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Preface

The main focus of this book is on the modeling of binary response data. Binary

outcomes can be observed directly or through the dichotomization of a continuous

variable; however, binary data analysis has some unique challenges when compared

to continuous data analysis. Some potential issues a researcher needs to consider

when analyzing binary data are:

• Are the trials based on a mechanism that produces independent or correlated

observations?

• Are the data based on repeated measures or are they cross-sectional?

• Are the covariates time dependent or time independent?

• Are the covariates entered into the model as a fixed or random effect?

• Are there marginal models being fitted or subject-specific models? In other

words, is the interest to model the mean or to be subject specific?

This book is based on real examples and data we have encountered over

several years of research and teaching statistics at the Master’s and Ph.D. levels

at Arizona State University. In fact, several of the chapters are based on the applied

projects and theses of Master’s and Ph.D. students in the university’s statistics

programs. The examples in this book were analyzed whenever possible using SAS,

SPSS, and R. While the SAS, SPSS, and R outputs are contained in the text

with partial data tables, the completed datasets can be found at the web address

www.public.asu.edu/~jeffreyw.

The aim of this book is to concentrate on making complicated ideas and

propositions comprehendible, specifically those ideas related to modeling different

types of binary response data (Fig. 1). The chapters in this book are designed to help

guide researchers, practitioners, and students (at the senior or Master’s degree

levels who have some basic experience with regression as well as some knowledge

of statistical packages like SAS, SPSS, and R) in understanding binary regression

models using a variety of application areas.

This book presents existing studies and recent developments in statistical

methods, focusing on their applications to correlated binary data and other related
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research. The data and computer programs used throughout the text and analyzed

using SAS, SPSS, and R are publicly available so that readers can replicate the

models and the results presented in each chapter. This allows the reader to easily

apply the data and methods to his or her own research. The book strives to bring

together in one place the key methods used in the analysis of dependent observa-

tions with binary outcomes, and present and discuss recent issues in statistical

methodological development, as well as their applications. The book is timely

and has the potential to impact model development and correlated binary data

analyses of health and health-related research, education, banking, and social

studies, among others. In an academic setting, the book could serve as a reference

guide for a course on binary data with overdispersion, particularly for students at

the graduate level (Master’s or Doctoral students) seeking degrees in related

quantitative fields of study, though not necessarily in statistics. In addition, this

book could serve as a reference for researchers and data analysts in education, the

social sciences, public health, and biomedical research.

Fig. 1 Types of binary models
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Each chapter consists of seven sections and is organized as follows:

Section 1: Motivating Example

1.1. Description of the Case Study

1.2. Study Hypotheses

Section 2: Definitions and Notations

Section 3: Exploratory Analyses

Section 4: Statistical Model

Section 5: Analysis of Data

Section 6: Conclusions

Section 7: Examples

The book comprises four major parts, and all of the chapters are arranged within

them. Below, we provide a short summary for each of the chapters found within the

four major parts of the book.

Part I: Introduction and Review of Modeling Uncorrelated
Observations

1. Introduction to Binary Logistic Regression

Statistical inference with binary data presents many challenges, whether or not

the observations are dependent or independent. Studies involving dependent

observations tend to be longitudinal or clustered in nature, and therefore provide

inefficient estimates if the correlation in the data is ignored. This chapter, then,

reviews binary data under the assumption that the observations are independent.

It provides an overview of the issues to be addressed in the book, as well as the

different types of binary correlated data. It introduces SAS, SPSS, and R as the

statistical programs used to analyze the data throughout the book and concludes

with general recommendations.

2. Short History of the Logistic Regression Model

The logistic regression model, as compared to the probit, Tobit, log–log, and

complementary log–log models, is worth revisiting based upon the work of

Cramer (2002, 2003). The ability to model the odds has made the logistic

regression model a popular method of statistical analysis, in addition to the

fact that the model can be used for prospective, retrospective, or cross-sectional

data while the probit, Tobit, log–log, and the complementary log–log models can

only be used with prospective data to model probability. This chapter provides a

summary of Cramer’s work (2002, 2003) and relies heavily on Cramer’s own

excellent but terse history of the evolution of the logistic regression model.

Preface ix



3. Standard Binary Logistic Regression Model

The logistic regression model is a type of predictive model that can be used when

the response variable is binary, as in the cases of: live/die, disease/no disease,

purchase/no purchase, win/lose, etc. In short, we want to model the probability

of getting a certain outcome by modeling the mean of the variable (which is the

same as the probability in the case of binary variables). A logistic regression

model can be applied to response variables with more than two categories;

however, those cases, though mentioned in this text, are less common. This

chapter also addresses the fact that the logistic regression model is more effec-

tive and accurate when analyzing binary data as opposed to the simple linear

regression. We will therefore present three significant problems that a researcher

may encounter if the linear regression model was fitted to binary data:

1. There are no limits on the values predicted by a linear regression, so the

predicted response (mean) might be less than 0 or greater than 1, which is

clearly outside the realm of possible values for a response probability.

2. The variance for each subpopulation is different and therefore not constant.

Since the variance of a binary response is a function of the mean, if the mean

changes from subpopulation to subpopulation, the variance will also change.

3. Usually, the response is binary and so the assumption of normal distribution is

not appropriate in these cases.

The chapter provides an example using cross-sectional data and a binary

(two-level) response, and then fits the model in SAS, SPSS, and R. The models

are based on data collected for one observation per sampling unit, and the

chapter also summarizes the application to independent binary outcomes.

There are several excellent texts on this topic, including Agresti (2002), which

is referenced in the chapter.

Part II: Analyzing Correlated Data Through Random
Component

4. Overdispersed Logistic Regression Model

When binary data are obtained through simple random sampling, the covariance

of the responses follows the binomial model (two possible outcomes from

independent observations with constant probability). However, when the data

are obtained under other circumstances, the covariances of the responses differ

substantially from the binomial case. For example, clustering effects or subject

effects in repeated measure experiments can cause the variance of the observed

proportions to be much larger than the variances observed under the binomial

assumption. The phenomenon is generally referred to as overdispersion or extra

variation. The presence of overdispersion can affect the standard errors and
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therefore also affect the conclusions made about the significance of the pre-

dictors. This chapter presents a method of analysis based on work presented in:

Wilson, J. R., & Koehler, K. J. (1991). Hierarchical models for cross-

classified overdispersed multinomial data. Journal of Business and Economic
Statistics, 9(1), 103–110.

5. Weighted Logistic Regression Model

Binary responses, which are common in surveys, can be modeled through binary

models that can provide a relationship between the probability of a response and

a set of covariates. However, as explained in Chap. 4, when the data are not

obtained by simple random sampling, the standard logistic regression is not

valid. Rao and Scott (1984) show that when the data come from a complex

survey designed with stratification, clustering, and/or unequal weighting, the

usual estimates are not appropriate. In these cases, specialized techniques must

be applied in order to produce the appropriate estimates and standard errors.

Clustered data are frequently encountered in fields such as health services,

public health, epidemiology, and education research. Data may consist of

patients clustered within primary care practices or hospitals, or households

clustered within neighborhoods, or students clustered within schools. Subjects

nested within the same cluster often exhibit a greater degree of similarity, or

homogeneity of outcomes, compared to randomly selected subjects from differ-

ent clusters (Austin et al., 2001; Goldstein, 1995; Kreft & De Leeuw, 1998;

Raudenbush & Bryk, 2002; Snijders & Boskers, 1999). Due to the possible lack

of independence of subjects within the same cluster, traditional statistical

methods may not be appropriate for the analysis of clustered data. While

Chap. 4 uses the overdispersed logistic regression and the exchangeability

logistic regression model to fit correlated data, this chapter incorporates a series

of weights or design effects to account for the correlation. The logistic regression

model on the analysis of survey data takes into account the properties of the

survey sample design, including stratification, clustering, and unequal

weighting. The chapter fits this model in SAS, SPSS, and R, using methods

based on:

Koehler, K. J., &Wilson, J. R. (1986). Chi-square tests for comparing vectors

of proportions for several cluster samples. Communications in Statistics, A15
(10), 2977–2990.

Wilson, J. R. (1986). Approximate distribution and test of fit for the clustering

effect in Dirichlet multinomial model. Communications in Statistics, A15(4),
1235–1249.

Wilson, J. R. (1989). Chi-square tests for overdispersion with multiparameter

estimates. Journal of Royal Statistics Society Series C, Applied Statistics, 38(3),
441–454.

6. Generalized Estimating Equations Logistic Regression

Many fields of study use longitudinal datasets, which usually consist of repeated

measurements of a response variable, often accompanied by a set of covariates

for each of the subjects/units. However, longitudinal datasets are problematic
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because they inherently show correlation due to a subject’s repeated set of

measurements. For example, one might expect a correlation to exist when

looking at a patient’s health status over time or a student’s performance over

time. But in those cases, when the responses are correlated, we cannot readily

obtain the underlying joint distribution; hence, there is no closed-form joint

likelihood function to present, as with the standard logistic regression model.

One remedy is to fit a generalized estimating equations (GEE) logistic regression

model for the data, which is explored in this chapter. This chapter addresses

repeated measures of the sampling unit, showing how the GEE method allows

missing values within a subject without losing all the data from the subject, and

time-varying predictors that can appear in the model. The method requires a

large number of subjects and provides estimates of the marginal model param-

eters. We fit this model in SAS, SPSS, and R, basing our work on the method

best presented by Ziang and Leger (1986), and Liang and Zeger (1986).

7. Generalized Method of Moments Logistic Regression Model

When analyzing longitudinal binary data, it is essential to account for both the

correlation inherent from the repeated measures of the responses and the corre-

lation realized because of the feedback created between the responses at a

particular time and the covariates at other times (Fig. 2). Ignoring any of these

correlations can lead to invalid conclusions. Such is the case when the covariates

Covariate over time Responses over time

Fig. 2 Two types of correlation structures
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are time dependent and the standard logistic regression model is used. Figure 2

describes two types of correlations: responses with responses and responses with

covariates. We need a model that addresses both types of relationships. In Fig. 2,

the different types of correlation presented are:

1. There is the correlation among the responses which are denoted by y1, . . . , yT
as time t goes from 1 to T and

2. There is the correlation between response Yt and covariate Xs:

(a) When responses at time t impact the covariates in time t+ s
(b) When the covariates in time t impact the responses in time t+ s.

These correlations regarding feedback from Yt to the future Xtþs and vice

versa are important in obtaining the estimates of the regression coefficients.

This chapter provides a means of modeling repeated responses with time-

dependent and time-independent covariates. The coefficients are obtained using

the generalized method of moments (GMM). We fit these data with SAS Macro

(Cai & Wilson, 2015) using methods based on:

LaLonde, T., Wilson, J. R., & Yin, J. (2014). GMM logistic regression

models for longitudinal data with time-dependent covariates and extended

classifications. Statistics in Medicine, 33(27).

8. Exact Logistic Regression Model

As computers’ abilities to do tedious calculations have increased, using exact

logistic regression models has become more popular in healthcare, banking, and

other industries. Traditional methods (which are based on asymptotic theory)

when used for analyzing small, skewed, or sparse datasets are not usually

reliable. When sample sizes are small or the data are sparse or skewed, exact

conditional inference is necessary and applicable (Derr, 2008). Exact methods of

inferences are based on enumerating the exact distributions of certain statistics

to estimate the parameters of interest in a logistic regression model, conditional

on the remaining parameters. This is a method of testing and estimation that uses

conditional methods to obtain exact tests of parameters in binary and nominal

logistic models. Exact methods are appropriate for small-sample or sparse data

situations that often result in the failure (nonconvergence or separation) of the
usual unconditional maximum likelihood estimation method. However, exact

methods can take a great deal of time and memory as sample or model sizes

increase. For sample sizes too large for the default exact method, a Monte Carlo

method is provided. The chapter uses EXACT statement in PROC LOGISTIC or

PROC GENMOD, and we also fit models in SAS, C+, and R. Our methods are

based on:

Troxler, S., Lalonde, T. L., & Wilson, J. R. (2011). Exact logistic models for

nested binary data. Statistics in Medicine, 30(8).
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Part III: Analyzing Correlated Data Through Systematic
Components

9. Two-Level Nested Logistic Regression Model

Studies including repeated measures are expected to give rise to correlated data.

Such data are common in many disciplines including healthcare, banking, poll

tracking, and education. Subjects or units are followed over time and are

repeatedly observed under different experimental conditions, or are observed

in clusters. Often times, such data are available in hierarchical structures

consisting of a subset of a population of units at several levels. We review

methods that include the clustering directly in the model (systematic component)

as opposed to methods that include the clustering within the random component.

These methods belong to the class of generalized linear mixed models. The basic

idea behind generalized linear mixed models is conceptually straightforward

(McCulloch, 2003) and incorporates random effects into the systematic compo-

nent of a generalized linear model to account for the correlation. Such

approaches are most useful when researchers wish to account for both fixed

and random effects in the model. The desire to address the random effects in a

logistic model makes it a subject-specific model. This is a conditional model that

can also be used to model longitudinal or repeated measures data. We fit this

model in SAS, SPSS, and R. Our method of modeling is based on:

Lalonde, T., Nguyen, A. Q., Yin, J., Irimata, K., & Wilson, J. R. (2013).

Modeling correlated binary outcomes with time-dependent covariates. Journal
of Data Science, 11(4), 715–738

10. Hierarchical Logistic Regression Model

This chapter expands upon the results of Chap. 9. It is common to come into

contact with data that have a hierarchical or clustered structure. Examples

include patients within a hospital, students within a class, factories within an

industry, or families within a neighborhood. In such cases, there is variability

between the clusters, as well as variability between the units which are nested

within the clusters. Hierarchical models take into account the variability at

each level of the hierarchy, and thus allow for the cluster effects at different

levels to be analyzed within the models (Shahian et al., 2001). This chapter

tells how one can use the information from different levels to produce a

subject-specific model. We concentrate on fitting logistic regression models

to these kinds of nested data at three levels and higher (Fig. 3). In Fig. 3, as an

example, patients are nested within doctors and doctors are nested within

hospitals. This is a three-level nested design but can be expanded to higher

levels, though readily available computing may be challenge.

11. Fixed Effects Logistic Regression Model

If a researcher wants to know whether having a job reduces recidivism

among chronic offenders, that researcher could compare an individual’s arrest

rate when he/she is employed with his/her arrest rate when unemployed.
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The difference in arrest rates between the two periods is an estimate of the

employment effect for that individual. Similarly, a researcher might want to

know how a child’s performance in school differs depending on how much

time he/she spends watching television. The researcher could compare how the

child does when spending significant time watching television versus when

he/she does not watch television. Fixed effects logistic regression models can

be used for both of these scenarios. Such models are used to analyze longitu-

dinal data with repeated measures on both the response and the covariates.

These models treat each measurement on each subject as a separate observa-

tion, and the set of subject coefficients that would appear in an unconditional

model are eliminated by conditional methods. This is a conditional, subject-

specific model (as opposed to a population-averaged model like the GEE

model). We fit this model in SAS, SPSS, and R. An excellent discussion with

examples can be found in P. D. Allison (2005), Fixed Effects Regression
Methods for Longitudinal Data Using SAS. For binary response data, we use

the STRATA statement in PROC LOGISTIC.

Part IV: Analyzing Correlated Data Through the Joint
Modeling of Mean and Variance

12. Heteroscedastic Logistic Regression Model

Correlated binomial data can be modeled using a mean model if the interest is

only on the mean and the dispersion is considered a nuisance parameter.

However, if the intraclass correlation is of interest, then there is a need to

apply a joint modeling of the mean and the dispersion. Efron (1986) was one of

the first to model both the mean and the variance. The dispersion sub-model

allows extra parameters to model the variance independent of the mean, thus

allowing covariates to be included in both the mean and variance sub-models.

In this chapter, we present a sub-model that analyzes the mean and a sub-model

Simulated Hierachical Data

Patient 1

Hospital i
Level 3

Doctor 1 Doctor j
Level 2

Doctor ni

Level 1

Patient 2 ........... Patient ni1 Patient 1 Patient 2 ........... Patient niJ Patient 1 Patient 2 ........... Patient niJ

... ...

Fig. 3 Hierarchical structure of three levels
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that analyzes the variance. This model allows both the dispersion and the mean

to be modeled. We use the MODEL statement in the SAS/ETS procedure

QLIM to specify the model for the mean, and use the HETERO statement to

specify the dispersion model. We fit this model in SAS and SPSS. Our results

and presentation are based on work done in some recent Masters’ research

papers at Arizona State University.

The authors of this book owe a great deal of gratitude to many who helped in

the completion of the book. We have been fortunate enough to work with a

number of graduate students at Arizona State University: Anh Nguyen, who

provided the graphics and had a lot to do with extracting and analyzing the

Medicare dataset in the initial stages; Hong Xiang, who, through her Master’s

applied paper, contributed to findings regarding PROC NLMIXED and hier-

archical analyses; Jianqiong Yin, who provided insight and unwavering con-

tributions to our statistical programming through her thesis and associated

work; Katherine Cai, who helped with SAS Macro; and Chad Mehalechko,

who provided overwhelming support in doing the SAS, SPSS, and R program-

ming for all chapters. Many thanks to the staff in the Department of Economics

and the computing support group in the W. P. Carey School of Business. To

everyone involved in the making of this book, we say thank you!

Finally, a special thanks to our families, who have provided both of us with

the support needed to achieve this great endeavor.

Tempe, AZ Jeffrey R. Wilson

Phoenix, AZ Kent A. Lorenz
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Chapter 1

Introduction to Binary Logistic

Regression

Abstract Statistical inference with binary data presents many challenges, whether

or not the observations are dependent or independent. Studies involving dependent

observations tend to be longitudinal or clustered in nature, and therefore provide

inefficient estimates if the correlation in the data is ignored. This chapter, then,

reviews binary data under the assumption that the observations are independent. It

provides an overview of the issues to be addressed in the book, as well as the

different types of binary correlated data. It introduces SAS, SPSS, and R as the

statistical programs used to analyze the data throughout the book and concludes

with general recommendations.

1.1 Motivating Example

The need to profile or describe a unit based on a binary outcome is often of utmost

importance. While there are other models (probit, log–log, complementary log–log)

that can be used to model binary data, in this book we concentrate on logistic

regression models. The advantage of the logistic regression model lies in the

model’s ability to explain and predict the outcomes in terms of the odds, and how

applicable it is to cases where the data were obtained from prospective, retrospec-

tive, or cross-sectional settings. For example, we wish to detect the factors which

determine whether patient’s cancer is in remission. In that simulated data, there is a

three-level, hierarchical structure with patients nested within doctors within hospi-

tals. The study is meant to be a large study of lung cancer outcomes across multiple

doctors and sites. The response variable is whether or not the cancer is in remission.

The covariates at the patient level are age, length of stay, family history, cancer

stage, and CRP. At the doctor’s level, we have their identification and their years of
experience. At the hospital level, we have the hospital identification.

This book deals with the topic of logistic regression models concentrating on

binary data. The statement leads naturally to the following questions. What is a

binary logistic regression model? What does one mean by binary data? Why do we

need logistic regression models? Why is it not adequate to use the standard

regression analysis to analyze binary data?
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1.2 Definition and Notation

1.2.1 Notations

Let N denote the number of units in the population while n denotes the sample size,

and T times t ¼ 1, . . .T; with P covariates j ¼ 1, . . . J.

1.2.2 Definitions

A variable is defined as any measure that varies from individual to individual. For

example, if we measured the blood pressure for ten individuals, we would expect

the values to be different, making blood pressure the “variable” of interest. Another

example of a variable would be measuring the ages of 8000 Japanese–American

men to analyze the variable of age.

The output variable Y is also called the response variable, or dependent variable
or outcome variable. It is the variable of interest.

A quantitative variable is an individual measure taken on a numerical scale. It is

often referred to as a continuous variable, meaning that these observations may lie

on a continuum. Thus, a continuous variable takes on an infinite number of possible

values and its reported value is limited only by physical measurement accuracy. We

will make references to quantitative variables measured on two scales as follows:

An interval scale pertains to variables that can be ordered and give precise

measures of the distances between categories. Measuring temperature in degrees

Celsius is an example of this type of quantitative variable.

A ratio scale is for ratio variables, which are interval variables with a true zero

value. Using temperature as our example, a reading of zero degrees on the Celsius

scale does not actually denote an absence of heat or energy. Therefore, we classify

it as an interval variable. However, zero degrees on the Kelvin scale refer to an

absolute zero, or an absence of temperature or energy. Therefore, we classify it as a

ratio variable. A key difference between interval and ratio scales is that, with ratio

scales, the distance between measurements may be equal (i.e., the difference

between 10 and 20 �C is the same as between 25 and 35 �C. However, 20 �C is

not twice as much “temperature” as 10 �C. Only when using a ratio scale could you
make those statements (i.e., 20 K is twice as much as 10 K)).

A qualitative variable is one whose values vary in type rather than in magnitude.

It expresses a qualitative attribute, meaning that its values are not numerical. The

observations cannot be said to vary in magnitude, and a natural hierarchical

ordering is not possible.

A binary random variable is usually symbolized or coded as a 1 or 0. It is

appropriate when the assessment of a characteristic is in terms of any two categories

such as yes/no, present/absent, and favorable/unfavorable. These are called cate-

gories. The corresponding variable is called binary or dichotomous or indicator.
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The coded values do not have any meaning or rank, so they cannot be interpreted

numerically. However, several statistical programs require 1 or 0 coding for

analysis. With a 0 or 1 coded value, a researcher can find the mean. Such a summary

value is referred to as the proportion. Examples include: “Do you smoke?” Propor-

tion: those who smoke. Or “Do you drink?” Proportion: those who drink. Thus, the

mean of a binary variable is called the proportion.

A categorical variable is a variable measured on a nominal scale whose cate-

gories determine class or group membership. A categorical variable can take

“values” which denote non-numerical categories or classes. Some definitions are:

A categorical variable represents a set of discrete events, such as groups, decisions,
or anything else, that can be classified into categories. Categorical variables are also

referred to as discrete variables, meaning a limited set of numerical values that are

typically counting numbers, or whole numbers. Two main types of categorical

variables are nominal and ordinal variables.

Ordinal variables consist of a rank, or a rating. One example would be: “How

was the performance?” Some possible responses on a measurement scale could be:

1 for “Excellent,” 2 for “Above Average,” 3 for “Average,” 4 for “Below Average,”

and 5 for “Poor.” There is an obvious limitation to this type of measurement: The

examiner cannot be assured of the preciseness of a measurement like satisfaction. In

this example, “Excellent” is higher than “Above Average,” but it is not very precise

because it does not show how much higher an “Excellent” rating is compared to an

“Above Average” rating. This limitation also means that there can be no guarantee

that a difference between a score of 1 and 2 is the same as a difference between a

score of 4 and 5.

Nominal variables have characteristics that are mutually exclusive and exhaus-

tive. This means that nominal variables can only be measured in terms of whether

an individual belongs to a certain category. Some examples are: “What region of

the country are you from (Northeast, Northwest, Midwest, etc.)?” Or “Are you

single, married, widowed, or divorced?”

Categorical Variable in the Form of a Series of Binary Variables

Categorical variables can be reformulated and treated like a set of binary variables.

Consider the categorical variable “Region,” with levels (East, West, North, and

South).

When converted to four binary variables representing “Region,” it looks like:

1. East with levels (yes, no)

2. West with levels (yes, no)

3. North with levels (yes, no)

4. South with levels (yes, no)

Example:
Consider the following data given about “Region” in Table 1.1.
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Instead of the variable called “Region,” we now have East, West, North, and

South. Thus, the focus will be on binary and continuous variables. However, when

we reformulate a categorical variable into a series of binary variables, we use all but

one to represent the categorical variable from there on out. In our example we can

use East, West, and North as binary variables to represent Region for any modeling.

Information about South is achieved by letting East, West, and North take on a

value of 0 instead of 1. When interpreting the binary variable coefficient and

significance, it is compared to the one category that was left out.

Relationship Between Response and Predictor Variables

The response variable is the variable of interest to the experimenter. The main goal

of an experiment usually is to determine if there are some relationships between the

predictor variable and the response variable. There are two types of relationships

that are used to explain the relationship between the predictor variables and the

response variable: “functional” and “statistical.” When a relationship can be

expressed by a mathematical formula or expression, then it is known as a functional
relationship. For example: Distance¼Velocity by Time. The other type of rela-

tionship is called a statistical relationship.
A Statistical relationship is not exact and has two identifiable markers. Its two

parts: First, an experimenter knows there is a statistical relationship when the

response variable has a distribution associated with it (known or unknown) and

has a relationship that can be described by the mean and its predictor variables in a

systematic fashion. This relationship would give rise to a line (one predictor) or

plane (two or more predictors) with the expected value as the central point of a

distribution of possible responses. In addition, with statistical relationships there

will be a variation of the Y observations around the systematic part. For example,

the relationship between blood pressure after an experiment and blood pressure

before an experiment would be a statistical relationship (Fig. 1.1).

1.3 Exploratory Analyses

Consider the following diagram, Fig. 1.2. This is our input–output system, where X

is the input and Y is the output. Figure 1.2 provides a diagrammatic view of a set of

predictors (binary, continuous, or categorical) being fed into a system from which a

Table 1.1 Dichotomization

of a categorical variable
Observations Region East West North South

#124 East 1 0 0 0

#246 South 0 0 0 1

#513 North 0 0 1 0

#734 West 0 1 0 0
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