José Antonio Fornés

Electrical Fluctuations in Polyelectrolytes

José Antonio Fornés

Electrical Fluctuations in Polyelectrolytes

José Antonio Fornés Federal University of Goiás Goiânia, Goiás, Brazil

ISSN 2191-5407 ISSN 2191-5415 (electronic) SpringerBriefs in Molecular Science ISBN 978-3-319-33839-2 ISBN 978-3-319-33840-8 (eBook) DOI 10.1007/978-3-319-33840-8

Library of Congress Control Number: 2016940063

© Springer International Publishing Switzerland 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

To my wife, Nélida, who was always a source of love and inspiration. In memory "Science is an evolution of ideas and approximations," José A. Fornés, 1998.

The importance of estimating fluctuations in physics is because they contain a lot of information: Electromagnetic fluctuations are the origin of London (van der Waals) forces (1937) between molecules and Lifchitz forces (1956) between macroobjects. Protonic fluctuations are the origin of Kirkwood and Schumaker forces (1952) between molecules and pH fluctuations (Fornés et al. 1999). Also protonic fluctuations could be the cause of the dielectric increment of proteins in solution. Local electrical fluctuations can influence chemical reactions. Polyelectrolytes are present in almost all the biological systems. In order to understand how these systems work, it is important to know the size of their electrical fluctuations. The present book represents the work the author has performed on this subject while he was professor at the Institute of Physics of Goiás University. I am grateful to my many friends and colleagues. I would like especially to acknowledge the help I received from Amando S. Ito, Joaquim Procopio, and José Nicodemos T. Rabelo, who influenced very much my scientific career, and also the help I received from Salviano de Araújo Leão, who was always ready to help me with computational softwares. Also I want to acknowledge the help I received from Daniel Leite in the design of the figures. Also, I would like to thank to Luis Furtado, Springer's editor in Brazil, whose perfect orientation and cordial treatment made this book reality. It has been a considerable pleasure to work with him. Finally, I want to express my gratitude to Susan Westendorf, my book project coordinator, Springer Nature, in New York, who always was ready to give a hearty assistance, related to the book production. March 2016, José Antonio Fornés Instituto de Física UFG, Brazil. I want to express my recognition to Sarumathi Hemachandirane, Project Manager Publishing SPi Global in India and her Team, for such a careful and perfect job in the production of the book.

Goiânia, Goiás, Brazil

José Antonio Fornés

Contents

1	The Electrical Capacitance, the Link to the Electrical Fluctuations				
	1.1 Electrical Fluctuations				
	1.2 The Fluctuation-Dissipation Theorem				
	1.2.1 Electrical Circuit				
	1.3 The Electrical Capacitance				
	1.3.1 Capacitance Definition				
	References				
2	Electrical Fluctuations in Colloid and Ionic Solutions				
	2.1 Electrical Fluctuations in Solutions				
	2.2 Calculation of the Electrical Mean Squares Fluctuations	1			
	2.3 Calculation of the Spectral Density Fluctuations	1			
	2.4 Calculation of the Mean Squares Temporal Averages	2			
	References	2			
3	Electrical Fluctuations Around a Charged Colloidal				
	Cylinder in an Electrolyte	3			
	3.1 Electrical Fluctuations Perpendicular				
	to the Polyelectrolyte Axis	3			
	References	4			
4	Dielectric Relaxation Around a Charged Colloidal Cylinder				
	in an Electrolyte	4			
	4.1 Method	4			
	4.2 Polarizability of the Debye–Hückel Atmosphere	4			
	References	4			
5	The Polarizability of Rod-Like Polyelectrolytes: An Electric				
	Circuit View	5			
	5.1 Longitudinal Electrical Fluctuations and the Polarizability				
	of Rod-like Polyelectrolytes	4			
	5.2 The Longitudinal Polarizability	5			
	References				

viii Contents

6	pH :	Fluctuations in Unilamellar Vesicles	63		
	6.1	Introduction	63		
	6.2	PH Sensitivity of the Fluorescence Response			
	6.3				
	6.4	Electrical Properties of the System			
		6.4.1 Ionizable Groups	67		
		6.4.2 Electrical and Polarization Shift			
		in the Fluorescence Spectrum	68		
		6.4.3 Buffer Capacity	69		
	6.5				
	Refe	erences	78		
7	Elec	ctrical Fluctuations on the Surfaces of Proteins			
	fron	n Hydrodynamic Data	81		
	7.1	Electrical Fluctuations on the Surface of Proteins			
		from Hydrodynamic Data	81		
	7.2	Relation Between Friction Coefficient and Capacitance			
	7.3	Relation Between Polarizability and Intrinsic Viscosity	82		
	7.4	Relations of the Polarizability to Electric Field			
		and Dipole Moment Fluctuations	85		
	Refe	erences	87		
In	dex		29		

Chapter 1 The Electrical Capacitance, the Link to the Electrical Fluctuations

Abstract In this chapter, we develop a method in order to estimate the electrical fluctuations in small systems. The method consists in knowing the electrical capacitance that emerges as a consequence of the processes or the system's interfaces. We use results given by the fluctuation-dissipation theorem in the classical limit. Estimating the electrical capacitance is important because it is the link to the knowledge of the fluctuation of several physical quantities, voltage and field fluctuations, dipole moment, pH, and charge, and also to knowledge of the polarizability and the dielectric dispersion of colloidal and polyelectrolytes systems.

Keywords Charge fluctuation capacitance • Small systems • Electrical fluctuations

1.1 Electrical Fluctuations

The importance of local field fluctuations in biological systems was raised by several authors: Weaver and Astumian [21] have presented a calculation of the effects of weak fields upon cells. Procopio and Fornés [16], using the fluctuation-dissipation theorem (FDT), have presented a calculation of the voltage fluctuations across cell membranes. Protonic fluctuations could be the cause of the dielectric increment of proteins in solution [11, 20]. For fluctuations of ion distribution in colloid and polyelectrolyte solutions, see, for instance, [4, 13, 14], see also the next chapters. Also local fluctuations can influence chemical reactions, see [1]. Oosawa [15] has also calculated the magnitude of fluctuating voltage and field across different points of an electrolyte solution constituted of point ions using the method of the mode expansion [1, 3–6, 13–15, 18, 19]. Also Brownian motors are small physical microor even nano-machines that operate far from thermal equilibrium by extracting the energy from both thermal and non-equilibrium fluctuations in order to generate work

Part reprinted from [José A. Fornés, *J. Colloid Interface Sci.* **226**, 172, (2000)] Copyright (2000), with permission from Elsevier.

1

© Springer International Publishing Switzerland 2017 J.A. Fornés, *Electrical Fluctuations in Polyelectrolytes*, SpringerBriefs in Molecular Science, DOI 10.1007/978-3-319-33840-8_1