The Fraunhofer IESE Series on

Software and Systems Engineering,’ = -
l:, P Ba s u a0 .'U"Jaﬂ- : # HT‘-—»’:}‘
= om i - ..' ‘_,_,‘\l‘—- ."\i., |

Jens del :
Matthia Naab

Pragmatlc
Evaluation of
Software
Architectures

\
A
T

The Fraunhofer IESE Series on Software
and Systems Engineering

Series editors
Dieter Rombach
Peter Liggesmeyer
Editorial Board

Adam Porter
Reinhold E. Achatz
Helmut Krcmar

More information about this series at http://www.springer.com/series/8755

http://www.springer.com/series/8755

Jens Knodel - Matthias Naab

Pragmatic Evaluation
of Software Architectures

@ Springer

Jens Knodel Matthias Naab

Fraunhofer IESE Fraunhofer IESE
Kaiserslautern Kaiserslautern

Germany Germany

ISSN 2193-8199 ISSN 2193-8202 (electronic)

The Fraunhofer IESE Series on Software and Systems Engineering
ISBN 978-3-319-34176-7 ISBN 978-3-319-34177-4 (eBook)

DOI 10.1007/978-3-319-34177-4
Library of Congress Control Number: 2016939924
© Springer International Publishing Switzerland 2016

Figures 1.1, 1.2,2.1,2.2,2.3,3.1,3.3,3.4,4.2,5.2,5.3,6.2,6.3,6.4,6.5,6.6,7.2, 8.2, 8.4, 8.5, 8.6, 8.7,
9.3, 10.2, 10.3, 10.4, 10.5 and 10.6 of the book are published with the kind permission of
© Fraunhofer IESE. All Rights Reserved.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Whereas software engineering has been a growing area in the field of computer
science for many years, systems engineering has its roots in traditional engineering.
On the one hand, we still see many challenges in both disciplines. On the other
hand, we can observe a trend to build systems that combine software, microelec-
tronic components, and mechanical parts. The integration of information systems
and embedded systems leads to so-called smart ecosystems.

Software and systems engineering comprise many aspects and views. From a
technical standpoint, they are concerned with individual techniques, methods, and
tools, as well as with integrated development processes, architectural issues, quality
management and improvement, and certification. In addition, they are also con-
cerned with organizational, business, and human views. Software and systems
engineering treat development activities as steps in a continuous evolution over
time and space.

Software and systems are developed by humans, so the effects of applying
techniques, methods, and tools cannot be determined independent of context.
A thorough understanding of their effects in different organizational and technical
contexts is essential if these effects are to be predictable and repeatable under
varying conditions. Such process—product effects are best determined empirically.
Empirical engineering develops the basic methodology for conducting empirical
studies and uses it to advance the understanding for the effects of various engi-
neering approaches.

The series presents engineering-style methods and techniques that foster the
development of systems that are reliable in every aspect. All the books in the series
emphasize the quick delivery of state-of-the-art results and empirical proof from
academic research to industrial practitioners and students. Their presentation style is
designed to enable the reader to quickly grasp both the essentials of a methodology
and how to apply it successfully.

Many activities in software engineering benefit from explicit documentation of the
software architecture. Such activities range from cost estimation via make-or-buy
decisions to implementing software and deployment, or even the establishment of a
software product line or other forms of planned reuse.

However, in many projects, the documentation of software architectures is
considered as a burden and is thus avoided.

I think one of the major reasons for this reluctance to invest in software archi-
tecture documentation is the absence of feedback: Do I have a good architectural
design? Is the architecture documented well enough for my project? As a result,
developers are unsure whether the architecture is useful altogether. In fact, the
problem of the lack of feedback in architectural design exists regardless of the
documentation approach. When attempting to document the architecture, it just
becomes more obvious. Anyway, the effects of bad architectural design are also
well known: shift of risks to the later phases of software development, lowered
productivity, and, most often, unsatisfactory quality of products. The latter, in
particular, is not very surprising, as the software architecture is for many IT systems
the major factor influencing the perceived quality for customers and developers
alike.

Therefore, the role of early evaluation of software architectures is well under-
stood in research. In fact, there exists a large body of proposals on how to evaluate
software architectures for various concerns. Most approaches are informal, but
automated formal approaches also exist. The benefits of informal approaches are a
certain flexibility regarding acceptable types of architectural documentation and a
broad range of potential quality impacts of the architecture. However, they require
manual effort and depend to a considerable extent on the experience of the eval-
uation team. In contrast, formalized automated approaches require specific archi-
tectural models, but the evaluation is “objective,” as it is automated. However, only
specific quality concerns are answered.

This book addresses the very important field of software architecture evalua-
tions. It is important for two reasons: First, it provides practical means for evalu-
ating software architectures, which is relevant to the reasons given above. Second, it
bundles experiences and how-to guidelines for the manual approaches, which
particularly benefit from exactly such experiences and direct guidelines. This book

vii

viii Foreword

is an invaluable help in bundling the existing body of knowledge and enriching it
strongly with real-world project expertise of the authors. It is not only a major step
toward the practical applicability of software architecture evaluation but also helps
to find good designs right at the beginning, as it helps to avoid design errors in all
phases of a software system’s lifecycle.

I wish the readers many insights from the abundant experience of the authors and
a lot of fun when applying the knowledge gained.

Prof. Dr. Ralf H. Reussner
Chair Software Design and Quality, Karlsruhe Institute of Technology (KIT) and
Executive Director, Forschungszentrum Informatik (FZI), Karlsruhe, Germany

What is the Point of This Book?

Software architecture evaluation is a powerful means to mitigate risks when making
decisions about software systems, when constructing them, when changing them,
when considering (potential) improvements, or when reasoning about ways to
migrate. Architecture evaluation is beneficial in such cases either by predicting
properties of software systems before they are built or by answering questions about
existing systems. Architecture evaluation is both effective and efficient: effective, as
it is based on abstractions of the system under evaluation, and efficient, as it can
always focus only on those facts that are relevant for answering the evaluation
questions at hand.

Acknowledging the need for architecture evaluation does not necessarily mean
that it has been adopted by practitioners. Although research has disseminated
numerous publications about architecture evaluation, a pragmatic and practical
guide on how to apply it in one’s own context and benefit from it is still missing.
With this book we want to share our lessons learned from evaluating software
architectures. We do not aim at reinventing the wheel; rather, we present a con-
solidation of useful ideas from research and practice, adapting them in such a way
as to make them applicable efficiently and effectively—in short, we take a prag-
matic approach to evaluating software architectures. Where necessary, we will fill
in gaps in existing approaches, in particular in the areas of scalability and appli-
cability. Additionally, we aim at interrelating all aspects and techniques of archi-
tecture evaluation and creating an understandable and memorable overall picture.
We will refer to examples of real architecture evaluation cases from our industrial
practice (anonymized due to confidentiality reasons) and provide data on projects.

X Preface

Why Read This Book?

“The most serious mistakes are not being made as a result of wrong answers.
The truly dangerous thing is asking the wrong question.”

Peter Ferdinand Drucker

We think that thorough and continuous architecting is the key to overall success in
software engineering, and architecture evaluation is a crucial part of architecting.
Asking the right questions and knowing about the right techniques to answer is
crucial for applying architecture evaluations as a valuable and pragmatic means of
technical risk management in software engineering.

To date (i.e., as of February 2016), we have conducted more than 75 architecture
evaluation projects with industrial customers in the past decade. In each of these
projects, at least one of the authors has been directly or indirectly involved as part
of our jobs as architects and consultants at the Fraunhofer Institute for Experimental
Software Engineering IESE. Fraunhofer IESE is an applied research institute for
software engineering located in Kaiserslautern, Germany. These projects covered a
large number of different types of systems, industries, organizational constellations,
technologies, modeling and programming languages, context factors, and, of
course, a whole spectrum of different evaluation results. Most importantly, we
collected a lot of evaluation questions that were asked and operationalized them
into actions.

“You can’t control what you can’t measure.”
Tom DeMarco

“Everything that can be counted does not necessarily count; everything that
counts cannot necessarily be counted.”

Albert Einstein

While scientific literature on architecture evaluation approaches is available, the
number of publications on practical experiences is rather limited. The contribution
of this book consists of the presentation and packaging of our experiences together
with context factors, empirical data, example cases, and lessons learned on miti-
gating the risk of change through architecture evaluation. Our approach for archi-
tecture evaluation (called RATE Rapid ArchiTecture Evaluation) has evolved and
been proven successful in many projects over the past decade. We will provide an

Preface Xi

in-depth description on the ingredients of our approach, but will also tackle the field
of architecture evaluation as a whole, as many of our insights and findings are
independent of the approach.

After reading this book, the target audiences will be able to take their own steps
in evaluating software architecture. By giving comprehensive answers to more than
100 typical questions (including questions we had, questions we heard, and ques-
tions our industrial partners had) and discussing more than 60 frequent mistakes and
lessons learned, readers will take their first steps on ground paved by more than a
decade of the authors’ experiences.

Even more importantly, readers will learn how to interpret the results of an
architecture evaluation. They will become aware of risks such as false conclusions,
fiddling with data, and wrong lines of arguments in evaluations. Last but not least,
readers will become confident in assessing quantitative measurement results and
will learn when it is better to rely on qualitative expertise. In short, it is important to
be aware what counts in architecture evaluation.

The target audience for the experience shared with this book includes both
practitioners and researchers. On the one hand, we aim at encouraging practitioners
to conduct architecture evaluations by showing the impact and lowering the hurdles
to making first attempts on their own by providing clear guidelines, data, and
examples. On the other hand, we aim at giving researchers insights into industrial
architecture evaluations, which can serve as basis for guiding research in this area
and may inspire future research directions.

How Should | Read This Book?

Our book is structured into three parts explaining the background of architecture
evaluation, describing concrete evaluation techniques, and offering hints on how to
successfully start and institutionalize architecture evaluation in practice.

Part I What is the Point of Architecture Evaluation?
Part II How to Evaluate Architectures Effectively and Efficiently?
Part Il How to Apply Architecture Evaluation in Practice?

e For an executive summary on one page, please jump directly to question Q.117
on page 148.

e For architects, developers, or as learning material for aspiring evaluators, all
three parts are highly relevant.

e For managers, mainly Part I and Part III are relevant.

e For a quick start into an evaluation, we recommend starting with question
Q.117, reading Chaps. 3, 4, and 11, then proceeding directly to the respective
checks you want to conduct in Chaps. 5-9.

http://dx.doi.org/10.1007/978-3-319-34177-4_3
http://dx.doi.org/10.1007/978-3-319-34177-4_4
http://dx.doi.org/10.1007/978-3-319-34177-4_11
http://dx.doi.org/10.1007/978-3-319-34177-4_5
http://dx.doi.org/10.1007/978-3-319-34177-4_9

xii Preface

In order to serve practitioners’ needs in the best possible way, the entire book is
structured along questions. These questions are organized in a hierarchical and
uniform way to cover the big picture of architecture evaluation. For every topic, we
also present frequently made mistakes we often encountered in practice and give
hints on how to avoid them. Lists containing all questions, all frequently made
mistakes, and the lessons learned serve to offer quick guidance for the reader.

In the following, we depict the recurring patterns that guide readers through the
book. To a large extent, the chapters follow a uniform structure and are organized
internally along questions. The questions are numbered consecutively. Frequent
mistakes and lessons learned are visually highlighted, as shown in the following
examples.

1.1 What is the point?

— This section summarizes the key points of the chapter’s topic.

1.2 How to do it effectively and efficiently?

— Here we present detailed descriptions and guidance.

1.3 What mistakes are made frequently in practice?

— This section names typical pitfalls and points out how to avoid them.

Q.001. Question

Frequently made mistake

— Question Q.00X (please read this question for more background
information)

Lesson learned

We would like to express our gratitude to our families, our colleagues (past and
present), our customers, and the software architecture community.

We thank our families for their continuous support and encouragement in
writing this book.

We had the opportunity to work and collaborate with great people at Fraun-
hofer IESE, where architecture evaluation has been a field of expertise for far more
than 10 years now. We would like to thank our institute’s directors Peter
Liggesmeyer and Dieter Rombach for giving architecture evaluation a high degree
of awareness and visibility. We also thank our past and present colleagues at
Fraunhofer IESE for collaborating with us in software architecture projects and
helping us to evolve our architecture evaluation method. The architecture evalua-
tion projects making up this book would not have been possible without you.

We would like to thank Stefan Georg, Jens Heidrich, Thorsten Keuler, Torsten
Lenhart, Mikael Lindvall, Dirk Muthig, Stefan Toth, Marcus Trapp, Carl Worms,
and Stefan Zorner for their reviews and valuable feedback on earlier versions of this
book. We are especially happy about the foreword by Ralf Reussner. Our special
thanks go to Sonnhild Namingha for her excellent proofreading.

More than 75 customer projects were the key enabler of this book—as writing
for practitioners is only possible when collaborating with practitioners. The col-
laboration with companies worldwide gave us lots of practical experience.
Although we are not allowed to name them, we would like to thank our customers
for their trust and the insights we were able to learn.

Over the years, we had many inspiring discussions with practitioners and
researchers all over the world about software architecture in general and architec-
ture evaluation in particular. We would like to thank them for stimulating ideas,
shared insights, and their feedback to our ideas.

Finally, we would like to thank our publisher Springer and in particular Ralf
Gerstner for his continuous support and his patience on the long journey of getting
this book done—at last.

xiii

Part I What Is the Point of Architecture Evaluation?

1

2

3

4

Why Architecture Evaluation?

What Is the Background of Architecture?

How to Perform an Architecture Evaluation?

Part I How to Evaluate Architectures Effectively and Efficiently?

5

6

7

8

9

How to Perform the Architecture Compliance Check (ACC)?. . ..

How to Perform the Code Quality Check (CQC)?

Part III How to Apply Architecture Evaluation in Practice?

11

21

35

49

59

73

83

95

XV

http://dx.doi.org/10.1007/978-3-319-34177-4_1
http://dx.doi.org/10.1007/978-3-319-34177-4_1
http://dx.doi.org/10.1007/978-3-319-34177-4_2
http://dx.doi.org/10.1007/978-3-319-34177-4_2
http://dx.doi.org/10.1007/978-3-319-34177-4_3
http://dx.doi.org/10.1007/978-3-319-34177-4_3
http://dx.doi.org/10.1007/978-3-319-34177-4_4
http://dx.doi.org/10.1007/978-3-319-34177-4_4
http://dx.doi.org/10.1007/978-3-319-34177-4_5
http://dx.doi.org/10.1007/978-3-319-34177-4_5
http://dx.doi.org/10.1007/978-3-319-34177-4_6
http://dx.doi.org/10.1007/978-3-319-34177-4_6
http://dx.doi.org/10.1007/978-3-319-34177-4_7
http://dx.doi.org/10.1007/978-3-319-34177-4_7
http://dx.doi.org/10.1007/978-3-319-34177-4_8
http://dx.doi.org/10.1007/978-3-319-34177-4_8
http://dx.doi.org/10.1007/978-3-319-34177-4_9
http://dx.doi.org/10.1007/978-3-319-34177-4_9
http://dx.doi.org/10.1007/978-3-319-34177-4_10
http://dx.doi.org/10.1007/978-3-319-34177-4_10
http://dx.doi.org/10.1007/978-3-319-34177-4_11
http://dx.doi.org/10.1007/978-3-319-34177-4_11
http://dx.doi.org/10.1007/978-3-319-34177-4_12
http://dx.doi.org/10.1007/978-3-319-34177-4_12

Xvi Contents

13 How to Start and Institutionalize Architecture Evaluation? 141
14 What Are the Key Takeaways of Architecture Evaluation? 147
About Fraunhofer IESE. 149

Bibliography 151

http://dx.doi.org/10.1007/978-3-319-34177-4_13
http://dx.doi.org/10.1007/978-3-319-34177-4_13
http://dx.doi.org/10.1007/978-3-319-34177-4_14
http://dx.doi.org/10.1007/978-3-319-34177-4_14

Q.001. What Is Architecting?. 3
Q.002. Why Invest in Software Architecture, Which Is Only

Q.003. What Is the Role of Architecture Evaluation

in Software Engineering? 4
Q.004. What Are the Benefits of Architecture Evaluation?. 6
Q.005. Who Should Ask for an Architecture Evaluation?. 6
Q.006. Who Executes Architecture Evaluations?. 7
Q.007. What Is the Return on Investment for Architecture

Evaluations? 8
Q.008. What Causes Complexity in Software Engineering

and Architecting?. L 11
Q.009. What Drives Architecting?. 13
Q.010. How Does Architecting Work? 13
Q.011. Why Is Architecting Complicated in Practice? 15
Q.012. How Do I Bridge the Gap Between “What & How™?......... 17
Q.013. What are Context Factors for Architecting and for Evaluating

Architectures? 17
Q.014. What Is the Mission of Architecture Evaluation? 21
Q.015. What Does Our Architecture Evaluation Method Consist of? 22
Q.016. What Determines the Scope of an Architecture Evaluation?. 26
Q.017. What Are the Basic Confidence Levels in Architecture

Evaluation? 26
Q.018. What Is the Outcome of an Architecture Evaluation? 28
Q.019. How to Interpret the Findings of an Architecture Evaluation? ... 28
Q.020. How to Aggregate the Findings of an Architecture

Evaluation? 30
Q.021. What Are the Limitations of Architecture Evaluation?. 32
Q.022. What Is a Good Metaphor for Architecture Evaluation?. 32
Q.023. When Should an Architecture Evaluation Be Conducted? 35
Q.024. What Are the Steps to Follow When Performing

Architecture Evaluations? 36
Q.025. How to Define Evaluation Goals? 36

XVii

xviii

Q.026.

Q.027.
Q.028.
Q.029.

Q.030.
Q.031.
Q.032.
Q.033.
Q.034.
Q.035.
Q.036.
Q.037.
Q.038.
Q.039.
Q.040.
Q.041.
Q.042.
Q.043.
Q.044.
Q.045.
Q.046.
Q.047.
Q.048.
Q.049.
Q.050.
Q.051.
Q.052.
Q.053.
Q.054.
Q.055.
Q.056.
Q.057.

Q.058.
Q.059.
Q.060.
Q.061.
Q.062.
Q.063.
Q.064.
Q.065.
Q.066.
Q.067.

How to Shape the Context of an Architecture

How to Present Evaluation Results?
What Is the DIC (Driver Integrity Check)?

How to Exploit the Results of the DIC?
What Kind of Input Is Required for the DIC?

What Is the SAC (Solution Adequacy Check)? . . .
Why Is the SAC Important?

What Kind of Output Is Expected from the SAC? .
What Do Example Results of the SAC Look Like?

What Are the Confidence Levels in an SAC?
What Kind of Tool Support Exists for the SAC? . .

What Is the Relationship Between the SAC

and Architecture Metrics?
What Is the DQC (Documentation Quality Check)?
Why Is the DQC Important?

What Do Example Results of the DQC Look Like?
How to Rate the Results of the DQC?

Table of Questions

37
38
39

39
40
40
42
42
49
51
52
52
53
53
55
55
55
56
57
57
59
61
62
62
62
65
67
67
68
69
69

70
73
76
76
77
77
78
78
79
80
80

