduced P300 event-related potential associated with

schizophrenia [9]. Identifying the casual variants and their clinical effects provides

important insight to understand the roles of sequence variants in the causation of

human diseases.

Discovery of disease-causing variants from a large number of sequence poly-

morphisms detected from NGS data is a major challenge in precision medicine.

Bioinformatics and statistical methods have been developed for detecting sequence

variants and identifying disease-related casual variants. The schematic diagram of

NGS variant analysis on precision medicine informatics is shown in Fig. 1.1. The

DNA samples are extracted from patients (or normal individuals) and sequenced on

NGS platforms. The billions of short sequence reads are produced by the

sequencers, and sequence information is stored in FASTQ format files. From

here, NGS variant analysis falls into two major frameworks. The first framework

is the variant detection. The high-quality sequence reads passed quality control

(QC) filters are aligned to a reference genome, and the sequence alignment data is

deposited in SAM/BAM format files. Several variant detection tools are used to call

small variants including SNVs and INDELs. The somatic mutation callers are

applied to tumor–normal patient samples. Multiple SV callers are developed to

detect large structural variants. The variants called from these tools can be stored in

Variant Call Format (VCF) files or BED format files. The next framework is the

variant analysis. The annotation tools are used to predict the functional effects of

coding and regulatory variants. The association analysis can identify the common
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and rare variants associated with certain diseases or traits. Visualization tools are

used to view the small and large candidate sequence variants. By combining

numerous analyzing tools, the causal variants can be identified and connected

with clinical information for precision medicine research. On the one hand,

disease-related causal variants provide the genetic biomarkers for diagnostics of

complex diseases. On the other hand, the candidate variants offer the targets for

developing more precise treatments and drugs for patients. In the following sec-

tions, we will review the bioinformatics approaches and provide a guide for

detecting and analyzing the sequence variants from NGS data.

1.2 Variant Detection

Variant detection consists of quality control (QC), sequence alignment, and variant

calling. The raw data contains a large number of short reads generated by NGS

sequencers. Preprocessing and post-processing QC are carried out to remove the

Fig. 1.1 A flowchart of NGS variant analysis in precision medicine
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potential artifacts and bias from data. The high-quality reads are mapped to

positions on a reference genome. The variant calling is performed by comparing

the aligned reads with known reference sequences to find which segments are

different with the reference genomes. Multiple variant callers have been developed

to detect different types of genetic variants including SNVs, INDELs, somatic

mutations, and SVs. This section provides an overview on QC and alignment

methods, SNV and INDEL callers, somatic mutation tools, and SV detection

approaches.

1.2.1 QC and Alignment

The standard outputs of most NGS platforms are files in FASTQ format. The

FASTQ files include raw sequence reads together with their Phred-scaled base

quality scores. Several tools have been developed to perform preprocessing QC

based on FASTQ files (Table 1.1). FastQC [7] provides a comprehensive QC report

Table 1.1 Variant quality control (QC) and alignment tools

Tool Description URL Reference

Preprocessing QC

FastQC Tool can provide statistical

QC summary report

http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/

[7]

Sickle QC tool can trim low-quality

bases

https://github.com/najoshi/sickle [21]

Trimmomatic QC tool can remove adaptor

and bases

http://www.usadellab.org/cms/?

page¼trimmomatic

[10]

Hash table alignment

MAQ Hashing read aligner that

allows two mismatches

http://maq.sourceforge.net/ [32]

SeqMap Hashing read aligner that

allows five mismatches

http://www-personal.umich.edu/

~jianghui/seqmap/

[20]

SOAP Hashing reference aligner http://soap.genomics.org.cn/ [33]

Suffix tree alignment using Burrows–Wheeler transformation (BWT)

BWA BWT aligner using a back-

ward search

http://bio-bwa.sourceforge.net/

bwa.shtml

[30]

Bowtie BWT aligner using a

backtracking system

http://bowtie-bio.sourceforge.net [26]

SOAP2 BWT and hash aligner http://soap.genomics.org.cn/ [35]

Post-processing QC

SAMtools Tool can convert, sort, and

index SAM/BAM files

http://samtools.sourceforge.net/ [34]

BamTools Tool can manage BAM files

and filter reads

https://github.com/pezmaster31/

bamtools

[8]

Picard QC tool can remove PCR

duplicates

http://broadinstitute.github.io/

picard/
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with tables and plots for basic statistics, quality score distribution, read length

distribution, sequence duplication levels, and GC content distribution. With the

FastQC summary, other QC tools, such as Sickle [21] and Trimmomatic [10], can

be used to filter low-quality reads, remove undesired adaptors, and trim incorrectly

called bases at the ends of the reads.

The sequence alignment is an essential step for identifying the sequence variants

in patients’ genomes. Since any errors in alignment will be carried through to the

downstream analysis, each of the high-quality sequence reads must be accurately

aligned to a reference genome. With the rapid development of NGS technologies, a

wide variety of alignment tools have been developed to align the short sequence

reads with high efficiency and accuracy (Table 1.1). Most of NGS aligners build

indices for reads or references to quickly search potential alignment positions of

reads in the reference sequences. Based on the property of the index, these tools can

be briefly classified into two groups: hash table approaches or suffix tree

approaches [31].

Hash Table Approaches These use a hash-based index to scan either read set or

reference genome for rapid searching. Each position of reference is cut into equal-

sized fragments and stored into a hash table. The species cut from the read with the

same scheme are used as the keys to search the table. The approaches use a seed-

and-extend paradigm to identify the matching positions in the reference for the

reads. Here, we describe three common hash table tools: MAQ [32], SeqMap [20],

and SOAP [33]. MAQ [32] can rapidly align a large number of short reads to the

reference sequence and accurately detect small sequence variants including SNVs

and INDELs. For sequence alignment, MAQ indexes and hashes the short reads

before scanning reference sequence, which allows two mismatches in the first 28 bp

of each read. It then searches ungapped match and extends the partial match when a

seed match is identified. MAQ utilizes a Phred-scaled mapping quality score to

evaluate the reliability of alignments, and the score can measure the probability that

a true positive read is not the one found by the mapping algorithm. SeqMap [20]

also applied an index filtering algorithm to create index tables for sequence reads. It

allows up to five mismatches including substitutions and insertions/deletions.

Instead of the construction of hash tables for reads that used in MAQ and SeqMap,

SOAP [33] loads the reference genome into memory and constructs index tables for

all references sequences. It utilizes a seed strategy for both ungapped and gapped

alignments of either single read or paired-end reads.

Suffix Tree Approaches These use Burrows–Wheeler transformation (BWT) [11]

to store all suffixes of a string. The reference genome can be converted to a

transformed memory-efficient sequence using BWT. Reads are aligned base by

base against the transformed reference sequence. The strategy can reduce memory

footprint and increase mapping speed. Examples of BWT-based tools include BWA

[30], Bowtie [26], and SOAP2 [35]. Burrows–Wheeler Alignment (BWA) tool [30]

is the most commonly used NGS aligner. It uses backward search with BWT for

exact matching and constructs inexact alignments supported by the exact matches.

Bowtie [26] utilizes a novel backtracking system to account mismatches and allows

1 NGS for Variants 5



up to two mismatches in the first 28 bp of sequence read. BWA and Bowtie compare

the query reads and store the reference to short substrings. The tools compute all

combinations of possible mismatches to align the entire reads to reference exactly.

SOAP2 [35], an updated version of SOAP, uses BWT to index the reference

genome in memory and constructs a hash table to search the location of a read in

the reference index. The suffix tree methods run faster than hash table approaches

due to the memory efficiency of BWT sequence. The indices of the entire human

genome generated by BWT approaches are usually less than 2 GB, whereas the

hash table approaches require more than 50 GB.

The sequence alignments are stored in SAM/BAM files [34]. Sequence Align-

ment/Map (SAM) file contains the read alignment data, and BAM file is the binary

version of SAM file. SAMtools [34] can be used to convert SAM/BAM format and

sort, index, and merge the alignment files. BamTools [8] can manage the BAM files

and filter properly reads with high mapping quality. Picard can be used to remove

PCR duplicates caused by the sorting from merged alignment files. These post-

processing QC tools generate clean aligned sequencing files suitable for further

variant detection.

1.2.2 SNV and INDEL Discovery

After mapping the short reads to a reference sequence, the variants can be discov-

ered by comparing the sample genome to the reference genome. Many variant

callers have been developed to detect small variants including SNVs and INDELs

(Table 1.2). These computational tools use either heuristic or probabilistic

approaches. Since probabilistic approaches can estimate sequencing error and

monitor the accuracy of calling, they are more generally used for variant calling

[40]. We introduce three probabilistic callers MAQ [32], SAMtools [34], and

GATK [38] below.

MAQ [32] is the first widely used tool for variant calling in NGS data. It uses a

Bayesian statistical model to generate consensus genotype sequence from the

alignments. MAQ compares the consensus sequence to the reference genome to

identify potential SNVs and filtered them using some predefined rules. SAMtools

[34] uses a revised MAQ model to measure statistical uncertainty of called geno-

types and applies given likelihood for each possible genotype. It uses a subset of

commands, called BCFtools, to call SNVs and INDELs. The true small variants can

be filtered by base alignment quality scores computed from the depth of coverage,

numbers of reads in alternate and reference alleles, average quality scores, and

mapping quality of reads.

Genome Analysis Toolkit (GATK) [38] is the most frequently used toolkit for

small variant calling. It provides a structured Java programming MapReduce

framework for NGS analysis. The GATK package includes coverage analyzer,

local realigner, quality score recalibrator, and variant caller. It inputs SAM/BAM
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files from initial read mapping. Then, the tool carries out a local INDEL realign-

ment and computes base quality scores for recalibration. A program, called

UnifiedGenotyper, is used to identify all potential SNVs and INDELs. GATK

applies machine learning approaches to filter true variants from machine artifacts

in NGS technologies [56]. GATK recently developed a HaplotypeCaller [16]

program which performs a local de novo assembly of aligned reads and calls

SNVs and INDELs simultaneously. It provides a greater quality for INDELs calling

than UnifiedGenotyper program [42]. In addition, HaplotypeCaller can handle the

non-diploid samples and work well for the region including different types of

sequence variants close to each other. The outputs of the most variant callers are

Table 1.2 Variant discovery tools

Tool Description URL Reference

SNV and INDEL discovery

MAQ Tool can detect small variants

using a Bayesian statistical model

http://maq.sourceforge.net/ [32]

SAMtools Tool can detect genotypes and

small variants using a revised

MAQ model

http://samtools.

sourceforge.net/

[34]

GATK Package including coverage ana-

lyzer, local realigner, quality score

recalibrator, and variant caller

https://www.broadinstitute.

org/gatk/

[38]

Somatic mutation discovery

VarScan2 Caller can detect somatic muta-

tions using Fisher’s exact test
http://varscan.sourceforge.

net/

[23]

Strelka Caller can detect somatic muta-

tions using Bayesian probability

model

https://sites.google.com/

site/

strelkasomaticvariantcaller/

[49]

SomaticSniper Caller can compute Phred-scaled

scores to detect somatic mutations

using Bayesian probability model

http://gmt.genome.wustl.

edu/packages/somatic-

sniper/

[27]

JointSNVMix Caller can detect somatic muta-

tions using two Bayesian

probability-based models

http://compbio.bccrc.ca/

software/jointsnvmix/

[47]

Structural variant discovery

CNVnator Read-depth caller can detect dele-

tions and duplications

http://sv.gersteinlab.org/

cnvnator/

[2]

BreakDancer Read-pair caller can detect inser-

tion, deletions, inversions, and

translocations

http://breakdancer.

sourceforge.net/

[12]

Pindel Split-read caller can detect large

deletions and medium insertions

https://github.com/genome/

pindel

[61]

CONTRA Read-depth caller can detect CNVs

from exome sequencing data

https://sourceforge.net/pro

jects/contra-cnv/

[36]

XHMM Read-depth caller can detect CNVs

using hidden Markov model from

exome sequencing data

https://atgu.mgh.harvard.

edu/xhmm/

[18]
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Variant Call Format (VCF) files. The VCF is used for storing sequence variants

such as SNVs, INDELs, as well as SVs. The genetic variant information in VCF

files includes variant positions, unique identifiers, reference and alternate alleles,

quality scores, filters, annotations, and genotypes.

1.2.3 Somatic Mutation Discovery

Discovery of somatic mutations associated with oncogenesis is essential for iden-

tifying appropriate treatments for cancer patients. Several callers have been devel-

oped for detecting the somatic mutations that present in tumor cells but not in

normal tissue (Table 1.2). VarScan2 [23] screens the genotypes that are above

certain coverage and quality thresholds from the cancer and normal samples,

respectively. The variant calls with minimum variant frequency of all reads greater

than 20% are classified as either heterozygous calls or homozygous calls. For each

position with genotypes that do not match in tumor and normal, VarScan2 uses a

one-tailed Fisher’s exact test to check significant difference of allele frequency

across samples. The somatic mutations are called if the normal samples are

homozygous reference or heterozygous as loss of heterozygosity, but the calls in

tumor samples do not match.

Several tools based on Bayesian probability model have been developed for the

discovery of somatic mutations in matched cancer–normal pairs. Strelka [49]

carries out a realignment around INDELs in the tumor and normal sequence

alignment files like GATK. It uses a Bayesian probability approach to model the

normal sample allele frequencies as diploid genotypes and tumor sample allele

frequencies as a mixture of the normal sample with somatic variation. The

approaches also apply some priors for strand bias, mapping qualities, somatic

mutation rates, and estimated heterozygosity rates of the normal sample.

SomaticSniper [27] uses a Bayesian probability model to compute the probability

of all possible combined genotypes for the cancer–normal pair samples. The

likelihood is given by the observed as well as prior information from the rates of

population mutation, sequencing error, and somatic mutation. Each variant call in

tumor samples is assigned a Phred-scaled score indicating the probability that the

cancer and normal genotypes are different. JointSNVMix [47] utilizes a different

Bayesian method with a mixed binomial model to call each variant in the tumor and

normal samples. It analyzes the allelic count in paired cancer–normal samples using

two probabilistic graphical models: JointSNVMix1 that assumes the base calls and

read numbers and follows a perfect binomial distribution and JointSNVMix2 that

weighs priors for base call and mapping quality.

8 S. Teng



1.2.4 Structural Variant Discovery

Structural variants (SVs) are widespread in human genomes and play important

roles in the development of human diseases. As the growing number of SVs has

been demonstrated to have clinical relevance, SV discovery is critical in precision

medicine and cancer genomics. NGS technologies have revolutionized SV studies.

Compared to traditional hybridization-based approaches such as array CGH and

SNP microarrays, sequencing-based bioinformatics methods can detect multiple

types of SVs at a wide size range [5]. Most of these approaches distinguish SVs

based on two read mapping signatures including depth of coverage and paired-end

mapping [39]. The first type of approaches searches the regions with abnormal read

counts; the second type of tools investigates the configurations of the paired-end

mappings [60]. In this section, we describe the computational approaches

(Table 1.2) based on the two signatures below.

Depth of Coverage The approaches assume that read mapping follows a Poisson

distribution and the divergence from this distribution indicates the SV signatures.

The duplication has more reads mapping to region, and deletions show significantly

reduced coverage. CNVnator [2] can detect the deletions and duplications using a

statistical analysis of read mapping density for single-end and paired-end reads. It

captures the read-depth signatures by dividing sequencing regions into equal-sized

bins and computing the counts of reads in each bin. The partitioning of the

signatures is based on a mean-shift approach with additional filters such as

GC-bias correction. The statistical significance test is used to identify the regions

with abnormal signals for detecting possible deletions or duplications. The read-

depth approaches can predict the absolute copy numbers of genomic segments.

However, they cannot detect the balanced SVs such as translocations and

inversions.

Paired-EndMapping The approaches can be classified into two types of strategy:

read pair and split read. Read-pair methods analyze the span and orientation of

paired-end reads and identify the read pairs that are mapped with discordant

separation distances or orientation. Read-pair approaches can detect all classes of

SVs. BreakDancer [12] can detect read pairs with mapping span and orientation that

are inconsistent with the control. It has two models: BreakDancerMax can identify

five types of SVs including insertion, deletions, inversions, and intrachromosomal

and interchromosomal translocations, while BreakDancerMini is used to detect

INDELs. Split-read approaches are used to search split-read signatures to identify

the breakpoints of SVs. The deletions and duplications can be identified from the

continuous stretch of gaps in the sequence reads or references, respectively. Split-

read methods are suitable for long reads, but some algorithms can use short reads to

identify the breakpoints of large SVs. For example, Pindel [61] uses a pattern

growth algorithm to find large deletions and medium insertions from short paired-

end reads. The algorithm can align the gapped short sequences to reference

1 NGS for Variants 9



sequences with local alignment, which can reduce memory and increase speed for

searching potential split reads.

Structure variant discovery from targeted or whole-exome sequencing data is very

challenging due to the noncontiguous reads in exons. The targeted sequencing results

in some biases in sample collection, targeted genomic hybridization, and GC content.

Multiple tools have been developed to overcome these biases. CONTRA [36] is a

read-depth tool for CNV discovery. It uses BAM/SAM alignments as inputs and

builds an average baseline across multiple samples as the control. CONTRA then

computes the base-level log-ratios with corrections for imbalanced library size bias

and GC content bias. It calculates two-tailed P-values to detect CNVs. XHMM [18]

applies principal component analysis to normalize read depth in targets. It uses

hidden Markov model (HMM) to detect CNVs across multiple samples (>50 sam-

ples). In addition to VCF files, Browser Extensible Data (BED) format files can be

used to store and display large structural variants for further analysis.

1.3 Variant Analysis

Causal variant discovery is the key step in precision medicine informatics. Identi-

fying the disease-related variants promises to dramatically expand current aspects of

biomedical research in disease diagnostics and drug design. Multiple bioinformatics

tools have been developed to distinguish the causal variants associated with human

diseases from the massive number of nonfunctional variants detected by NGS variant

callers. Annotation methods determine the possible functional impact of all identified

variants. Association analyses connect the variants with complex diseases or clinical

traits. Visualization tools provide the graphic views of identified causal variants. The

disease-related casual variants can be identified by combining these approaches and

stored in public variant databases such as ClinVar [25] and HGMD [54]. The Human

Variome Project (http://www.humanvariomeproject.org/) has curated the gene-/dis-

ease-specific databases to collect the sequence variants and genes associated with

diseases. In this section, we summarize the variant analysis approaches for identify-

ing the most promising causal variants underlying human diseases.

1.3.1 Variant Annotation

Variant annotation can be used to determine the effects of sequence variants on

genes and proteins and filter the functional important variants from a background of

neutral polymorphisms. Coding mutations, such as nonsynonymous SNVs, could

change amino acid sequences and affect protein structures and functions. They are

more likely to be involved in the development of diseases. Regulatory variants

located in noncoding regions could modulate the gene expressions and work as the

causative modifiers of human diseases. Here, we describe the common
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computational tools for predicting the effects of coding mutations and regulatory

variants. We also introduce the generally used annotation toolkits to access the

prediction results generated from these tools.

Damaging Nonsynonymous Mutation Prediction With the advent of NGS technol-

ogies, particularly of exome sequencing, there is a significant need to interpret the

coding variants. A number of tools have been developed to distinguish deleterious

mutations from a large number of harmless nonsynonymous polymorphisms.

Sorting Intolerant From Tolerant (SIFT) [41] is a commonly used method for

predicting the effects of coding mutations on protein function. The algorithm

assumes that important protein sites should be conserved throughout evolution

and mutations located in these sites could alter protein functions. SIFT searches

the target sequence in protein database and constructs the sequence alignments

using closely related sequences. It computes the degree of conservation of protein

residues to distinguish the deleterious and neutral coding mutations. Polymorphism

Phenotyping v2 (PolyPhen2) [4] is another popular tool for predicting deleterious

missense mutations. The PolyPhen2 prediction is based on sequence annotations,

structural attributes, and comparative evolutionary considerations. PolyPhen2 uses

an iterative greedy algorithm to extract sequence-based and structure-based fea-

tures. Then, it constructs the supervised machine learning classifiers to predict

missense variants as benign, possibly damaging, or probably damaging mutations.

PolyPhen2 uses two data sets (HumDiv and HumVar) for training. HumDiv data set

collects all damaging mutations associated with human Mendelian diseases from

UniProtKB and non-damaging mutations between the proteins and their closely

related mammalian homologs. HumDiv model can be used to analyze rare variants

mildly deleterious at functionally important regions such as the regions involved in

complex phenotypes or identified from genome-wide association studies (GWAS).

HumVar data set uses all disease-causing mutations from UniProtKB as positive data

and the common sequence variants not involved in disease as negative instances.

HumVar model can be used to identify the damaging mutations with significant

effects for Mendelian disease research. Other common in silico programs include

likelihood ratio test (LRT) [13], which identifies the damaging mutations that disrupt

significantly conserved amino acid positions within the human proteome, and

MutationTaster [51] which evaluates the deleterious sequence variants using a

naive Bayesian model constructed from features including splice-site alterations,

mRNA changes, loss of protein, and evolutionary conservation.

Regulatory Variant Effect Prediction The majority of disease-related variant hits

identified from GWAS fall in noncoding DNA region, which indicate the regulatory

variants located in noncoding regions are critical in human disease. Regulatory

variants play important roles in gene expression and protein modification. Several

bioinformatics tools have been developed for predicting the functional effects of

regulatory variants. Genome-wide annotation of variants (GWAVA) [45] uses a

random forest algorithm to construct three classifiers to distinguish the functional

sequence variants in regulatory regions from a background of neutral variants. The

classifiers integrate genomic features such as evolutionary conservation and GC

content and range of epigenomic annotations from the Encyclopedia of DNA
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Elements (ENCODE) project [15]. Combined Annotation Dependent Depletion

(CADD) [22] is a score that can be used to prioritize the functional variants

including coding variants and regulatory variants. CADD tool constructs support

vector machine classifiers to integrate various genomic and epigenomic annotations

into a single measure (C score) for each sequence variant. Recently, deep learning

algorithm has been applied for interpretation of regulatory variants. DeepSEA [62]

is a deep learning-based tool for predicting the effects of noncoding variant and

prioritizing regulatory variants. The software uses deep learning algorithms to learn

regulatory sequence code from large-scale chromatin-profiling data and predict the

effects of noncoding variants on chromatin accessibility such as DNase I sensitiv-

ities, transcription factor binding, and histone marks at regulatory elements.

General Variant Annotation Multiple annotation toolkits have been developed to

determine the impacts of sequence variants on genes and proteins and access their

functional effects from above predictors. ANNOVAR [58] is a command-line Perl

software for annotating SNVs and INDELs based on genes, regions, or filters. In

gene-based annotation, it can annotate whether sequence variants affect protein

amino acid sequences (nonsense, missense, splice site, etc.). In region-based annota-

tion, it can identify the variants located in ENCODE-annotated regions such as

transcribed regions, enhancer regions, DNase I hypersensitivity sites, transcription

factor binding site, and transcription factor ChIP-Seq data. In filter-based annotation,

ANNOVAR can extract the information (allele frequency and identifier) of a

sequence variant in public databases such as dbSNP [53], ClinVar [25], 1000

Genomes Project [1], and Exome Variant Server (http://evs.gs.washington.edu/

EVS/). In addition, it can be used to access the annotations from damaging mutation

predictors (SIFT, PolyPhen2, LRT, MutationTaster, etc.) for nonsynonymous muta-

tions and CADD for regulatory variants. SnpEff [14] is another popular annotation

package to estimate the functional effects of SNVs, INDELs, and multiple nucleotide

polymorphisms. Based on the functional impacts of the sequence variants, SnpEff

classifies the variants to four classes: high, moderate, low, and modifier. It also

provides the annotations for regulatory variants. SnpEff provides a summary

HTML page to display overall statistics for sequences and variants (Table 1.3).

1.3.2 Variant Association Testing

Understanding how genetic variants contribute to diseases is the key challenge in

precision medicine. There are two hypotheses for interpreting the genetic contri-

bution of sequence variants in complex diseases such as cancers and mental

disorders [50]. The “common disease–common variant” hypothesis states that a

few common variants, usually defined as the allele frequency greater than 1% in the

population, make the major contributions for the genetic variance in complex

disease susceptibility. In contrast, the “common disease–rare variant” hypothesis

argues that multiple risk variants, each of which has low frequency (e.g., allele

frequency less than 1%) in the population, are the major contributors to the genetic
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susceptibility to complex diseases. NGS technologies can detect the full spectrum

of sequence variants including the rare variants that are difficult to be captured by

traditional genotyping arrays. Here, we describe the generally used case–control

association approaches for common and rare variants.

Case–Control Data QC The first step in any case-control association analysis is the

data quality control [6]. The samples and variants with poor quality should be removed

to reduce the numbers of false-positive and false-negative associations. The samples

with outlying heterozygosity rates, high missing data rates, and discordant sex infor-

mation have poor quality and should be removed firstly. In addition, the related

samples or samples from divergent ancestry should not be used for case-control

analysis. If the variants showed a high rate of missing genotypes, departure from

Hardy–Weinberg equilibrium, or a different missing genotype rate between cases and

controls, these variants should be excluded from case-control analysis.

Common-Variant Association Analysis The genome-wide association study

(GWAS) is a generally used approach to identify the common variants associated

Table 1.3 Variant annotation tools

Tool Description URL Reference

Damaging nonsynonymous mutation prediction

SIFT Tool can predict deleterious and neutral

mutations based on sequence homology

http://sift.jcvi.org/ [41]

PolyPhen2 Tool can predict probably damaging,

possibly damaging, and benign muta-

tions based on sequence and structure

features

http://genetics.bwh.

harvard.edu/pph2/

[4]

LRT Tool can predict deleterious, neutral, or

unknown mutations using likelihood

ratio test

http://www.genetics.

wustl.edu/jflab/lrt_

query.html

[13]

MutationTaster Tool can predict disease-causing and

polymorphism mutations using naive

Bayesian model

http://www.

mutationtaster.org/

[51]

Regulatory variant effect prediction

GWAVA Tool can predict the regulatory variant

effects using random forest algorithm

https://www.sanger.

ac.uk/sanger/

StatGen_Gwava

[45]

CADD Tool can predict the effects of coding

and noncoding variants using support

vector machine algorithm

http://cadd.gs.wash

ington.edu/

[22]

DeepSEA Tool can predict the regulatory variant

effects using deep learning algorithm

http://deepsea.

princeton.edu/

[62]

General variant annotation

ANNOVAR Perl annotation toolkit based on genes,

regions, and filters

http://annovar.

openbioinformatics.

org/

[58]

SnpEff Java annotation package based on genes http://snpeff.

sourceforge.net/

[14]
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with complex diseases and traits. The common methods used in GWAS are carried

out based on a single-variant level. The variants are tested individually, and

multiple testing correction should be used to control the family-wise error rate

(FWER). PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/) is the most com-

monly used software package for GWAS analysis in large-scale studies [43]. It

provides numerous useful tools for genetic data management, data quality control,

and association tests. Multiple association tests implemented in PLINK can be used

to identify the common variants associated with diseases based on their minor allele

frequencies between cases and controls. Fisher’s exact test can be used for case-

control traits in small-sized samples; permutation methods should be applied to

control for FWER. Linear regression test can be utilized for complex quantitative

traits, and permutation approaches should be performed to generate empirical

P-values to avoid issues with the test statistic distribution caused by the combina-

tion of variants and traits that deviate greatly from normality. Another popular

association testing tool is PLINK/SEQ (https://atgu.mgh.harvard.edu/plinkseq/).

The toolset performs Fisher’s exact test for single-variant association, on the

contrary, based on the alternate allele frequencies of variants in cases and controls.

Rare-Variant Association Analysis GWAS research has identified many common

variants strongly implicated in complex diseases. However, most of the common

variants have modest effects on the disease risk and much of the genetic contribu-

tion to complex diseases remains unexplained [37]. Recent sequencing studies

revealed the rare genetic variants have large effects on the risk for complex diseases

such as schizophrenia [44]. The rare-variant association tests are usually carried out

on a gene, or gene set level due to single-variant analysis is underpowered for rare

variants unless the sample sizes are very large. The general rare-variant burden test

collapses the rare variants across all samples into a single variable and compares the

cumulative effects in cases with controls within a gene to evaluate the significance

of the difference. The sequence kernel association test (SKAT, https://cran.r-pro

ject.org/web/packages/SKAT/) is particularly designed for the rare-variant analysis

from NGS data [59]. It uses a kernel machine regression approach to aggregate the

associations between variants in a gene region and a continuous or dichotomous

trait. SKAT-O [28] test applies a unified test to search the optimal linear combina-

tion of the general burden test and SKAT test to maintain the power in both

scenarios. In addition, the SKAT package provides “SKAT_CommonRare” func-

tion to evaluate the combined effects of rare and common variants. The permutation

method can be used in rare-variant association analysis to control FWER.

1.3.3 Variant Visualization

Visualizing the individual genomes and causal variants based on the existing

knowledge provides critical supports for biomedical research. Various standalone

visualization tools have been developed for interactive exploration of NGS data

from public resources and researchers’ own studies. Integrative Genomics Viewer
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(IGV) is a high-performance tool that provides a rapid visualization for large

genomic data sets [46]. IGV tool (https://www.broadinstitute.org/igv/) can load

sequence alignment BAM files, annotation data, and reference genomes from local

computers or remote sites. IGV includes tools for data tiling and file format sorting

and indexing [55]. It provides both stand-alone GUI desktop version and command-

line scripts for generating different image snapshots. IGV is capable of displaying

various sequence variants including SNVs and INDELs. As shown in Fig. 1.2, IGV

provides the views of chromosome ideogram, genomic coordinates, coverage plot,

sequence reads, and gene annotation tracks. The base mismatches compared to

reference are highlighted with color bars in coverage plot or color bases in read

tracks. Figure 1.2a shows an intronic SNV (rs3812384) in Src-like-adaptor

Fig. 1.2 IGV views of small sequence variants. Snapshots of IGV showing (a) an intronic SNV

(rs3812384) in SLA2 gene and (b) an insertion (rs72336257) in DEFB125 gene
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2 (SLA2) gene, and Fig. 1.2b displays an insertion (rs72336257) in defensin beta

125 (DEFB125) gene.
Several visualization tools have been developed for displaying the large SVs

from NGS data. Sequence Annotation, Visualization, and ANalysis Tool (Savant) is

a viewer for analyzing and visualizing sequence reads and variants [17]. Savant

browser (http://genomesavant.com) uses a modular docking framework to show

each module in a separate window. It provides the track module, bookmark module,

and table view to analyze the NGS data. In particular, Savant provides multiple

visualization modes to view and compare SVs in different samples (Fig. 1.3). For

example, a 150 kb duplication presenting in case but not in control shows a higher

coverage in zinc finger and AT-hook domain containing (ZFAT) gene in the

Fig. 1.3 Savant views of large SVs. Plots of Savant displaying the large SVs that present in case

but not in control including (a) a 150 kb duplication in ZFAT gene and (b) a 1.5 kb deletion in

YBX1 gene
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coverage mode (Fig. 1.3a). The Matepair (arc) mode displays the relative distance

between paired-end reads. The red and taller arcs indicate a larger distance between

the two reads of a pair, suggesting a 1.5 kb deletion in Y box binding protein

1 (YBX1) gene is only carried by the case sample (Fig. 1.3b).

1.4 Conclusions

NGS has significantly benefited the discovery of disease-related sequence variants,

which greatly facilitated the improvement of diagnosis and treatment methods in

precision medicine. Computational approaches have been developed to detect

different types of sequence variants (SNVs, INDELs, somatic mutations, and

structural variants) from NGS data. Bioinformatics methods have been applied to

annotate, filter, and visualize the casual variants associated with complex diseases.

There are limit standards regarding best practices in NGS variant detection and

analysis. To meet the challenges in precision medicine, some international scien-

tific organizations, such as Human Variome Project, are developing standardized

workflows for analyzing sequence variants implicated in human diseases.
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Chapter 2

RNA Bioinformatics for Precision Medicine

Jiajia Chen and Bairong Shen

Abstract The high-throughput transcriptomic data generated by deep sequencing

technologies urgently require bioinformatics methods for proper data visualization,

analysis, storage, and interpretation. The involvement of noncoding RNAs in

human diseases highlights their potential as biomarkers and therapeutic targets to

facilitate the precision medicine. In this chapter, we give a brief overview of the

bioinformatics tools to analyze different aspects of RNAs, in particular ncRNAs.

We first describe the emerging bioinformatics methods for RNA identification,

structure modeling, functional annotation, and network inference. This is followed

by an introduction of potential usefulness of ncRNAs as diagnostic, prognostic

biomarkers and therapeutic strategies.

Keywords RNA • Precision medicine • Biomarkers • Bioinformatics • Cancer

2.1 Introduction

RNAs are polymeric molecules that carry genetic information and are implicated in

protein synthesis. Recently, it is discovered that only a minor fraction of human

genomes encode for proteins [10, 15], and the remaining large fraction of the

transcripts are known as noncoding RNAs (ncRNAs).

ncRNAs could be broadly grouped into distinct classes based on the lengths.

Some classes have been known for long, e.g., ribosomal RNAs, transport RNAs,

and small nucleolar RNAs (snoRNAs). Several novel ncRNA classes have been

discovered, e.g., microRNAs (miRNAs), small interfering RNAs (siRNAs), PIWI-

interacting RNAs (piRNAs), hairpin RNAs (hpRNAs), and long noncoding RNAs

(lncRNAs) [31, 36, 51, 56]. The repertoire of ncRNAs continues to expand.
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Each of the ncRNA class has its unique biogenesis routes, three-dimensional

structure, and modes of action. Therefore, the functional spectrum of ncRNAs is

richer than expected. RNAs function as critical players at the epigenetic, transcrip-

tional, and posttranscriptional level [40]. They regulate gene expression through

diverse mechanisms, e.g., by mediating imprinting [57], alternative splicing [61],

and modification of other small noncoding RNAs.

The huge amount of biological data generated by high-throughput sequencing

technologies have opened new possibilities for RNA research field. On the other

hand, these data in turn give rise to an urgent demand for proper visualization,

analysis, storage, and interpretation of the data. It’s imperative to find efficient

bioinformatics methods to utilize these rich data source for a better understanding

of the RNA world.

Clinical transcriptomics will have great impact on the therapeutic strategy of

human disorders. The involvement of the RNA in human diseases has widely been

investigated for microRNAs. MicroRNAs, however, are just the tip of the iceberg.

The heterogeneous family of long noncoding RNAs (lncRNAs) may also partici-

pate in the progression of human diseases.

In the year of 2015, US government invested $215 million to launch the

Precision Medicine Initiative (PMI). Precision medicine (PM) is a customized

healthcare model. This model takes into account the individual variability and

tailors the medical treatment to the individual patient. Precision medicine is depen-

dent on molecular diagnostics or other molecular and cellular analyses to select

appropriate therapies based on the context of a patient’s genetic content [45].
Bioinformatics analyses integrating high-throughput microarray, next-

generation sequencing (NGS), and genotyping data in disease cases and matched

healthy controls consistently reveal changes in gene expression of both protein-

coding and regulatory noncoding RNAs. The strong correlations between

deregulated lncRNAs and disease development and prognosis highlight the poten-

tial of ncRNA as biomarkers and therapeutic targets to facilitate the precision

medicine.

In this chapter, we give a brief overview of the bioinformatics tool to analyze

several different aspects of RNAs, in particular ncRNAs. We first describe the

emerging bioinformatics methods for RNA identification, structure modeling,

functional annotation, and network inference. This is followed by an introduction

of potential usefulness of ncRNAs as diagnostic, prognostic biomarkers and ther-

apeutic strategies.

2.2 RNA Detection

RNA-seq is now a rich source to discover new ncRNA transcripts. It is also an

interesting topic to further validate any novel transcripts discovered.
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2.2.1 Detection of Small ncRNAs

Most of the currently available methods or algorithms that investigate

NGS-generated transcriptomic data aim at detecting, predicting, and quantifying

small RNAs, in particular microRNAs.

miRDeep [19] is the first stand-alone tool that identifies both novel and known

microRNAs from large-scale sRNA-seq data. miRDeep evaluates the possibility of

a hairpin structure by using Bayesian probability controls during the processes of

microRNA biogenesis. miRDeep successfully identifies new miRNA candidates by

searching for the characteristic read profile covering the mature miRNA and its

complement miRNA*. In miRDeep2, the well-conserved structure of ncRNA

families is used as a supplementary step to confirm a novel or known ncRNA

[49]. miRDeep* [1] employs a miRNA precursor prediction algorithm to minimize

the putative range of the precursor loci. It outperforms both versions of miRDeep by

reducing false negatives.

In addition to the microRNA-specific tools, other approaches or pipelines gen-

erally concentrate on the whole family of small RNAs.

The web service DARIO is a comprehensive approach designed to predict and

analyze different types of small RNAs generated from any next-generation RNA

sequencing experiments [17]. The web server CPSS [67] makes further improve-

ment on DARIO. CPSS is able to analyze small RNA-seq data that originate from

single or paired samples. CPSS also predicts target genes for interested miRNAs

and performs functional annotation of the predicted target genes. Different from

CPSS, ncPRO-seq [7] is an integrated pipeline that identifies regions significantly

enriched with short reads which do not belong to any known ncRNA families, thus

allowing the identification of novel ncRNA- or siRNA-producing regions.

2.2.2 Detection of lncRNAs

Compared with messenger RNAs or small ncRNAs, detection of long ncRNAs

from assembled transcripts is more complicated, because more deep sequencing

reads are needed for lncRNAs to achieve sufficient coverage.

The main problem in the lncRNA detection is to reconstruct the transcripts from

the short sequencing reads. In order to meet the ever-increasing need for effective

NGS data mining, a variety of bioinformatics tools have been developed for

NGS-based RNA transcriptome investigation. Below we will give a brief introduc-

tion on the currently available tools.

Sun et al. [59] developed a computational pipeline lncRScan to predict novel

lncRNA from transcriptome sequencing data. lncRScan uses expression level as a

filter to preclude artifacts or mRNAs from the initially assembled candidate tran-

scripts. iSeeRNA [60] trained a support vector machine-based classifier using

conservation, open reading frame, and sequence information as features. iSeeRNA
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