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Whereas software engineering has been a growing area in the field of computer
science for many years, systems engineering has its roots in traditional engineering.
On the one hand, we still see many challenges in both disciplines. On the other
hand, we can observe a trend to build systems that combine software, microelec-
tronic components, and mechanical parts. The integration of information systems
and embedded systems leads to so-called smart ecosystems.

Software and systems engineering comprise many aspects and views. From a
technical standpoint, they are concerned with individual techniques, methods, and
tools, as well as with integrated development processes, architectural issues, quality
management and improvement, and certification. In addition, they are also con-
cerned with organizational, business, and human views. Software and systems
engineering treat development activities as steps in a continuous evolution over
time and space.

Software and systems are developed by humans, so the effects of applying
techniques, methods, and tools cannot be determined independent of context.
A thorough understanding of their effects in different organizational and technical
contexts is essential if these effects are to be predictable and repeatable under
varying conditions. Such process—product effects are best determined empirically.
Empirical engineering develops the basic methodology for conducting empirical
studies and uses it to advance the understanding for the effects of various engi-
neering approaches.

The series presents engineering-style methods and techniques that foster the
development of systems that are reliable in every aspect. All the books in the series
emphasize the quick delivery of state-of-the-art results and empirical proof from
academic research to industrial practitioners and students. Their presentation style is
designed to enable the reader to quickly grasp both the essentials of a methodology
and how to apply it successfully.



Many activities in software engineering benefit from explicit documentation of the
software architecture. Such activities range from cost estimation via make-or-buy
decisions to implementing software and deployment, or even the establishment of a
software product line or other forms of planned reuse.

However, in many projects, the documentation of software architectures is
considered as a burden and is thus avoided.

I think one of the major reasons for this reluctance to invest in software archi-
tecture documentation is the absence of feedback: Do I have a good architectural
design? Is the architecture documented well enough for my project? As a result,
developers are unsure whether the architecture is useful altogether. In fact, the
problem of the lack of feedback in architectural design exists regardless of the
documentation approach. When attempting to document the architecture, it just
becomes more obvious. Anyway, the effects of bad architectural design are also
well known: shift of risks to the later phases of software development, lowered
productivity, and, most often, unsatisfactory quality of products. The latter, in
particular, is not very surprising, as the software architecture is for many IT systems
the major factor influencing the perceived quality for customers and developers
alike.

Therefore, the role of early evaluation of software architectures is well under-
stood in research. In fact, there exists a large body of proposals on how to evaluate
software architectures for various concerns. Most approaches are informal, but
automated formal approaches also exist. The benefits of informal approaches are a
certain flexibility regarding acceptable types of architectural documentation and a
broad range of potential quality impacts of the architecture. However, they require
manual effort and depend to a considerable extent on the experience of the eval-
uation team. In contrast, formalized automated approaches require specific archi-
tectural models, but the evaluation is “objective,” as it is automated. However, only
specific quality concerns are answered.

This book addresses the very important field of software architecture evalua-
tions. It is important for two reasons: First, it provides practical means for evalu-
ating software architectures, which is relevant to the reasons given above. Second, it
bundles experiences and how-to guidelines for the manual approaches, which
particularly benefit from exactly such experiences and direct guidelines. This book
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viii Foreword

is an invaluable help in bundling the existing body of knowledge and enriching it
strongly with real-world project expertise of the authors. It is not only a major step
toward the practical applicability of software architecture evaluation but also helps
to find good designs right at the beginning, as it helps to avoid design errors in all
phases of a software system’s lifecycle.

I wish the readers many insights from the abundant experience of the authors and
a lot of fun when applying the knowledge gained.

Prof. Dr. Ralf H. Reussner
Chair Software Design and Quality, Karlsruhe Institute of Technology (KIT) and
Executive Director, Forschungszentrum Informatik (FZI), Karlsruhe, Germany



What is the Point of This Book?

Software architecture evaluation is a powerful means to mitigate risks when making
decisions about software systems, when constructing them, when changing them,
when considering (potential) improvements, or when reasoning about ways to
migrate. Architecture evaluation is beneficial in such cases either by predicting
properties of software systems before they are built or by answering questions about
existing systems. Architecture evaluation is both effective and efficient: effective, as
it is based on abstractions of the system under evaluation, and efficient, as it can
always focus only on those facts that are relevant for answering the evaluation
questions at hand.

Acknowledging the need for architecture evaluation does not necessarily mean
that it has been adopted by practitioners. Although research has disseminated
numerous publications about architecture evaluation, a pragmatic and practical
guide on how to apply it in one’s own context and benefit from it is still missing.
With this book we want to share our lessons learned from evaluating software
architectures. We do not aim at reinventing the wheel; rather, we present a con-
solidation of useful ideas from research and practice, adapting them in such a way
as to make them applicable efficiently and effectively—in short, we take a prag-
matic approach to evaluating software architectures. Where necessary, we will fill
in gaps in existing approaches, in particular in the areas of scalability and appli-
cability. Additionally, we aim at interrelating all aspects and techniques of archi-
tecture evaluation and creating an understandable and memorable overall picture.
We will refer to examples of real architecture evaluation cases from our industrial
practice (anonymized due to confidentiality reasons) and provide data on projects.
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Why Read This Book?

“The most serious mistakes are not being made as a result of wrong answers.
The truly dangerous thing is asking the wrong question.”

Peter Ferdinand Drucker

We think that thorough and continuous architecting is the key to overall success in
software engineering, and architecture evaluation is a crucial part of architecting.
Asking the right questions and knowing about the right techniques to answer is
crucial for applying architecture evaluations as a valuable and pragmatic means of
technical risk management in software engineering.

To date (i.e., as of February 2016), we have conducted more than 75 architecture
evaluation projects with industrial customers in the past decade. In each of these
projects, at least one of the authors has been directly or indirectly involved as part
of our jobs as architects and consultants at the Fraunhofer Institute for Experimental
Software Engineering IESE. Fraunhofer IESE is an applied research institute for
software engineering located in Kaiserslautern, Germany. These projects covered a
large number of different types of systems, industries, organizational constellations,
technologies, modeling and programming languages, context factors, and, of
course, a whole spectrum of different evaluation results. Most importantly, we
collected a lot of evaluation questions that were asked and operationalized them
into actions.

“You can’t control what you can’t measure.”
Tom DeMarco

“Everything that can be counted does not necessarily count; everything that
counts cannot necessarily be counted.”

Albert Einstein

While scientific literature on architecture evaluation approaches is available, the
number of publications on practical experiences is rather limited. The contribution
of this book consists of the presentation and packaging of our experiences together
with context factors, empirical data, example cases, and lessons learned on miti-
gating the risk of change through architecture evaluation. Our approach for archi-
tecture evaluation (called RATE Rapid ArchiTecture Evaluation) has evolved and
been proven successful in many projects over the past decade. We will provide an
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in-depth description on the ingredients of our approach, but will also tackle the field
of architecture evaluation as a whole, as many of our insights and findings are
independent of the approach.

After reading this book, the target audiences will be able to take their own steps
in evaluating software architecture. By giving comprehensive answers to more than
100 typical questions (including questions we had, questions we heard, and ques-
tions our industrial partners had) and discussing more than 60 frequent mistakes and
lessons learned, readers will take their first steps on ground paved by more than a
decade of the authors’ experiences.

Even more importantly, readers will learn how to interpret the results of an
architecture evaluation. They will become aware of risks such as false conclusions,
fiddling with data, and wrong lines of arguments in evaluations. Last but not least,
readers will become confident in assessing quantitative measurement results and
will learn when it is better to rely on qualitative expertise. In short, it is important to
be aware what counts in architecture evaluation.

The target audience for the experience shared with this book includes both
practitioners and researchers. On the one hand, we aim at encouraging practitioners
to conduct architecture evaluations by showing the impact and lowering the hurdles
to making first attempts on their own by providing clear guidelines, data, and
examples. On the other hand, we aim at giving researchers insights into industrial
architecture evaluations, which can serve as basis for guiding research in this area
and may inspire future research directions.

How Should | Read This Book?

Our book is structured into three parts explaining the background of architecture
evaluation, describing concrete evaluation techniques, and offering hints on how to
successfully start and institutionalize architecture evaluation in practice.

Part I What is the Point of Architecture Evaluation?
Part II How to Evaluate Architectures Effectively and Efficiently?
Part Il How to Apply Architecture Evaluation in Practice?

e For an executive summary on one page, please jump directly to question Q.117
on page 148.

e For architects, developers, or as learning material for aspiring evaluators, all
three parts are highly relevant.

e For managers, mainly Part I and Part III are relevant.

e For a quick start into an evaluation, we recommend starting with question
Q.117, reading Chaps. 3, 4, and 11, then proceeding directly to the respective
checks you want to conduct in Chaps. 5-9.


http://dx.doi.org/10.1007/978-3-319-34177-4_3
http://dx.doi.org/10.1007/978-3-319-34177-4_4
http://dx.doi.org/10.1007/978-3-319-34177-4_11
http://dx.doi.org/10.1007/978-3-319-34177-4_5
http://dx.doi.org/10.1007/978-3-319-34177-4_9
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In order to serve practitioners’ needs in the best possible way, the entire book is
structured along questions. These questions are organized in a hierarchical and
uniform way to cover the big picture of architecture evaluation. For every topic, we
also present frequently made mistakes we often encountered in practice and give
hints on how to avoid them. Lists containing all questions, all frequently made
mistakes, and the lessons learned serve to offer quick guidance for the reader.

In the following, we depict the recurring patterns that guide readers through the
book. To a large extent, the chapters follow a uniform structure and are organized
internally along questions. The questions are numbered consecutively. Frequent
mistakes and lessons learned are visually highlighted, as shown in the following
examples.

1.1 What is the point?

—  This section summarizes the key points of the chapter’s topic.

1.2 How to do it effectively and efficiently?

—  Here we present detailed descriptions and guidance.

1.3 What mistakes are made frequently in practice?

—  This section names typical pitfalls and points out how to avoid them.

Q.001. Question

Frequently made mistake

—  Question Q.00X (please read this question for more background
information)

Lesson learned
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