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Preface

Fluid dynamics has had significant advances in recent years as a result of the current
vertiginous development of computational power. This expansion has nowadays
enabled the implementation of numerical high-resolution simulations as never
before. For instance, fluid dynamic cosmological simulations are presently being
run using up to 1012 particles, and turbulence simulations with up to 1011 mesh
elements. Experimental advances are also present. Just to mention, some computer
methods to reconstruct the topography of a liquid’s free surface have been devel-
oped in recent times bringing into play high-definition digital images. With these
tools, phenomena like wave turbulence or wave breaking are at the present being
investigated. The development of different computer architectures offers now the
possibility to work out fluid dynamics equations with alternative methods. Recent
simulations with Smoothed Particle Hydrodynamics have been done using both
multicore architectures and GPUs. The advantage of this approach is that the
method is meshless, so it is suitable for modeling systems with moving and
irregular boundaries.

Today the Mexican fluid dynamics community is involved in the research of
novel topics using the advancements mentioned above. To name but a few topics,
we draw attention to the studies in microfluidics and their relation to real problems
like secondary oil recovery, while—in a different vein—studies in the field of
magnetohydrodynamics are now being conducted on the mutual conversion of
mechanical and electromagnetic energy.

The papers included in this book are selected contributions of two meetings held
in Mexico during 2014. The first one was the Spring School “Enzo Levi” on
May 12–13, 2014. The second event was the Annual Meeting of the Division of
Fluid Dynamics of the Mexican Physical Society on November 18–20, 2014.
In both meetings, an important fraction of the Mexican community working on fluid
dynamics gathered, including students, researchers, and lecturers of several insti-
tutions from all over Mexico. We are pleased to acknowledge the contributions and
attendance of all colleagues of the institutes and universities that were present in
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one or both meetings. Among several institutions we would like to mention:
UNAM, CINVESTAV, CICESE, IPN, UAM-A, ININ, and UNACH.

The 2014 “Enzo Levi” Spring School was hosted by the recently created
Aeronautical University of Querétaro (UNAQ). This university was established
with the aim to provide technical assistance to the aeronautical industries located in
the Mexican state of Querétaro.

The number of participants attending the “Enzo Levi” conference was approx-
imately 150. During this meeting, a total of 11 lectures were delivered by renowned
scientists from Mexico and abroad. The topics covered by the lectures were diverse:
waves produced by ships, aerogenerator designs, drag reduction in planes, turbu-
lence at low temperatures, fluid mechanics in cosmology, and in coastal systems,
among other topics. Of the lectures delivered during the meeting, some of them
stand out. We would like to mention those given by Jens Sorensen, a distinguished
professor of the Technical University of Denmark. His first lecture dealt with
aerodynamic principles and then was centered on renewable energy, in particular on
how to increase wind power. His second lecture was devoted to wind farms and
the problems associated with the wakes produced by turbines. Marc Rabaud from
the University Paris-Sud delivered two lectures on the wakes produced by fast boats
and small obstacles, respectively. In the first case, the gravity is relevant while in
the second case both gravity and capillarity are involved. With respect to aero-
nautics, Fausto Sánchez Cruz, from the University of Nuevo León, spoke about the
development of winglets to reduce the drag on aircrafts and on the modifications
of the wing end to dissipate or attenuate the wingtip vortices. In a succeeding
lecture, Hugo Carmona Orvañanos spoke about the Coanda effect and its appli-
cation to the reduction of the takeoff length. Enrico Fonda from New York
University spoke on two aspects of turbulence, namely, experiments at low tem-
peratures to attain high Reynolds numbers and on vorticity in superfluids. The
lecture by Jorge Cervantes from Instituto Nacional de Investigaciones Nucleares
(ININ) concerned fluid dynamics in the frame of cosmology in which relativistic
and non-relativistic effects were reviewed. Finally, Erick Lopez Sanchez from
UNAM spoke on numerical simulations of vortices in tidal induced flows in a
channel flushing to the sea.

During the 2014 “Enzo Levi” Spring School, the UNAQ local organizer
arranged an open house event where participants visited the aeronautical school
premises including laboratories, test workshops, and toured around various air-
planes donated to the institution for student training. This experience allowed
visitors and local participants, researchers, and students of different institutes to
establish fruitful academic links in the vibrant field of applications of fluid
mechanics to aerodynamics.

The annual meeting of the Mexican Division of Fluid Dynamics was held during
three days at the recently established Mesoamerican Centre for Theoretical Physics
in Tuxtla Gutierrez, Chiapas, a state located south of the country. This conference
was attended by approximately 250 participants. Conference activities included:
oral sessions, a gallery of fluid motion and open lectures on fluid mechanics aimed
at an audience of informed non-specialists in the specific topic of the talk.
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Prominent scientists from Mexico and other countries delivered lectures on new
trends in fluids dynamics. In relation to the contents of lectures, Tomas Bohr, from
the Physics Department of the Technical University of Denmark, talked on the
analogy between quantum mechanics and the behavior of a bouncing drop on the
surface of a vibrating fluid. Yves Couder from the University of Paris Diderot also
commented on the mentioned analogy. Tomas Bohr made a critical review of the
double slit experiments. In a succeeding lecture, Joseph Niemela of the
International Centre for Theoretical Physics (ICTP) gave a talk on experiments in
turbulence for high Reynolds and Taylor numbers, which conveys to a better
understanding of this phenomenon. For its part, Chantal Staquet from Joseph
Fourier University in France talked about the statistical properties of internal waves
in the ocean, their nonlinear interactions, and their importance in geophysical flows.
Another lecture concerning waves was given by Francisco Ocampo Torres from
CICESE, a research institute located at the Baja California Peninsula, in the north of
Mexico. He spoke about the interactions between the ocean and the atmosphere,
with emphasis on the surface waves and their role in the oceanic and atmospheric
circulation. It is also important to mention the talk given by Nicolas Mujica from
the University of Chile, related to a vibrating granular material and the occurrence
of phase transitions. Finally, Vadim Kourdioumov of Centro de Investigaciones
Energéticas, Madrid, gave a lecture on the propagation of flames in narrow chan-
nels. Some of these lectures have been included in this book.

The book contains review and research papers, covering a wide spectrum of
topics in fluid dynamics. It is divided into four parts, each one having papers based
on invited lectures and a selection of works presented in the annual 2014 meeting.
The first part is devoted to vortices and circulation phenomena. It contains con-
tributions like vortices produced by deformable objects (a flexible plate and a
flexible cylinder). Three papers treating some applications to aerodynamics, for
example, structures generated behind flapping foils or the study of the Coanda effect
to increase the lift of airplanes. The part includes also a paper about the vortices
created in tidal induced flows and two papers on the technique known as
Background Oriented Schlieren. Finally, a paper of the crossflow in a
non-isothermal open cavity is included. The second part is entitled “Environmental
Applications”. This part includes experimental and numerical investigations of the
modeling of hydrodynamic processes in lagoons, offshore, and in atmospheric
systems in Latin American countries such as Colombia and Mexico. In addition, the
part includes a paper on fractals and rainfalls and other one on the evaluation of a
cooling system. The third part is devoted to the fluid–structure interaction. In this
part there are papers on magnetohydrodynamics, microfluidics, applications to the
automotive industry, and an introduction to novel techniques like the fractional
Navier–Stokes equation. There are in addition papers on the formation of Rayleigh
jets, the trajectories of water and sand jets, the flow of viscoelastic fluids, and so on.
In this part of the book there are contributions that reflect some of the new trends
of the research developed by the Mexican community of fluid dynamics. The last
part is entitled “General Fluid Dynamics and Applications”. In this part a rele-
vant paper of Tomas Bohr is included which deals with the analogy between
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a bouncing drop and quantum mechanics. There are also two papers on
astronomical applications of fluid dynamics, namely the dynamics of novae and the
X-ray outflow in active galactic nuclei. This part contains a paper written by Nicola
Mujica and Rodrigo Soto on the dynamics of non-cohesive granular media. Other
papers deal with fundamental problems such as heat propagation or the use of new
computing capabilities. Such is the case of a paper in which the method of
Smoothed Particle Hydrodynamics is programmed to run in parallel using GPUs
and multicore architectures.

The book is aimed at senior and graduate students, and scientists in the field of
physics, engineering, and chemistry that have an interest in fluid dynamics from the
experimental and theoretical points of view. The material includes recent advances
in experimental and theoretical fluid dynamics and is adequate for both teaching
and research. The invited lectures are introductory and avoid the use of complicated
mathematics.

The editors are grateful to the institutions that made possible the International
Enzo Levi Spring School 2014, and the XX National Congress of the Fluid
Dynamics Division of the Mexican Physical Society, particularly the Consejo
Nacional de Ciencia y Tecnología (CONACYT), the Sociedad Mexicana de Física
(SMF), the Aeronautical University of Queretaro (UNAQ), the Mesoamerican
Centre for Theoretical Physics in Tuxtla Gutierrez, Chiapas, the Universidad
Nacional Autónoma de México (UNAM), the ESIME of the Instituto Politécnico
Nacional (IPN), Cinvestav-Abacus, the Universidad Autónoma Metropolitana-
Azcapotzalco (UAM-A), and the Instituto Nacional de Investigaciones Nucleares
(ININ).

Mexico City Jaime Klapp
January 2016 Leonardo Di G. Sigalotti

Abraham Medina
Abel López

Gerardo Ruiz-Chavarría
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Numerical Study of the Cross Flow
in a Non-isothermal Open Cavity

G.E. Ovando-Chacon, S.L. Ovando-Chacon, J.C. Prince-Avelino,
A. Rodriguez-León and A. Servin-Martínez

Abstract In the present work, the laminar steady state fluid dynamics and heat
transfer, in a two-dimensional open cavity with a cross flow due to a secondary jet
injected at the top wall, are analyzed. The numerical study is carried out for a
Reynolds number of 500 with different Richardson and Prandtl numbers. A hot
plate is provided on the bottom of the cavity which generates the heating of the
fluid. In order to investigate the effect of the length of the plate two different plate
sizes are considered. The governing equations of continuity, momentum and energy
for incompressible flow are solved by the finite element method combined with the
splitting operator scheme. It is studied the streamlines and isotherms inside the
cavity and it is analyzed the average Nusselt number, the average temperature and
the outlet temperature as a function of the Richardson and Prandtl numbers. It is
observed that the Prandtl and Richardson numbers play a major role in the thermal
and fluid behavior of the flow inside the cavity with a cross flow. Moreover the
results indicate that a secondary jet injected at the top wall enhances the average
Nusselt number.
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1 Introduction

The numerical simulation of the flow in an open cavity with heat transfer is an
important issue in many technological processes. Madadi et al. (2008) evaluated the
optimal location of discrete heat source placed inside a ventilated cavity. Oztop
et al. (2011) numerically examined the steady natural convection in an open cavity
filled with porous media. Radhakrishnan et al. (2007) reported experimental and
numerical investigation of mixed convection from a heat generating element in a
ventilated cavity. Zhao et al. (2011) analyzed the characteristics of transition from
laminar to chaotic mixed convection in a two-dimensional multiple ventilated
cavity. Najam et al. (2002) presented the simulation of mixed convection in a T
form cavity, heated with constant heat flux and ventilated from below with a
vertical jet. Mamun et al. (2010) studied the effect of a heated hollow cylinder on
mixed convection in a ventilated cavity. Mahmoudi et al. (2010) numerically
examined the effect of the inlet and the outlet locations on the mixed convection
flow and on the temperature field in a vented square cavity. Deng et al. (2004)
investigated the laminar mixed convection in a two-dimensional displacement
ventilated enclosure with discrete heat and contaminant sources. The main aim of
this numerical investigation is to study the complex interaction of a cross flow with
a perpendicular jet inside an open cavity in presence of a heating surface.

2 Problem Formulation

A sketch of the enclosure configuration studied is shown in Fig. 1. 2D numerical
simulations are carried out inside an open square cavity (H/W = 1) with a cross
flow due to a secondary jet injected at the top wall. The main fluid enters from the
lower left side wall and leaves the cavity through the upper right side wall. The
Reynolds number (Re = UmW/ν), based on the velocity of the main inlet flow Um

and the width W of the cavity, studied in this investigation is Re = 500 for different
Richardson and Prandtl numbers. In order to induce the buoyancy effect, a hot plate
is located on the bottom of the cavity which generates the heating of the fluid. Two
different lengths Wp of the plate are considered. The main entrance and exit of the
cavity are fixed to h = 0.25 W, meanwhile the inlet of the jet on the top wall is
fixed to a = 0.05 W.

The governing equations for a non-isothermal incompressible steady state flow,
in a two-dimensional domain Ω, are given as:

−
1
Re

Δu+u ⋅ ∇u+∇p=RiTj in Ω, ð1Þ

∇ ⋅ u=0 in Ω, ð2Þ
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−
1
Pe

ΔT +u ⋅ ∇T =0 in Ω, ð3Þ

In the above equations u = (u1, u2) is the velocity vector, being u1 and u2 the
horizontal and vertical velocity components, respectively; ν is the kinematic vis-
cosity, p is the pressure, T is the temperature and j is the vertical unitary vector. In
the governing equations, the Richardson number, Reynolds number and Peclet
number are defined as follow:

Ri= gβW Th −Tcð Þ U̸2
m, Re =UwW ν̸, Pe=Re Pr , ð4Þ

where ɡ is the gravity, β is the compressibility coefficient, Th is the hot temperature,
Tc is the cold temperature. No slip boundary conditions (u1 = u2 = 0) were
established in all the walls of the cavity and adiabatic walls (∂T/∂n = 0) were
supposed except in the bottom wall where the heating takes places. The tempera-
tures of the jet and main inlet flows are fixed to T = Tc, meanwhile the temperature
of the isothermal heater plate is fixed to T = Th. The non-dimensional values of this
temperature were Tc = 0 and Th = 1. The boundary conditions of the main inlet
flow were u1 = Um, and u2 = 0. On the outlet flow was imposed ∂u/∂n = 0.

3 Numerical Solution of the Model and Results Validation

Numerical simulations are conducted for the laminar flow inside an open cavity for
the Reynolds number of 500 with Richardson and Prandtl numbers ranging between
0.01 and 10. A 2D geometry is used (see Fig. 1) and several types of meshing are
included in order to obtain independent results from the numerical parameters. The
governing equation are solved with the finite element method combined with the

Fig. 1 Geometry of the open
cavity with a cross flow due to
secondary jet injected at the
top wall
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operator splitting scheme, see Glowinski (2003). The convergence analysis is done
for three different meshes with resolution of 25050, 27200 and 30080 elements. An
analysis of the temperature profiles on the middle horizontal and vertical lines
indicates that the largest difference of the results between the meshes of 25050 and
27200 is 8.5 %, while the maximum difference of the results between the meshes of
27200 and 30080 is 1.0 %. The analysis is also done for the velocity components,
for all cases the worst relative error between the meshes of 27200 and 30080 is less
than 1.0 %. The whole simulations presented in this paper are performed for a
cavity with 30080 elements.

4 Results and Discussions

Figure 2 shows the streamlines, for Wp = 0.10. For the lowest Richardson number
a strong jet is observed from the entrance to the exit of the cavity, above this
diagonal jet three vortices are formed as a result of the boundary layer detachment
from the surface driven by the fluid motion that crosses the cavity and its interaction
with the flow of the secondary jet injected at the top wall, further a clockwise vortex
is formed at the bottom left corner of the cavity. As the Richardson number is
increased the strength of the diagonal stream decreases, for Ri = 1.0 and Pr = 0.01
only two vortices can be observed due to the circulation of the fluid injected at the
top inlet. For the natural convection regime Ri = 10 with Pr = 0.01, a strong
circular vortex is formed, which occupies the whole of the cavity. Increasing the
Prandtl number to Pr = 1.0, it is observed that three vortices tend to form above the
main stream, however when the Prandtl number is increased to Pr = 10 and natural
convection regime dominates, these vortices merge to form only one vortex above
of the main stream which moves from left to right and then rises toward the outlet of
the cavity. For the lowest Richardson number, the velocity field remains without
changes as the Prandtl number is increased, however as the Richardson and Prandtl
numbers are increased different configuration of the streamlines are formed, as a
result of the buoyancy effect.

Figure 3 shows the streamlines, for Wp = 0.75. For forced convection regime
the distribution and number of vortices inside the cavity are independent of the
length of the heating plate and the thermal properties of the fluid, see left panels of
Figs. 2 and 3. For Ri = 1.0, the size and distribution of the vortices depend on the
length of the heating plate, see middles vertical panels of Figs. 2 and 3. For Ri =
10, the number and size of the vortices tends to change with the variations of the
length of the heating surface as the Prandtl number is increased. On both cases,
Wp = 0.10 and 0.75, it can be observed that the secondary jet tends to mix totally
with the main stream in the natural convection regime due to the buoyancy effect.

Figure 4 shows the isotherms, for Wp = 0.10. For all cases, it can be seen that
the temperature contours are clustered around the heater, a hot temperature region
tends to grow up toward the inside of the cavity due to the thermal plume rises
above of the heater and the heat fluxes from this one to the interior part of the cavity
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heating the fluid located at the neighborhood of the heat source. For the lowest
Prandtl number the isotherms elongates toward the whole part of the cavity due to
the thermal diffusion regime, however as Prandtl number is increased the contours
tend to elongate from the heater toward the exit of the cavity due to the cooling of
the fluid as a result of the flow motion that crosses the cavity.

Figure 5 shows the isotherms, for Wp = 0.75. Due to the increase in the length
of the heating plate, the fluid inside the cavity remains hotter than the previous case.
The contours tend to intensify as a result of the more energy injected. For low
Richardson numbers the temperature contours are affected by the forced convection
regime, however for the highest Richardson number the contours tend to follow the
behavior of the streamlines, as the Prandtl number is increased, driven by the
natural convection regime. For both lengths of the heating surface, a perturbation of
the main isotherms at the central part of the top wall is observed due to the injection
of cool fluid. For low Prandtl number the isotherms of the secondary jet are

Fig. 2 Streamlines for Wp = 0.10. Top: Pr = 0.01. Middle: Pr = 1.0. Bottom: Pr = 10.0. Left:
Ri = 0.01. Middle: Ri = 1.0. Right: Ri = 10.0
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clustered at the neighborhood of the top entrance, however as the Prandtl number is
increased the thermal contours of the secondary jet elongates interacting with the
main contours. On the other hand, the temperature gradients increase as the
Richardson and Prandtl numbers also increase. The highest temperatures are
reached when natural convection and thermal diffusion occurs, meanwhile the
lowest temperatures are reached when forced convection and momentum diffusion
dominate.

Figure 6 shows the average Nusselt number as a function of the Richardson
number forWp = 0.1 (left) andWp = 0.75 (right) with Prandtl numbers in the range
of [0.01–10]. For the lowest length of the heater, the average Nusselt numbers are
lower than the corresponding values of the highest length of the heater. This
variation is increased as the Prandtl increases. Furthermore, for a given Richardson
number the Nusselt number increases as the Prandtl number increases, this behavior

Fig. 3 Streamlines for Wp = 0.75. Top: Pr = 0.01. Middle: Pr = 1.0. Bottom: Pr = 10.0. Left:
Ri = 0.01. Middle: Ri = 1.0. Right: Ri = 10.0
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is observed for both lengths of the heater. This implies that the cooling of the cavity
is enhanced when momentum dissipation is augmented. On the other hand, for a
given Prandtl number the Nusselt number is increased as the Richardson number is
increased, this variation is intensified as Prandtl number increases, this implies that
natural convection regime enhances the heat transfer rate inside the cavity.

Figure 7 depicts the effect of the Richardson and Prandtl numbers on the average
temperature inside the cavity, for Wp = 0.1 (left) and Wp = 0.75 (right). For Ri
≤ 1, the average temperature of the fluid decreased slightly for Pr = 0.1, 1.0 and
10 when Wp = 0.1, this behavior is also observed when Wp = 0.75 for Pr = 10 and
1.0, beyond Ri = 1, the average temperature increased as the Richardson number
increased. Keeping constant the Richardson number, the average temperature is
increased as the Prandtl number decreases due to the fact that the thermal diffusivity

Fig. 4 Isotherms for Wp = 0.10. Top: Pr = 0.01. Middle: Pr = 1.0. Bottom: Pr = 10.0. Left:
Ri = 0.01. Middle: Ri = 1.0. Right: Ri = 10.0
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Fig. 5 Isotherms for Wp = 0.75. Top: Pr = 0.01. Middle: Pr = 1.0. Bottom: Pr = 10.0. Left:
Ri = 0.01. Middle: Ri = 1.0. Right: Ri = 10.0

Fig. 6 Average Nusselt number as a function of the Richardson number for two different lengths
of the heater with different Prandtl numbers
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plays a major role in the heat transfer process. The maximum value of the average
temperature is 0.65 for Ri = 10, Pr = 0.01 and Wp = 0.75.

Figure 8 shows the outlet temperature of the fluid at the exit of the cavity is a
function of the Richardson number for Wp = 0.10 (left) and Wp = 0.75 (right) with
different Prandtl numbers. For Wp = 0.10 the outlet temperature of the fluid is
lower than the corresponding values for Wp = 0.75. This variation is increased as
the Prandtl number increases. Moreover, for a given Prandtl number the outlet
temperature of the fluid is increased as the Richardson number is increased, this
variation is intensified as Prandtl number increases, this implies that the buoyancy
effect enhances the heat transfer rate inside the cavity. On the other hand, for a
given Richardson number the outlet temperature of the fluid increases as the Prandtl
number decreases, this behavior is observed for both lengths of the heater. This
implies that the cooling of the cavity is enhanced when the viscous diffusion rate is
augmented.

Fig. 7 Average temperature as a function of the Richardson number for two different lengths of
the heater with different Prandtl numbers

Fig. 8 Outlet temperature as a function of the Richardson number for two different lengths of the
heater with different Prandtl numbers
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