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Preface

This Handbook is a collection of chapters that describe a range of current
empirical and analytical work on financial industry data sampled at high
frequency (HF).

Our contemporary Age of Information is a world dominated by ever-
increasing quantitative elements that decision makers are expected to take
into account. Many fields are confronted with large amounts of data. The
phenomenon is particularly challenging in the finance industry, in that
evidently relevant data can be sampled with increasingly HF, a trend that
started in earnest more than a decade ago and does not seem to be letting
down. Some of the special challenges posed by these now staggering
amounts of data stem from the uncomfortable evidence that traditional
models and information technology tools can be poorly suited to grapple
with their size and complexity.

Probabilistic modeling and statistical data analysis attempt to uncover
order from apparent disorder. By illustrating this methodological frame-
work in the context of HF finance, the current volume may serve as a
guide to various new systematic approaches concerning how to implement
these quantitative activities with HF financial data. The chapters herein
cover a wide range of topics related to the analysis and modeling of data
sampled with HF, principally in finance, as well as in other fields where
new ideas may prove helpful to HF finance applications. The first chapters
cover the dynamics and complexity of futures and derivatives markets as
well as a novel take on the portfolio optimization problem using quantum
computers. The following chapters are dedicated to estimating complex
model parameters using HF data. The final chapters create links between
models used in financial markets and models used in other research areas
such as geophysics, fossil records, and earthquake studies.

The editors express their deepest gratitude to all the contributors for
their talent and labor in bringing together this Handbook, to the many

xv
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Chapter One

Trends and Trades
Michael Carlisle1, Olympia Hadjiliadis2, and Ioannis
Stamos3

1Department of Mathematics, Baruch College, City University of New York,
New York, NY, USA
2Department of Mathematics and Statistics, Hunter College, City University of
New York, and Departments of Computer Science and Mathematics, Graduate
Center, City University of New York, New York, NY, USA
3Department of Computer Science, Hunter College, City University of New York,
and Department of Computer Science, Graduate Center, City University of
New York, New York, NY, USA

1.1 Introduction

High-frequency data in finance is often characterized by fast fluctuations
and noise (see, e.g., [7]), a trait that is known to make the volatility of
the data very hard to estimate (see, e.g., [13]). Although this characteristic
creates many challenges in modeling, it offers itself to the study of distin-
guishing “signal” from “noise,” a topic of interest in the area of quickest
detection (see [25], [5]). One of the most popular algorithms used in quick-
est detection is known as the cumulative sum (CUSUM) stopping rule first
introduced by Page [24]. In this work, we employ a sequence of CUSUM
stopping rules to construct an online trading strategy. This strategy takes
advantage of the relatively frequent number of alarms CUSUM stopping
times may provide when applied to high-frequency data as a result of the
fast fluctuations present therein. The trading strategy implemented settles
frequently and thus eliminates the risk of large positions. This makes the

Handbook of High-Frequency Trading and Modeling in Finance, First Edition.
Edited by Ionut Florescu, Maria C. Mariani, H. Eugene Stanley and Frederi G. Viens.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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2 CHAPTER 1 Trends and Trades

strategy implementable in practice. Prior work has been done by Lam
and Yam [20] on drawing connections between CUSUM techniques and
the filter trading strategy, yet both the filter trading strategy (see [2, 3]),
or its equivalent, the buy and hold strategy (see [12]), run high risks of
great losses mainly due to the randomness associated with settling. The
well-known trailing stops strategy whose properties have been thoroughly
studied in the literature (see, e.g., [15] or [1]) is also related to the filter
strategy and thus suffers similar risks.

Although our proposed rule presents clear merits in terms of minimiz-
ing the risk of large positions by taking advantage of the high volatility
frequently present in high-frequency data, the main purpose of this chapter
is to present and illustrate the use of detection techniques (in this case the
CUSUM) in high-frequency finance. In particular, the strategy proposed
is based on running in parallel two CUSUM stopping rules: one detects
an upward (+) change and the other a downward (−) change in the mean
of the observations. Once an upward/downward CUSUM alarm (called a
“signal”) goes off, there is a buy/short sale of one unit of the underlying
asset. At that moment, we repeat a CUSUM stopping rule, and for every
alarm of the same sign, we continue buying or short selling one unit of the
underlying asset until a CUSUM alarm of the opposite sign is set off, at
which time we sell off all of what we bought or buy up all of what we short
sold. The high frequency of CUSUM alarms in high-frequency tick data
permits the implementation of this rule in practice since large exposures
on one side, whether on the buy or on the sell side, are settled relatively
quickly.

The algorithmic strategy proposed is applied on real tick data of a
30-year asset and a 5-year note sold at auction on various individual days.
It is seen that the algorithm is most profitable in the presence of upward
or downward trends (which we call “subperiods”), even in the presence
of noise, and is less profitable on periods of price stability. The proposed
strategy is, in fact, a trend-following algorithm.

To quantify the performance of the proposed algorithmic strategy,
we calculate its expected reward in a simple random walk model. Our
diagnostic plots indicate that the more biased the random walk is, the more
profitable the proposed strategy becomes, which is consistent with the
actual findings when the strategy is applied to real data. This is because in
the presence of a bias, trends are more likely to form than in the absence
of a bias.
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We take the analytical approach of discrete data and a linear random
walk model, rather than taking the continuous approach via, for exam-
ple, the geometric Brownian motion model, because we are analyzing
the movement of individual ticks of a price, quantized in a linear fash-
ion (e.g., at the level of 1 cent, 1

32
cent, or 1

64
cent). Our models focus

on tracking the motion of an asset price via these ticks, and so a linear
approach is a more realistic setting, when short interest rate effects would be
minimal.

We begin our analysis in Section 1.2 by describing a general trading
strategy based on following upward or downward trends in a data stream,
without specifying the timing mechanism behind such a strategy. We then
develop the notion of gain over the time period of an individual trend. In
Section 1.3, we build a timing scheme stemming from quickest detection
considerations and give a preliminary performance evaluation of the overall
strategy on real tick data. Next, in Section 1.4, we analyze the specific case
of random walk-based data and calculate the expected value of the gain
over a trend in this case. We give an explicit formula for this gain in the
special case of simple asymmetric random walk on asset tick changes.
Then, in Section 1.5, we give results of Monte Carlo simulations for the
asymmetric lazy simple random walk and symmetric lazy random walk
on tick changes. In Section 1.6, we discuss the effect of the CUSUM
threshold parameter on the trading strategy. We conclude in Section 1.7
by a discussion of ways in which the proposed strategy may be improved
with suggestions for further work.

1.2 A trend-based trading strategy

Let {Sn}n=0,1,2... be a sequence of data points; for our purposes, they will
be samples of the price of an asset. We assume that S0 = s is a constant,
and Sk = 0 for some k implies that Sn = 0 for all n > k. Let T0 = 0, and
define Tk, k = 1, 2, ... as an increasing sequence of (stopping) times, called
signals, noting some trend in the sequence. We call Tk the k-th signal.

1.2.1 SIGNALING AND TRENDS

In this subsection, we construct a trading strategy in the case that there
are two types of signals: “+ signals” (declaring the detection of an upward
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trend in the data) and “− signals” (declaring the detection of a downward
trend in the data). Let “Property+(k)” be the property that causes a+ signal
to occur as the kth signal, and denote this event by {Tk = T+

k }. Likewise,
let “Property −(k)” be the property that causes a − signal to occur as the
k-th signal, and denote this by {Tk = T−

k }. Only one type of trend can be
detected at a time, so we formally define T+

k and T−
k by

T+
k :=

{
Tk if Property + (k) occurs
∞ if Property − (k) occurs

(1.1)

T−
k :=

{
Tk if Property − (k) occurs
∞ if Property + (k) occurs

(1.2)

Thus, Tk = T+
k ∧ T−

k for every k = 1, 2, ....
Next, we state what it means for the data to stay in a trend. We define

the sequence of signal indices 𝛼(l) as follows: let 𝛼(0) = 0, so T𝛼(0) = 0,
and for l ≥ 1, with k ≥ 2, define the properties

“Property + (l, k)” : Tj = T−
j for every 𝛼(l − 1) < j < k and Tk = T+

k

“Property − (l, k)” : Tj = T+
j for every 𝛼(l − 1) < j < k and Tk = T−

k .

Then, we define the lth shift point as, for l = 1, 2, ...,

𝛼(l) := inf{k≥ 𝛼(l − 1)+ 2: Property+ (l, k) or Property− (l, k) holds}.

(1.3)

Note that T𝛼(l) is at least two signals after T𝛼(l−1). Definition (1.3) is equiv-
alent to

𝛼(l) := inf{k≥ 𝛼(l− 1) + 2:Tk has different sign than Tj, 𝛼(l− 1)< j< k}.

(1.4)

A sequence of the same type of signal will be called a subperiod of the
sample points. A shift point denotes the end of a subperiod of the same
type of signal.

LetΔn be the number of shares of the asset S held at time n. SetΔ0 = 0.
Note that, for every n ∈ (T𝛼(l), T𝛼(l+1)), the sign of Δn is invariant, that is,
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either Δn > 0 holds for every n ∈ (T𝛼(l), T𝛼(l+1)) or Δn < 0 holds for every
n ∈ (T𝛼(l), T𝛼(l+1)).

Our trading strategy is as follows:

Δn+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δn if no signal at time n, i.e. n ≠ Tj ∀j (no change)

Δn + 1 if n = Tj = T+
j for some j, 𝛼(l) < j < 𝛼(l + 1)

for some l (buy one during a + subperiod)

Δn − 1 if n = Tj = T−
j for some j, 𝛼(l) < j < 𝛼(l + 1)

for some l (sell one during a − subperiod)

0 if n = T𝛼(l) for some l ≥ 1

(buy-up if T+
𝛼(l); sell-off if T−

𝛼(l)).

(1.5)

We assume a market in which all market orders are instantly fulfilled. The
intent of this strategy is to profit from following subperiods of + or −
signals by the old adage “buy low, sell high.” The success of this strategy
relies mainly on the length of such subperiods.

1.2.2 GAIN OVER A SUBPERIOD

We wish to analyze the gain Gl, l = 1, 2, ..., for this trading strategy over
the time period (T𝛼(l−1), T𝛼(l)], called subperiod l; this is the amount of
cash earned or lost by liquidating the transactions made from signals
T𝛼(l−1)+1, ..., T𝛼(l)−1 at T𝛼(l).

Note that a subperiod is determined by the first signal on that run:
if T1 = T+

1 , then the run from signal 1 to signal 𝛼(1) − 1 is a “bull run”
subperiod of individual buy orders followed by a sell-off at time T𝛼(1) =
T−
𝛼(1); if T1 = T−

1 , then this run is a “bear run” subperiod of individual short
sales followed by a buy-up at T𝛼(1) = T+

𝛼(1). Define Gl to be the gain on
subperiod l; thus, G1 is the gain on the first subperiod, starting at signal
T𝛼(0)+1 = T1 and ending at signal T𝛼(1). We require, as a condition, the sign
of the first signal of the subperiod. Let c ≥ 0 be the percentage cost per
transaction, and define

Al := 1{T𝛼(l−1)+1=T−
𝛼(l−1)+1}, Yl := 𝛼(l) − 𝛼(l − 1) − 1. (1.6)
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The gain on a subperiod is calculated as follows:

Gl :=

⎧⎪⎪⎨⎪⎪⎩
(1 − c)

∑𝛼(l)−1
j=𝛼(l−1)+1 STj

− (1 + c)(𝛼(l) − 𝛼(l − 1) − 1)ST𝛼(l)

if T𝛼(l−1)+1 = T−
𝛼(l−1)+1,

(1 − c)(𝛼(l) − 𝛼(l − 1) − 1)ST𝛼(l)
− (1 + c)

∑𝛼(l)−1
j=𝛼(l−1)+1 STj

if T𝛼(l−1)+1 = T+
𝛼(l−1)+1

:=

{
(1 − c)

∑Yl

j=1 STj+𝛼(l−1)
− (1 + c)(Yl)ST𝛼(l)

if T𝛼(l−1)+1 = T−
𝛼(l−1)+1,

(1 − c)(Yl)ST𝛼(l)
− (1 + c)

∑Yl

j=1 STj+𝛼(l−1)
if T𝛼(l−1)+1 = T+

𝛼(l−1)+1.

(1.7)

For example, if c = 0.01, T1 = T+
1 , and 𝛼(1) = 4, then T𝛼(1) = T4 = T−

4 .
Say the prices at the buy-signal times are ST1

= 5, ST2
= 7, ST3

= 9, and we
sell everything off at ST4

= 8. Then ΔT0
= 0, ΔT1

= 1, ΔT2
= 2, ΔT3

= 3,
and we liquidate at time T4 to ΔT4

= 0. The gain on the first subperiod
would then be G1 = (0.99)(3)(8) − (1.01)(5 + 7 + 9) = 2.55.

Combining the 1 − c terms and adding on the random variable
2cYlS𝛼(Tl)

, we have after some algebra a sum of price increments:

Gl + 2cYlS𝛼(Tl)
=
(
c + (−1)Al

)[
YlST𝛼(l)

−
Yl∑

j=1

STj+𝛼(l−1)

]
=
(
c + (−1)Al

) Yl∑
j=1

(ST𝛼(l)
− STj+𝛼(l−1)

).

(1.8)

We can rewrite each difference in the sum as a telescoping sum: setting

Zk := STk+1
− STk

, k = 1, 2, ..., (1.9)

as the incremental price change between signals k and k + 1, we have

ST𝛼(l)
− STj+𝛼(l−1)

=
𝛼(l)−1∑

k=j+𝛼(l−1)

(STk+1
− STk

) =
𝛼(l)−1∑

k=j+𝛼(l−1)

Zk =
Yl∑

k=j

Zk+𝛼(l−1).

Substituting this back into (1.8) yields

Gl + 2cYlS𝛼(Tl)
=

(
c + (−1)Al

) Yl∑
j=1

[
𝛼(l)−1∑

k=j+𝛼(l−1)

Zk

]
=
(
c + (−1)Al

) Yl∑
j=1

jZj+𝛼(l−1).

(1.10)
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Therefore, by (1.11), the gain over subperiod l is

Gl =
(
c + (−1)Al

) Yl∑
j=1

jZj+𝛼(l−1) − 2cYlS𝛼(Tl)
. (1.11)

Note that, in the absence of transaction costs (i.e., c = 0), the expected
gain Gl is entirely determined by price increments and the sign of the first
signal of the subperiod.

1.3 CUSUM timing

Next, we describe a version of the CUSUM statistic process and its associ-
ated CUSUM stopping rule, which we will use to devise a timing scheme
based on the quickest detection of trends, and incorporate this scheme to
our trading strategy.

1.3.1 CUSUM PROCESS AND STOPPING TIME

In this section, we begin by introducing the measurable space (Ω, ),
where Ω = ℝ∞,  = ∪nn, and n = 𝜎{Yi, i ∈ {0, 1,… , n}}. The law of
the sequence Yi, i = 1,… , is described by the family of probability mea-
sures {P𝜈}, 𝜈 ∈ ℕ∗. In other words, the probability measure P𝜈 for a given
𝜈 > 0, playing the role of the change point, is the measure generated on Ω
by the sequence Yi, i = 1,… , when the distribution of the Yi’s changes at
time 𝜈. The probability measures P0 and P∞ are the measures generated
on Ω by the random variables Yi when they have an identical distribution.
In other words, the system defined by the sequence Yi undergoes a “regime
change” from the distribution P0 to the distribution P∞ at the change point
time 𝜈.

The CUSUM statistic is defined as the maximum of the log-likelihood
ratio of the measure P𝜈 to the measure P∞ on the 𝜎-algebra n. That is,

Cn := max
0≤𝜈≤n

log
dP𝜈
dP∞

||||n

(1.12)

is the CUSUM statistic on the 𝜎-algebra n. The CUSUM statistic process
is then the collection of the CUSUM statistics {Cn} of (1.12) for n = 1,….
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The CUSUM stopping rule is then

T(h) := inf
{

n ≥ 0 : max
0≤𝜈≤n

log
dP𝜈
dP∞

||||n

≥ h

}
, (1.13)

for some threshold h > 0. In the CUSUM stopping rule (1.13), the CUSUM
statistic process of (1.12) is initialized at

C0 = 0. (1.14)

The CUSUM statistic process was first introduced by Page [24] in the
form that it takes when the sequence of random variables Yi is indepen-
dent and Gaussian; that is, Yi ∼ N(𝜇, 1), i = 1, 2,…, with 𝜇 = 𝜇0 for i < 𝜈
and 𝜇 = 𝜇1 for i ≥ 𝜈. Since its introduction by Page [24], the CUSUM
statistic process of (1.12) and its associated CUSUM stopping time of
(1.13) have been used in a plethora of applications where it is of interest to
perform detection of abrupt changes in the statistical behavior of observa-
tions in real time. Examples of such applications are signal processing (see
[10]), monitoring the outbreak of an epidemic (see [29]), financial surveil-
lance (see [14] and [9]), and more recently computer vision (see [19]
or [30]). The popularity of the CUSUM stopping time (1.13) is mainly
due to its low complexity and optimality properties (see, for instance,
[21], [22, 23], [6] and [27] or [26]), in both discrete and continuous time
models.

As a specific example, we now derive the form in which Page [24]
introduced the CUSUM. To this effect, let Yi ∼ N(𝜇0, 𝜎2) that change to
Yi ∼ N(𝜇1, 𝜎2) at the change point time 𝜈. We now proceed to derive the
form of the CUSUM statistic process (1.12) and its associated CUSUM
stopping time (1.13) in the example set forth in this section. To this effect, let
us now denote by 𝜙(x) = 1√

2𝜋
e−x2∕2 the Gaussian kernel. For the sequence

of random variables Yi given earlier, we can now compute (see also [28]
or [25]):

Cn = max
0≤𝜈≤n

log
dP𝜈
dP∞

||||n

= max
0≤𝜈≤n

log

∏𝜈−1
i=1 𝜙

(
Yi−𝜇0

𝜎

)∏n
i=𝜈 𝜙

(
Yi−𝜇1

𝜎

)
∏n

i=1 𝜙

(
Yi−𝜇0

𝜎

)
= 1
𝜎2

max
0≤𝜈≤n

(𝜇1 − 𝜇0)
n∑

i=𝜈

[
Yi −

𝜇1 + 𝜇0

2

]
.

(1.15)
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In view of (1.14), we initialize the sequence (1.15) at Y0 = 𝜇1+𝜇0

2
and

proceed to distinguish the following two cases:

� Case 1: 𝜇1 > 𝜇0: divide out 𝜇1 − 𝜇0, multiply by the constant 𝜎2 in
(1.15), and use (1.13) to obtain the CUSUM stopping rule T+ :

T+(h+) = inf

{
n ≥ 0 : max

0≤𝜈≤n

n∑
i=𝜈

[
Yi −

𝜇1 + 𝜇0

2

]
≥ h+

}
(1.16)

for an appropriately scaled threshold h+ > 0.

� Case 2: 𝜇1 < 𝜇0: divide out 𝜇1 − 𝜇0, multiply by the constant 𝜎2 in
(1.15), and use (1.13) to obtain the CUSUM stopping rule T−:

T−(h−) = inf

{
n ≥ 0 : max

0≤𝜈≤n

n∑
i=𝜈

[
𝜇1 + 𝜇0

2
− Yi

]
≥ h−

}
(1.17)

for an appropriately scaled threshold h− > 0.

As shown in the study [24] or [11], we can reexpress the stopping times
(1.16) and (1.17) in terms of the recurrence relations

u0 = 0; un := max
{

0, un−1 +
(

Yn −
𝜇1 + 𝜇0

2

)}
(1.18)

d0 = 0; dn := max
{

0, dn−1 −
(

Yn −
𝜇1 + 𝜇0

2

)}
, (1.19)

which lead to

T+(h+) = inf{n > 0 : un ≥ h+}, (1.20)

T−(h−) = inf{n > 0 : dn ≥ h−}. (1.21)

The sequences un and dn of (1.18) and (1.19), respectively, form a
CUSUM according to the deviation of the monitored sequential observa-
tions Yn from the average of their pre- and postchange means. The first
time that one of these sequences reaches its threshold (in (1.20) or (1.21)),
the respective alarm T+ or T− fires.

Although the stopping times (1.16) and (1.17) and their respective
equivalents (1.20) and (1.21) can be derived by formal CUSUM regime
change considerations using the example set forth in this section, they may
also be used as general nonparametric stopping rules directly applied to
sequential observations as seen in the study by Brodsky and Darkhovsky



10 CHAPTER 1 Trends and Trades

[8] or Devore [11]. The former can be used as a general stopping rule to
detect an upward change in the mean while the latter a downward one.
In many applications, it is of interest to monitor an upward or downward
change in the mean of sequential observations simultaneously. This gives
rise to the two-sided CUSUM (2-CUSUM), which was first introduced
by Barnard [4], and whose optimality properties have been established in
Hadjiliadis [17], Hadjiliadis and Moustakides [16], and Hadjiliadis et al.
[18]. In the context presented in this section, the 2-CUSUM stopping time
takes the form

T+(h+) ∧ T−(h−), (1.22)

where T+(h+) appears in (1.20) and T−(h−) in (1.21). The symmetric
version of the 2-CUSUM stopping time is that of (1.22) when h+ = h− = h.

1.3.2 A CUSUM TIMING SCHEME

We now apply the aforementioned CUSUM stopping rule of (1.22) to a
stream of data representing the value of the underlying asset without any
model assumptions. In other words, the underlying asset is not necessarily
assumed to be independent or normally distributed. That is, we apply the
forms (1.16) and (1.17) in a nonparametric fashion. Let M > 0 denote
the “tick size” of the asset being monitored (presuming that S changes
in increments of M; we do not know the probability distribution of these
changes), and h > 0 be a given threshold. Given that S0 = s, recall that
T0 = 0. We monitor the progress of upward or downward adjustments in
the price Sn of the underlying, by individual ticks.

In view of the previous subsection at time Tk, 𝜇0 is set to the value
of the underlying at time Tk, namely 𝜇0 = STk

, and 𝜇u
1 = STk

+ M and
𝜇d

1 = STk
− M are the two “new” mean levels to be monitored against.

Thus, as in equations (1.18) and (1.19), which cumulate the deviations
of the monitored sequence from the average of their pre- and postchange
means, we now monitor the deviations of the underlying sequence Sn,
n = 1, 2… , from the quantities

mu
k :=

(STk
+ M) + STk

2
= STk

+ M
2

,

md
k :=

(STk
− M) + STk

2
= STk

− M
2

,

(1.23)
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where k ≥ 0. To this effect, set uk
0 = dk

0 = 0, and for n ≥ 1, define the
CUSUM statistics

uk
n := max{0, uk

n−1 + (Sn+Tk
− mu

k)},

dk
n := max{0, dk

n−1 − (Sn+Tk
− md

k )}.
(1.24)

Thus, for k ≥ 0, the CUSUM timing scheme for our trend-following trading
strategy is defined by using (1.20) and (1.21) (and coming from (1.1) and
(1.2)),

Property + (k + 1) : uk
n ≥ h; Property − (k + 1) : dk

n ≥ h
j∗k := min{n > 0 : Property + (k + 1) or − (k + 1) occurs}

Tk+1 : = Tk + j∗k .
(1.25)

In other words, each Tk is the symmetric 2-CUSUM stopping time of
(1.22) for cycle k. Finally, at the “end of day,” that is, on the final tick,
we close out our position, inducing a final shift point to end trading, for
algorithmic purposes.

1.3.3 US TREASURY NOTES, CUSUM TIMING

The following figures and chart describe the CUSUM timing scheme (1.25)
applied to the trading strategy (1.5) for US Treasury notes sold at auction in
2011. Gains quoted are in increments of $1000. In Figure 1.1, we show the

0.8

+1.007e2

Cumulative gain G1 + G2

Negative gain G3, run 3

Cumulative
gain G1 + G2 + G3

Asset price Sn
(dots are signals)
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Gain G1, run 1

Δn
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FIGURE 1.1 Plot of the first subperiods, and cumulative gain, for the
CUSUM strategy, August 2, 2011, US 5-year treasury note.
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FIGURE 1.2 Lengths of subperiods versus gains, August 2, 2011, US 5-year
treasury note.

asset price, along with the number of shares held, per-subperiod gain, and
running total gain. Figures 1.2, 1.3, 1.4, 1.5 and 1.6 show the individual
subperiod gains, plotted by the number of signals during a subperiod, of
the gain for 5-year and 30-year treasury notes, and Figure 1.7 aggregates
the data from Figures 1.3, 1.4, 1.5 and 1.6 for 30-year notes.

1.4 Example: Random walk on ticks

We now describe a simple example to model the asset price motions.
Assume that ∃N > 0 such that the sequence {Xj}j∈ℕ are the steps of a

FIGURE 1.3 Subperiod length versus gain, July 29, 2011, US 30-year trea-
sury note.


