WILEY-VCH

Knut and Jakob Stamnes

Radiative Transfer in Coupled Environmental Systems

An Introduction to Forward and Inverse Modeling

Knut Stamnes and Jakob J. Stamnes

Radiative Transfer in Coupled
Environmental Systems

Related Titles

Salam, A.
Molecular Quantum
Electrodynamics
Long-Range Intermolecular Interactions
2010
Print ISBN: 978-0-470-25930-6; also available
in electronic formats

Ambaum, M.M.
Thermal Physics of the Atmosphere

2010
Print ISBN: 978-0-470-74515-1; also available in electronic formats

Bohren, C.F., Huffman, D.R., Clothiaux, E.E.
Absorption and Scattering of Light by Small Particles
2 Edition

2015
Print ISBN: 978-3-527-40664-7; also available in electronic formats

Wendisch, M., Yang, P.
Theory of Atmospheric Radiative Transfer

A Comprehensive Introduction

2012
Print ISBN: 978-3-527-40836-8; also available in electronic formats

Wendisch, M., Brenguier, J. (eds.)
Airborne Measurements for Environmental Research

Methods and Instruments

2013
Print ISBN: 978-3-527-40996-9; also available in electronic formats

North, G.R., Kim, K.

Energy Balance Climate Models

2013
Print ISBN: 978-3-527-41132-0; also available
in electronic formats

Radiative Transfer in Coupled Environmental Systems

An Introduction to Forward and Inverse Modeling

Authors

Prof. Knut Stamnes

Stevens Inst. of Technology
Dept. Physics and Eng. Physics
1 Castle Point on Hudson Hoboken
New Jersey 07030
United States

Prof. Jakob J. Stamnes
University of Bergen
Dept. Physics and Technology
P.O. Box 7803

5020 Bergen
Norway

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.
© 2015 Wiley-VCH Verlag GmbH \& Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form - by photoprinting, microfilm, or any other means - nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-41138-2
ePDF ISBN: 978-3-527-69662-8
ePub ISBN: 978-3-527-69659-8
Mobi ISBN: 978-3-527-69661-1
oBook ISBN: 978-3-527-69660-4
Cover Design Schulz Grafik-Design, Fußgönheim, Germany
Typesetting SPi Global, Chennai, India Printing and Binding Markono Print Media Pte Ltd, Singapore

Contents

Preface XI
Acknowledgments XIII
1
Introduction
$1.1 \quad$ Brief History 1
1.2 What is Meant by a Coupled System? 2
1.3 Scope 3
1.4 Limitations of Scope 4
2 Inherent Optical Properties (IOPs) 7
2.1 General Definitions 7
2.1.1 Absorption Coefficient and Volume Scattering Function 7
2.1.2 Scattering Phase Function 8
2.2 Examples of Scattering Phase Functions 11
2.2.1 Rayleigh Scattering Phase Function 11
2.2.2 Henyey-Greenstein Scattering Phase Function 11
2.2.3 Fournier-Forand Scattering Phase Function 13
2.2.4 The Petzold Scattering Phase Function 14
2.3 Scattering Phase Matrix 14
2.3.1 Stokes Vector Representation $\mathbf{I}_{S}=[I, Q, U, V]^{T}$ 16
2.3.2 Stokes Vector Representation $\mathbf{I}=\left[I_{\|}, I_{\perp}, U, V\right]^{T}$ 20
2.3.3 Generalized Spherical Functions 22
2.4 IOPs of a Polydispersion of Particles - Integration over the Size Distribution 24
2.4.1 IOPs for a Mixture of Different Particle Types 25
2.4.2 Treatment of Strongly Forward-Peaked Scattering 26
2.4.3 Particle Size Distributions (PSDs) 28
2.5 Scattering of an Electromagnetic Wave by Particles 29
2.5.1 Summary of Electromagnetic Scattering 30
2.5.2 Amplitude Scattering Matrix 31
2.5.3 Scattering Matrix 32
2.5.4 Extinction, Scattering, and Absorption 34
2.6 Absorption and Scattering by Spherical Particles - Mie-Lorenz Theory 35
2.7 Atmosphere IOPs 41
2.7.1 Vertical Structure 41
2.7.2 Gases in the Earth's Atmosphere 42
2.7.3 Molecular IOPs 43
2.7.4 IOPs of Suspended Particles in the Atmosphere 45
2.7.5 Aerosol IOPs 45
2.7.6 Cloud IOPs 47
$2.8 \quad$ Snow and Ice IOPs 48
2.8.1 General Approach 48
2.8.2 Extension of Particle IOP Parameterization to Longer Wavelengths 50
2.8.3 Impurities, Air Bubbles, Brine Pockets, and Snow 51
$2.9 \quad$ Water IOPs 53
2.9.1 Absorption and Scattering by Pure Water 53
2.9.2 Absorption and Scattering by Water Impurities 54
2.9.3 Bio-Optical Model Based on the Particle Size Distribution (PSD) 56
2.10 Fresnel Reflectance and Transmittance at a Plane Interface Between Two Coupled Media 63
2.10.1 Stokes Vector of Reflected Radiation 65
2.10.2 Total Reflection 65
2.10.3 Stokes Vector of Transmitted Radiation 67
2.11 Surface Roughness Treatment 68
2.11.1 Basic Definitions 68
2.11.2 Reciprocity Relation and Kirchhoff's Law 70
2.11.3 Specular Versus Lambertian and Non-Lambertian Reflection at the Lower Boundary 71
2.11.4 Scattering, Emission, and Transmission by a Random Rough Surface - Kirchhoff Approximation 72
2.11.4.1 Rough Dielectric Interface 72
2.11.5 Slope Statistics for a Wind-Roughened Water Surface 76
2.12 Land Surfaces 77
2.12.1 Unpolarized Light 78
2.12.2 Polarized Light 82
3 Basic Radiative Transfer Theory 85
3.1 Derivation of the Radiative Transfer Equation (RTE) 85
3.1.1 \quad RTE for Unpolarized Radiation 85
3.1.2 RTE for Polarized Radiation 87
3.2 Radiative Transfer of Unpolarized Radiation in Coupled Systems 88
3.2.1 Isolation of Azimuth Dependence 89
3.3 Radiative Transfer of Polarized Radiation in Coupled Systems 90
3.3.1 Isolation of Azimuth Dependence 91
3.4 Methods of Solution of the RTE 93
3.4.1 Formal Solutions 94
3.4.2 Single-Scattering Approximation 96
3.4.3 Successive Order of Scattering (SOS) Method 100
3.4.4 Discrete-Ordinate Method 102
3.4.5 Doubling-Adding and Matrix Operator Methods 105
3.4.6 Monte Carlo Method 109
3.5 Calculation of Weighting Functions - Jacobians 110
3.5.1 Linearized Radiative Transfer 110
3.5.2 Neural Network Forward Models 112
$4 \quad$ Forward Radiative Transfer Modeling 117
4.1 Quadrature Rule - The Double-Gauss Method 117
4.2 Discrete Ordinate Equations - Compact Matrix Formulation 120
4.2.1 "Cosine" Solutions 120
4.2.2 "Sine" Solutions 122
4.3 Discrete-Ordinate Solutions 123
4.3.1 Homogeneous Solution 123
4.3.2 Vertically Inhomogeneous Media 128
4.3.3 Particular Solution - Upper Slab 129
4.3.4 Particular Solution - Lower Slab 133
4.3.5 General Solution 134
4.3.6 Boundary Conditions 135
$5 \quad$ The Inverse Problem 137
5.1 Probability and Rules for Consistent Reasoning 137
5.2 Parameter Estimation 140
5.2.1 Optimal Estimation, Error Bars and Confidence Intervals 140
5.2.2 Problems with More Than One Unknown Parameter 147
5.2.3 Approximations: Maximum Likelihood and Least Squares 157
5.2.4 Error Propagation: Changing Variables 160
5.3 Model Selection or Hypothesis Testing 163
5.4 Assigning Probabilities 168
5.4.1 Ignorance: Indifference, and Transformation Groups 168
5.4.2 Testable Information: The Principle of Maximum Entropy 173
5.5 Generic Formulation of the Inverse Problem 181
5.6 Linear Inverse Problems 182
5.6.1 Linear Problems without Measurement Errors 183
5.6.2 Linear Problems with Measurement Errors 185
$5.7 \quad$ Bayesian Approach to the Inverse Problem 186
5.7.1 Optimal Solution for Linear Problems 189
5.8 Ill Posedness or Ill Conditioning 191
5.8.1 SVD Solutions and Resolution Kernels 192
5.8.2 Twomey-Tikhonov Regularization - TT-Reg 197
5.8.3 Implementation of the Twomey-Tikhonov Regularization 198
$5.9 \quad$ Nonlinear Inverse Problems 200
5.9.1 Gauss-Newton Solution of the Nonlinear Inverse Problem 201
5.9.2 Levenberg-Marquardt Method 203
6 Applications 205
6.1 Principal Component (PC) Analysis 205
6.1.1 Application to the O_{2} A Band 206
6.2 Simultaneous Retrieval of Total Ozone Column (TOC) Amount and Cloud Effects 207
6.2.1 NILU-UV Versus OMI 209
6.2.2 Atmospheric Radiative Transfer Model 210
6.2.3 LUT Methodology 210
6.2.4 Radial Basis Function Neural Network Methodology 210
6.2.5 Training of the RBF-NN 211
6.2.6 COD and TOC Values Inferred by the LUT and RBF-NN Methods 211
6.2.7 TOC Inferred from NILU-UV (RBF-NN and LUT) and OMI 213
6.2.8 Summary 214
6.3 Coupled Atmosphere-Snow-Ice Systems 215
6.3.1 Retrieval of Snow/Ice Parameters from Satellite Data 216
6.3.2 Cloud Mask and Surface Classification 218
6.3.2.1 Snow Sea Ice Cover and Surface Temperature 218
6.3.3 Snow Impurity Concentration and Grain Size 219
6.4 Coupled Atmosphere-Water Systems 225
6.4.1 Comparisons of C-DISORT and C-MC Results 226
6.4.2 Impact of Surface Roughness on Remotely Sensed Radiances 226
6.4.3 The Directly Transmitted Radiance (DTR) Approach 228
6.4.4 The Multiply Scattered Radiance (MSR) Approach 229
6.4.5 Comparison of DTR and MSR 230
6.5 Simultaneous Retrieval of Aerosol and Aquatic Parameters 232
6.5.1 Atmospheric IOPs 233
6.5.2 Aquatic IOPs 234
6.5.3 Inverse Modeling 235
6.6 Polarized RT in a Coupled Atmosphere-Ocean System 237
6.6.1 C-VDISORT and C-PMC Versus Benchmark - Aerosol Layer - Reflection 239
6.6.2 C-VDISORT and C-PMC Versus Benchmark - Aerosol Layer - Transmission 239
6.6.3 C-VDISORT and C-PMC Versus Benchmark - Cloud Layer - Reflection 242
6.6.4 C-VDISORT and C-PMC Versus Benchmark - Cloud Layer - Transmission 242
6.6.5 C-VDISORT Versus C-PMC - Aerosol Particles - Coupled Case 245

6.6.6 C-VDISORT Versus C-PMC - Aerosol/Cloud Particles - Coupled
Case
245
6.6.7 Summary 249
6.7 What if MODIS Could Measure Polarization? 249
6.7.1 Motivation 249
6.7.2 Goals of the Study 250
6.7.3 Study Design 250
6.7.4 Forward Model 252
6.7.5 Optimal estimation/Inverse model 252
6.7.6 Results 254
6.7.7 Concluding Remarks 260
A Scattering of Electromagnetic Waves 263
A. 1 Absorption and Scattering by a Particle of Arbitrary Shape 264
A.1.1 General Formulation 264
A.1.2 Amplitude Scattering Matrix 265
A.1.3 Scattering Matrix 266
A.1.4 Extinction, Scattering, and Absorption 268
A. 2 Absorption and Scattering by a Sphere - Mie Theory 271
A.2.1 Solutions of Vector Wave Equations in Spherical Polar Coordinates 272
A.2.2 Expansion of Incident Plane Wave in Vector Spherical Harmonics 275
A.2.3 Internal and Scattered Fields 277
B Spectral Sampling Strategies 287
B. 1 The MODTRAN Band Model 289
B. 2 The k-Distribution Method 290
B. 3 Spectral Mapping Methods 293
B. 4 Principal Component (PC) Analysis 294
B. 5 Optimal Spectral Sampling 294
C Rough Surface Scattering and Transmission 297
C. 1 Scattering and Emission by Random Rough Surfaces 297
C.1.1 Tangent Plane Approximation 298
C.1.2 Geometrical Optics Solution 300
C.1.2.1 Stationary-Phase Method 301
D Boundary Conditions 313
D. 1 The Combined Boundary Condition System 313
D. 2 Top of Upper Slab 315
D. 3 Layer Interface Conditions in the Upper Slab 317
D.3.1 Interface Between the Two Slabs (Atmosphere-Water System) 319
D. 4 Layer Interface Conditions in the Lower Slab 325
D. 5 Bottom Boundary of Lower Slab 325
D.5.1 Bottom Thermal Emission Term 327
D.5.2 Direct Beam Term 327
D.5.3 Bottom Diffuse Radiation 328
D.5.4 Bottom Boundary Condition 329

References 331

Index 347

Preface

In a transparent medium, it follows from energy conservation that light attenuation is proportional to the inverse square of the distance traveled. In a translucent or turbid medium, light suffers attenuation in addition to that given by the inverse-square law caused by absorption and scattering, which give an exponential decay in accordance with the Beer-Lambert law to a first-order approximation. Application of calculus to interpret experimental results in light attenuation led to the foundation of radiometry and the development of appropriate physical theories and mathematical models.

The most important quantity of classical radiative transfer (RT) theory is the specific intensity (or radiance), defined as the radiant power transported through a surface element in directions confined to a solid angle around the direction of propagation. To treat the polarization properties of radiation, Stokes introduced four parameters that describe the state of polarization, which were used by Chandrasekhar to replace the specific intensity with a four-element column vector to describe polarized radiation.

In many applications, an accurate description is required of light propagation in two adjacent slabs of turbid media which are separated by an interface, across which the refractive index changes. Three important examples of such coupled media are atmosphere-water systems, atmosphere-sea ice systems, and air-tissue systems, in which the change in the refractive index across the interface between the two media plays an important role for the transport of light throughout the coupled system. For imaging of biological tissues or satellite remote sensing of water bodies, an accurate RT model for a coupled system is an indispensable tool. In both cases, an accurate RT tool is essential for obtaining satisfactory solutions of retrieval problems through iterative forward/inverse modeling.

In optical remote sensing of the Earth from space, an important goal is to retrieve atmospheric and surface parameters from measurements of the reflected solar radiation emerging at the top of the atmosphere at a number of wavelengths. These retrieval parameters, such as aerosol type as well as loading and concentrations of aquatic constituents in an open ocean or coastal water area, depend on the inherent optical properties, that is, the scattering and absorption coefficients of the atmosphere and the water. By having a model that provides a
link between retrieval parameters and inherent optical properties, one can use a forward RT model to compute how the radiation measured by an instrument deployed on a satellite will respond to changes in the retrieval parameters, and then formulate and solve an inverse $R T$ problem to derive information about the retrieval parameters. A forward RT model employing inherent optical properties that describes how atmospheric and aquatic constituents absorb and scatter light can be used to compute the multiply scattered light field in any particular direction at any particular depth level in a vertically stratified medium, such as a coupled atmosphere-water system. In order to solve an inverse RT problem, it is important to have an accurate and efficient forward RT model. Accuracy is important in order to obtain reliable and robust retrievals, and efficiency is an issue because standard iterative solutions of nonlinear inverse RT problems require executing a forward RT model repeatedly to compute the radiation field as well as the partial derivatives with respect to the retrieval parameters (the Jacobians).

This book is aimed at students with a good undergraduate background in mathematics and physics, but it is kept at a fairly fundamental level. It will teach the reader how to formulate and solve forward and inverse RT problems related to coupled media and gives examples of how to solve concrete problems in remote sensing of coupled atmosphere-surface systems. Thus, it is suitable as a teaching tool for the next generation of environmental scientists and engineers and remotesensing specialists. It will also be useful for researchers (in academia, industry, and government institutions) in atmospheric and planetary sciences as well as in remote sensing of the environment.

This book discusses RT in coupled media such as the atmosphere-ocean system with Lambertian and non-Lambertian reflecting ground surfaces for polarized as well as unpolarized radiation. The polarized reflectance from natural ground surfaces such as plant canopies and wind-roughened water surfaces is discussed, and emphasis is placed on the mathematical description of the inherent optical properties of natural media including atmospheric gases and particles, water bodies with embedded impurities (particles), and snow/ice bodies. The spectral range from the ultraviolet to the microwave region of the electromagnetic spectrum is considered, and multispectral and hyperspectral remote sensing are discussed, as well as solutions of forward problems for unpolarized and polarized radiation in coupled media. A unique feature of this book is that it contains a basic description of inverse methods together with a comprehensive and systematic coverage of formulations and solutions of inverse problems related to coupled media.

Knut Stamnes
Hoboken, New Jersey, USA
June 30, 2015
Jakob J. Stamnes
Bergen, Norway
June 30, 2015

Acknowledgments

Many people have helped us with the creation of this book by contributing to the research behind it, providing feedback on various parts of the text, and helping to create graphic illustrations. We are indebted to several students and colleagues for the contributions, comments, and suggestions, including Nan Chen, Dennis Cohen, Lingling Fan, Yongzhen Fan, Øyvind Frette, Karl I. Gjerstad, Børge Hamre, Min He, Jeff Koskulics, Wei Li, Zhenyi Lin, Jon K. Lotsberg, Matteo Ottaviani, Monika Sikand, Endre R. Sommersten, Snorre Stamnes, and Qiang Tang. We are also grateful to Hilding Lindquist, who helped us in getting the permissions required to use material (illustrations) from published sources. The writing started while KS was on a sabbatical leave from Stevens Institute of Technology. During the period of writing, KS was partially supported by the National Aeronautics and Space Administration (NASA) through a grant from NASA's Remote Sensing Theory Program, a contract from the Japan Aerospace Exploration Agency (JAXA), and a grant from the Air Force Research Laboratory. JJS was partially supported by the Norwegian Research Council.

1
 Introduction

1.1
 Brief History

The idea or notion that light attenuation is proportional to the inverse square of the distance traveled can be traced to Kepler [1]. Its experimental verification was provided by Bouguer [2], who used the inverse square dependence to establish the exponential extinction law by studying the attenuation of light passing through translucent media. A mathematical foundation of radiometry was provided by Lambert [3], who used calculus to interpret experimental results and thereby develop appropriate mathematical models and physical theories. As pointed out by Mishchenko [4], although the first introduction of the radiative transfer equation (RTE) has traditionally been attributed to Schuster [5], the credit should go instead to Lommel [6], who derived an integral form of the RTE by considering the directional flow of radiant energy crossing a surface element; almost identical results were obtained independently by Chwolson [7].

The specific intensity (or radiance) $I(\mathbf{r}, \hat{\mathbf{\Omega}}$) is the most important quantity of classical radiative transfer theory (RTT). Planck [8] defined it by stating that the amount of radiant energy $d E$ transported through a surface element $d A$ in directions confined to a solid angle $d \omega$ around the direction of propagation $\hat{\boldsymbol{\Omega}}$ in a time interval $d t$ is given by $d E=I(\mathbf{r}, \hat{\boldsymbol{\Omega}}) \cos \theta d A d t d \omega$, where \mathbf{r} is the position vector of the surface element $d A$, and θ is the angle between $\hat{\boldsymbol{\Omega}}$ and the normal to $d A$. This definition was adopted in the works of Milne [9], Hopf [10], and Chandrasekhar [11], and has since been used in many monographs [12-16] and textbooks [17-21] on RTT. To treat the polarization properties of radiation Stokes [22] introduced four parameters to describe the state of polarization. These socalled Stokes parameters were used by Chandrasekhar [11, 23] to replace the specific intensity with the four-element column vector $\mathbf{I}(\mathbf{r}, \hat{\boldsymbol{\Omega}})$ to describe polarized radiation.

The heuristic derivation of the RTE adopted in Chapter 3 of this book for unpolarized as well as polarized radiation is based on classical RTT invoking the specific intensity and simple energy conservation arguments. Such a derivation is easy to understand and sufficient for our purpose. Mandel and Wolf [24] noted that a more fundamental derivation that can be traced to the Maxwell equations was
desirable, and stated "In spite of the extensive use of the theory of radiative energy transfer, no satisfactory derivation of its basic equation... from electromagnetic theory... has been obtained up to now." Recently, however, much progress toward such a derivation has been made, as reported by Mishchenko [25].

1.2
 What is Meant by a Coupled System?

In many applications, an accurate description is required of light propagation in two adjacent slabs of turbid media that are separated by an interface, across which the refractive index changes. Such a two-slab configuration will be referred to as a coupled system. Three important examples are atmosphere-water systems [26, 27], atmosphere-sea ice systems [28, 29], and air-tissue systems [30]. In each of these three examples, the change in the refractive index across the interface between the two media must be accounted for in order to model the transport of light throughout the respective coupled system correctly. In the second example, the refractive-index change, together with multiple scattering, leads to a significant trapping of light inside the strongly scattering, optically thick sea-ice medium [28, 29]. For imaging of biological tissues or satellite remote sensing of water bodies, an accurate radiative transfer (RT) model for a coupled system is an indispensable tool [31, 32]. In both cases, an accurate RT tool is essential for obtaining satisfactory solutions of retrieval problems through iterative forward/inverse modeling [33, 34].
In remote sensing of the Earth from space, one goal is to retrieve atmospheric and surface parameters from measurements of the radiation emerging at the top of the atmosphere (TOA) at a number of wavelengths [35, 36]. These retrieval parameters (RPs), such as aerosol type and loading and concentrations of aquatic constituents in an open ocean or coastal water area, depend on the inherent optical properties (IOPs) of the atmosphere and the water. If there is a model providing a link between the RPs and the IOPs, a forward RT model can be used to compute how the measured TOA radiation field should respond to changes in the RPs, and an inverse RT problem can be formulated and solved to derive information about the RPs [37, 38]. A forward RT model, employing IOPs that describe how atmospheric and aquatic constituents absorb and scatter light can be used to compute the multiply scattered light field in any particular direction (with specified polar and azimuth angles) at any particular depth level (including the TOA) in a vertically stratified medium, such as a coupled atmosphere-water system [34, 39]. In order to solve the inverse RT problem, it is important to have an accurate and efficient forward RT model. Accuracy is important in order to obtain reliable and robust retrievals, and efficiency is an issue because standard iterative solutions of the nonlinear inverse RT problem require executing the forward RT model repeatedly to compute the radiation field and its partial derivatives with respect to the RPs (the Jacobians) [37, 38].
1.3

Scope
While solutions to the scalar RTE, which involve only the first component of the Stokes vector (the radiance or intensity), are well developed, modern RT models that solve the vector RTE are capable of also accounting for polarization effects described by the second, third, and fourth components of the Stokes vector. Even if one's interest lies primarily in the radiance, it is important to realize that solutions of the scalar RTE, which ignores polarization effects, introduce errors in the computed radiances [40-42].

In this book, we will consider the theory and applications based on both scalar and vector RT models, which include polarization effects. There are numerous RT models available that include polarization effects (see Zhai et al. [43] and references therein for a list of papers), and the interest in applications based on polarized radiation is growing. There is also a growing interest in applications based on vector RT models that apply to coupled systems. Examples of vector RT modeling pertinent to a coupled atmosphere-water system include applications based on the doubling-adding method (e.g., Chowdhary [44], Chowdhary et al., [45-47]), the successive order of scattering method (e.g., Chami et al., [48], Min and Duan [49], Zhai et al., [43]), the matrix operator method (e.g., Fisher and Grassl, [50], Ota et al., [51]), and Monte Carlo methods (e.g., Kattawar and Adams [40], Lotsberg and Stamnes [52]).

Chapter 2 provides definitions of IOPs including absorption and scattering coefficients as well as the normalized angular scattering cross section, commonly referred to as the scattering phase function, and the corresponding scattering phase matrix needed for vector RT modeling and applications. In several subsections basic scattering theory with emphasis on spherical particles (Mie-Lorenz theory) is reviewed, and IOPs for atmospheric gases and aerosols as well those for surface materials including snow/ice, liquid water, and land surfaces are discussed. The impact of a rough interface between the two adjacent slabs is also discussed.

In Chapter 3, an overview is given of the scalar RTE as well as the vector RTE applicable to a coupled system consisting of two adjacent slabs with different refractive indices. Several methods of solution are discussed: the successive order of scattering method, the discrete-ordinate method, the doubling-adding method, and the Monte Carlo method. In Chapter 4, we discuss forward RT modeling in coupled environmental systems based on the discrete-ordinate method, while Chapter 5 is devoted to a discussion of the inverse problem. Finally, in Chapter 6, a few typical applications are discussed including (i) how spectral redundancy can be exploited to reduce the computational burden in atmospheric RT problems, (ii) simultaneous retrieval of total ozone column amount and cloud effects from ground-based irradiance measurements, (iii) retrieval of aerosol and snow-ice properties in coupled atmosphere-cryosphere systems from space, (iv) retrieval of aerosol and aquatic parameters in coupled atmosphere-water systems from space, (v) vector RT in coupled systems, and (vi) how polarization measurements
can be used to improve retrievals of atmospheric and surface parameters in coupled atmosphere-surface systems.

1.4
 Limitations of Scope

We restrict our attention to scattering by molecules and small particles such as aerosols and cloud particles in an atmosphere, hydrosols in water bodies such as oceans, lakes, and rivers, and inclusions (air bubbles and brine pockets) embedded in ice. To explain the meaning of independent scattering, let us consider an infinitesimal volume element filled with small particles that are assumed to be randomly distributed within the volume element. Such infinitesimal volume elements are assumed to constitute the elementary scattering agents. Independent scattering implies that each particle in each of the infinitesimal volume elements is assumed to scatter radiation independently of all other volume elements.
Although there are many applications that require a three-dimensional (3-D) RT treatment, in this book we limit our discussion to plane-parallel systems with an emphasis on the coupling between the atmosphere and the underlying surface consisting of a water body, a snow/ice surface, or a vegetation canopy. For a clear (cloud- and aerosol-free) atmosphere, 3-D effects are related to the impact of the Earth's curvature on the radiation field. To include such effects, a pseudospherical treatment (see Dahlback and Stamnes [53]) may be sufficient, in which the direct solar beam illumination is treated using spherical geometry, whereas multiple scattering is done using a plane-parallel geometry. This pseudo-spherical approach has been implemented in many RT codes [54,55]. There is a large body of literature on 3-D RT modeling with applications to broken clouds. Readers interested in RT in cloudy atmospheres may want to consult books like that of Marshak and Davis [12] or visit the Web site http://i3rc.gsfc.nasa.gov/.
3-D RT modeling may also be important for analysis and interpretation of lidar data. In this context, the classical "searchlight problem" [56], which considers the propagation of a laser beam through a turbid medium, is relevant. Long-range propagation of a lidar beam has been studied both theoretically and experimentally [57]. Monte Carlo simulations are well suited for such studies [58], and use of deterministic models such the discrete-ordinate method, discussed in Chapters 3 and 4 of this book, have also been reported [59, 60].
Most RT studies in the ocean have been concerned with understanding the propagation of sunlight, as discussed by Mobley et al. [26]. For these applications, the transient or time-dependent term in the RTE can be ignored, because changes in the incident illumination are much slower than the changes imposed by the propagation of the light field through the medium. While this assumption is satisfied for solar illumination, lidar systems can use pulses that are shorter than the attenuation distance of seawater divided by the speed of light in water. Also, as
pointed out by Mitra and Churnside [61], due to multiple light scattering, understanding the lidar signal requires a solution of the time-dependent RTE. Although such studies are beyond the scope of this book, the transient RT problem can be reduced to solving a series of time-independent RT problems, as discussed by Stamnes et al. [62].

We restrict our attention to elastic scattering, although inelastic scattering processes (Raman and Brillouin) certainly can be very important and indeed essential in some atmospheric [63-65] and aquatic [66,67] applications. Although most particles encountered in nature have nonspherical shapes - cloud droplets being the notable exception - we will not consider nonspherical particles in this book. Although the general introduction to the scattering problem provided in Chapter 2 is generic in nature and thus applies to particles of arbitrary shape, our more detailed review is limited to spherical particles (Mie-Lorenz theory). The reader is referred to the books by Bohren and Huffman [68] and Zdunkowski et al. [20] for a more comprehensive discussion of the Mie-Lorenz theory and to the recent book by Wendisch and Yang [21] for an excellent introduction to scattering by nonspherical particles.

2

Inherent Optical Properties (IOPs)

2.1
 General Definitions

2.1.1
 Absorption Coefficient and Volume Scattering Function

The optical properties of a medium can be categorized as inherent or apparent. An inherent optical property (IOP) depends only on the medium itself, and not on the ambient light field within the medium [69]. An apparent optical property (AOP) depends also on the illumination, and hence on light propagating in particular directions inside and outside the medium ${ }^{1)}$.

The absorption coefficient α and the scattering coefficient β are important IOPs, defined as [18]

$$
\begin{align*}
& \alpha(s)=\frac{1}{I^{i}}\left(\frac{d I^{\alpha}}{d s}\right) \tag{1}\\
& \beta(s)=\frac{1}{I^{i}}\left(\frac{d I^{\beta}}{d s}\right) . \tag{2}
\end{align*}
$$

Here, I^{i} is the radiance of the incident light beam entering a volume element $d V=d A d s$ of the medium of cross-sectional area $d A$ and length $d s$, and $d I^{\alpha}>0$ and $d I^{\beta}>0$ are, respectively, the radiances that are absorbed and scattered in all directions as the light beam propagates the distance $d s$, which is the thickness of the volume element $d V$ along the direction of the incident light beam. If the distance $d s$ is measured in meters, the unit for the absorption or scattering coefficient defined in Eq. (1) or Eq. (2) becomes $\left[\mathrm{m}^{-1}\right]$. The extinction coefficient γ is the sum of the absorption and scattering coefficients

$$
\begin{equation*}
\gamma(s)=\alpha(s)+\beta(s) \tag{3}
\end{equation*}
$$

1) Apparent optical properties (i) depend both on the medium (the IOPs) and on the geometric (directional) structure of the radiance distribution, and (ii) display enough regular features and stability to be useful descriptors of a water body [69]. Hence, a radiance or an irradiance would satisfy only the first part of the definition, while a radiance or irradiance reflectance, obtained by division of the radiance or the upward irradiance by the downward irradiance, would satisfy also the second part of the definition.
and the single-scattering albedo ϖ is defined as the ratio of β to γ

$$
\begin{equation*}
\varpi(s)=\frac{\beta(s)}{\gamma(s)} . \tag{4}
\end{equation*}
$$

Thus, given an interaction between an incident light beam and the medium, the single-scattering albedo, which varies between 0 and 1 , gives the probability that the light beam will be scattered rather than absorbed.
The angular distribution of the scattered light is given in terms of the volume scattering function (vsf), which is defined as

$$
\begin{equation*}
\operatorname{vsf}\left(s, \hat{\boldsymbol{\Omega}^{\prime}}, \hat{\boldsymbol{\Omega}}\right)=\frac{1}{I^{i}} \frac{d^{2} I^{\beta}}{d s d \omega}=\frac{1}{I^{i}} \frac{d}{d s}\left(\frac{d I^{\beta}}{d \omega}\right) \quad\left[\mathrm{m}^{-1} \mathrm{sr}^{-1}\right] . \tag{5}
\end{equation*}
$$

Here, $d^{2} I^{\beta}$ is the radiance scattered from an incident direction $\hat{\boldsymbol{\Omega}}^{\prime}$ into a cone of solid angle $d \omega$ around the direction $\hat{\boldsymbol{\Omega}}$ as the light propagates the distance $d s$ along $\hat{\boldsymbol{\Omega}}^{\prime}$. The plane spanned by the unit vectors $\hat{\boldsymbol{\Omega}}^{\prime}$ and $\hat{\boldsymbol{\Omega}}$ is called the scattering plane, and the scattering angle Θ is given by $\cos \Theta=\hat{\boldsymbol{\Omega}}^{\prime}$. $\hat{\mathbf{\Omega}}$. Integration on the far right side of Eq. (5) over all scattering directions yields, using Eq. (2)

$$
\begin{align*}
\beta(s) & =\frac{1}{I^{i}} \frac{d}{d s} \int_{4 \pi}\left(\frac{d I^{\beta}}{d \omega}\right) d \omega=\frac{1}{I^{i}}\left(\frac{d I^{\beta}}{d s}\right) \\
& =\int_{4 \pi} \operatorname{vsf}\left(s, \hat{\boldsymbol{\Omega}^{\prime}}, \hat{\boldsymbol{\Omega}}\right) d \omega=\int_{0}^{2 \pi} \int_{0}^{\pi} \operatorname{vsf}(s, \cos \Theta, \phi) \sin \Theta d \Theta d \phi \tag{6}
\end{align*}
$$

where Θ and ϕ are, respectively, the polar angle and the azimuth angle in a spherical coordinate system, in which the polar axis is along $\hat{\mathbf{\Omega}}^{\prime}$. As indicated in Eq. (6), the vsf is generally a function of both Θ and ϕ, but for randomly oriented scatterers one may assume that the scattering potential is spherically symmetric, implying that there is no azimuthal dependence, so that $\operatorname{vsf}=\operatorname{vsf}(s, \cos \Theta)$. Then one finds, with $x=\cos \Theta$

$$
\begin{equation*}
\beta(s)=2 \pi \int_{0}^{\pi} \operatorname{vsf}(s, \cos \Theta) \sin \Theta d \Theta=2 \pi \int_{-1}^{1} \operatorname{vsf}(s, x) d x \tag{7}
\end{equation*}
$$

2.1.2

Scattering Phase Function

A normalized $\nu s f$, denoted by $p(s, \cos \Theta)$ and referred to hereafter as the scattering phase function, may be defined as follows:

$$
\begin{equation*}
p(s, \cos \Theta)=4 \pi \frac{\operatorname{vsf}(s, \cos \Theta)}{\int_{4 \pi} \operatorname{vsf}(s, \cos \Theta) d \omega}=\frac{\operatorname{vsf}(s, \cos \Theta)}{\frac{1}{2} \int_{-1}^{1} \operatorname{vsf}(s, x) d x} \tag{8}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{1}{4 \pi} \int_{4 \pi} p(s, \cos \Theta) d \omega=\frac{1}{2} \int_{-1}^{1} p(s, x) d x=1 \tag{9}
\end{equation*}
$$

The scattering phase function has the following physical interpretation: Given that a scattering event has occurred, $p(s, \cos \Theta) d \omega / 4 \pi$ is the probability that a light
beam traveling in the direction $\hat{\boldsymbol{\Omega}}^{\prime}$ is scattered into a cone of solid angle $d \omega$ around the direction $\hat{\mathbf{\Omega}}$ within the volume element $d V$ with thickness $d s$ along $\hat{\boldsymbol{\Omega}}^{\prime}$.

The scattering phase function $p(s, \cos \Theta)$ describes the angular distribution of the scattering, while the scattering coefficient $\beta(s)$ describes its magnitude. A convenient measure of the "shape" of the scattering phase function is the average over all scattering directions (weighted by $p(s, \cos \Theta)$) of the cosine of the scattering angle Θ, that is,

$$
\begin{align*}
g(s) & =\langle\cos \Theta\rangle=\frac{1}{4 \pi} \int_{4 \pi} p(s, \cos \Theta) \cos \Theta d \omega \\
& =\frac{1}{2} \int_{0}^{\pi} p(s, \cos \Theta) \cos \Theta \sin \Theta d \Theta=\frac{1}{2} \int_{-1}^{1} p(s, x) x d x \tag{10}
\end{align*}
$$

where $x=\cos \Theta$. The average cosine $g(s)$ is called the asymmetry factor of the scattering phase function. Equation (10) yields complete forward scattering if $g=1$ and complete backward scattering if $g=-1$, and $g=0$ if $p(s, \cos \Theta)$ is symmetric about $\Theta=90^{\circ}$. Thus, isotropic scattering also gives $g=0$. The scattering phase function $p(s, \cos \Theta)$ depends on the refractive index as well as the size of the scattering particles, and will thus depend on the physical situation and the practical application of interest. The probability of scattering into the backward hemisphere is given by the backscattering ratio (or backscatter fraction) b, defined as

$$
\begin{equation*}
b(s)=\frac{1}{2} \int_{\pi / 2}^{\pi} p(s, \cos \Theta) \sin \Theta d \Theta=\frac{1}{2} \int_{0}^{1} p(s,-x) d x . \tag{11}
\end{equation*}
$$

The scattering phase function may be approximated by a finite sum of $(M+1)$ Legendre polynomials (dropping for simplicity the dependence on the position s)

$$
\begin{equation*}
p(\cos \Theta) \approx \sum_{\ell=0}^{M}(2 \ell+1) \chi_{\ell} P_{\ell}(\cos \Theta) \tag{12}
\end{equation*}
$$

where P_{ℓ} is the ℓ th Legendre polynomial, and the expansion coefficient is given by

$$
\begin{equation*}
\chi_{\ell}=\frac{1}{2} \int_{-1}^{1} P_{\ell}(x) p(x) d x . \tag{13}
\end{equation*}
$$

The Legendre polynomials satisfy an orthogonality relation

$$
\begin{equation*}
\frac{1}{2} \int_{-1}^{+1} P_{\ell}(x) P_{k}(x) d x=\frac{1}{2 \ell+1} \delta_{\ell k} \tag{14}
\end{equation*}
$$

as well as an Addition Theorem:

$$
\begin{equation*}
P_{\ell}(\cos \Theta)=P_{\ell}\left(u^{\prime}\right) P_{\ell}(u)+2 \sum_{m=1}^{\ell} \Lambda_{\ell}^{m}\left(u^{\prime}\right) \Lambda_{\ell}^{m}(u) \cos m\left(\phi^{\prime}-\phi\right) \tag{15}
\end{equation*}
$$

where $u=\cos \theta, u^{\prime}=\cos \theta^{\prime}$,

$$
\Lambda_{\ell}^{m}(u)=\sqrt{\frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(u)
$$

and $P_{\ell}^{m}(u)$ is the associated Legendre polynomial. For $m=0$, we have $\Lambda_{\ell}^{0}(u)=$ $P_{t}^{0}(u)=P_{\ell}(u)$. The scattering angle Θ is related to the polar and azimuthal angles by

$$
\begin{equation*}
\cos \Theta=u u^{\prime}+\sqrt{1-u^{2}} \sqrt{1-u^{\prime 2}} \cos \left(\phi^{\prime}-\phi\right) \tag{16}
\end{equation*}
$$

where $\left(\theta^{\prime}, \phi^{\prime}\right)$ and (θ, ϕ) are the polar and azimuthal angles before and after scattering, respectively. Substituting Eq. (15) into Eq. (12), we have

$$
\begin{align*}
p(\cos \Theta)= & p\left(u^{\prime}, \phi^{\prime} ; u, \phi\right) \approx \sum_{\ell=0}^{M}(2 \ell+1) \chi_{\ell} \\
& \times\left\{P_{\ell}\left(u^{\prime}\right) P_{\ell}(u)+2 \sum_{m=1}^{\ell} \Lambda_{\ell}^{m}\left(u^{\prime}\right) \Lambda_{\ell}^{m}(u) \cos m\left(\phi^{\prime}-\phi\right)\right\} \tag{17}
\end{align*}
$$

which can be rewritten as a Fourier cosine series

$$
\begin{equation*}
p\left(u^{\prime}, \phi^{\prime} ; u, \phi\right) \approx \sum_{m=0}^{M}\left(2-\delta_{m 0}\right) p^{m}\left(u^{\prime}, u\right) \cos m\left(\phi^{\prime}-\phi\right) \tag{18}
\end{equation*}
$$

where $\delta_{0 m}$ is the Kronecker delta, that is, $\delta_{0 m}=1$ for $m=0$ and $\delta_{0 m}=0$ for $m \neq 0$, and

$$
\begin{equation*}
p^{m}\left(u^{\prime}, u\right) \approx \sum_{\ell=m}^{M}(2 \ell+1) \chi_{\ell} \Lambda_{\ell}^{m}\left(u^{\prime}\right) \Lambda_{\ell}^{m}(u) . \tag{19}
\end{equation*}
$$

In a plane-parallel or slab geometry, irradiances and the scalar radiance (mean intensity) depend on the azimuthally averaged phase function. Application of azimuthal averaging, that is, $\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi \cdots$, to both sides of Eq. (12), combined with Eq. (15) or Eq. (18) gives

$$
\begin{align*}
p\left(u^{\prime}, u\right) & \equiv p^{0}\left(u^{\prime}, u\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} p\left(u^{\prime}, \phi^{\prime} ; u, \phi\right) d \phi \\
& \approx \sum_{\ell=0}^{M}(2 \ell+1) \chi_{\ell} P_{\ell}(u) P_{\ell}\left(u^{\prime}\right) \tag{20}
\end{align*}
$$

From Eq. (20), it follows that

$$
\begin{equation*}
\frac{1}{2} \int_{-1}^{1} p\left(u^{\prime}, u\right) P_{k}\left(u^{\prime}\right) d u^{\prime} \approx \sum_{\ell=0}^{M}(2 \ell+1) \chi_{\ell} P_{\ell}(u) \frac{1}{2} \int_{-1}^{1} P_{\ell}\left(u^{\prime}\right) P_{k}\left(u^{\prime}\right) d u^{\prime} \tag{21}
\end{equation*}
$$

which by the use of orthogonality [Eq. (14)] leads to

$$
\begin{equation*}
\chi_{\ell}=\frac{1}{P_{\ell}(u)} \frac{1}{2} \int_{-1}^{1} p\left(u^{\prime}, u\right) P_{\ell}\left(u^{\prime}\right) d u^{\prime} . \tag{22}
\end{equation*}
$$

Thus, to calculate the expansion coefficients or moments χ_{ℓ}, we can use the azimuthally averaged phase function $p\left(u^{\prime}, u\right)$ given by Eq. (20).
Four different scattering phase functions, which are useful in practical applications, are discussed below.

2.2

Examples of Scattering Phase Functions

2.2.1
 Rayleigh Scattering Phase Function

When the size d of a scatterer is small compared to the wavelength of light ($d<$ $\frac{1}{10} \lambda$), the Rayleigh scattering phase function gives a good description of the angular distribution of the scattered light. It is given by [see Eq. (59)]

$$
\begin{equation*}
p_{\text {Ray }}(\cos \Theta)=\frac{3}{3+f}\left(1+f \cos ^{2} \Theta\right) \tag{23}
\end{equation*}
$$

where the parameter $f=\frac{1-\rho}{1+\rho}$, and ρ is the depolarization factor defined in Eq. (63), attributed to the anisotropy of the scatterer (the molecule) [70-73]. Originally, this scattering phase function was derived for light scattering by an electric dipole [74]. Since the Rayleigh scattering phase function is symmetric about $\Theta=90^{\circ}$, the asymmetry factor is $g=\chi_{1}=0$. If the Rayleigh scattering phase function is expanded in Legendre polynomials, the expansion coefficients χ_{ℓ} [see Eqs. (13) and (22)] are simply given by $\chi_{0}=1, \chi_{1}=0, \chi_{2}=\frac{2 f}{5(3+f)}$, and $\chi_{\ell}=0$ for $\ell>2$ (see Problem 2.1). For Rayleigh scattering, a value of $\rho=0.04$ for air gives $f_{\text {air }}=0.923$, while for water the numerical value $\rho=0.09$ is commonly used, implying $f_{\text {water }}=$ 0.835 . For inelastic Raman scattering, the scattering phase function is the same as for Rayleigh scattering except that $\rho=0.29$, implying $f_{\text {water }}^{\text {Raman }}=0.55$.

2.2.2
 Henyey-Greenstein Scattering Phase Function

In 1941, Henyey and Greenstein [75] proposed a one-parameter scattering phase function given by (suppressing the dependence on the position s)

$$
\begin{equation*}
p_{\mathrm{HG}}(\cos \Theta)=\frac{1-g^{2}}{\left(1+g^{2}-2 g \cos \Theta\right)^{3 / 2}} \tag{24}
\end{equation*}
$$

where the parameter g is the asymmetry factor defined in Eq. (10). The HenyeyGreenstein (HG) scattering phase function has no physical basis, but is very useful for describing a highly scattering medium, such as turbid water or sea ice, for which the actual scattering phase function is unknown. The HG scattering phase function is convenient for Monte Carlo simulations and other numerical calculations because of its analytical form. In deterministic plane-parallel RT models, it is also very convenient because the addition theorem of spherical harmonics can be used to expand the scattering phase function in a series of Legendre polynomials [18], as reviewed in the previous section. For the HG scattering phase function, the expansion coefficients χ_{ℓ} in this series [see Eqs. (13) and (22)] are simply given by $\chi_{\ell}=g^{\ell}$, implying that the HG scattering phase function can be approximated
by a finite sum of $(M+1)$ Legendre polynomials [see Eq. (12) and Problem 2.2)]

$$
\begin{equation*}
p_{\mathrm{HG}}(\cos \Theta)=\frac{1-g^{2}}{\left(1+g^{2}-2 g \cos \Theta\right)^{3 / 2}} \approx \sum_{\ell=0}^{M}(2 \ell+1) g^{\ell} P_{\ell}(\cos \Theta) . \tag{25}
\end{equation*}
$$

The HG scattering phase function is useful for scatterers with sizes comparable to or larger than the wavelength of light.
The probability of scattering into the backward hemisphere, the backscattering ratio (or backscatter fraction) becomes [see Eq. (11)]:

$$
\begin{align*}
b_{\mathrm{HG}} & =\frac{1}{2} \int_{0}^{1} p(s,-x) d x=\frac{1-g^{2}}{2} \int_{0}^{1} \frac{d x}{\left(1+g^{2}+2 g x\right)^{3 / 2}} \\
& =\frac{1-g}{2 g}\left[\frac{(1+g)}{\sqrt{\left(1+g^{2}\right)}}-1\right] \tag{26}
\end{align*}
$$

Figure 1 shows the scattering phase functions computed for a collection of particles with a log-normal size distribution (see Section 2.4.3 and Eq. (102)). The left panel pertains to nonabsorbing aerosol particles with refractive index $n=1.385$, mode radius $r_{n}=0.3 \mu \mathrm{~m}$, and standard deviation $\sigma_{n}=0.92$, and the smallest and largest radii are selected to be $r_{1}=0.005 \mu \mathrm{~m}$ and $r_{2}=30 \mu \mathrm{~m}$. The right panel pertains to nonabsorbing cloud droplets with refractive index $n=1.339$, mode radius $r_{n}=5 \mu \mathrm{~m}$, and standard deviation $\sigma_{n}=0.4$, and the smallest and largest radii are selected to be $r_{1}=0.005 \mu \mathrm{~m}$ and $r_{2}=100 \mu \mathrm{~m}$.

Figure 1 Scattering phase functions calculated using a Mie code. (a) For aerosols with asymmetry factor 0.79275 . (b) For clouds with asymmetry factor 0.86114 . HG scattering phase functions [see Eq. (24)] with
asymmetry factors equal to those for the cloud and aerosol particles are shown for comparison. The Rayleigh scattering phase function [Eq (23)] describing molecular scattering is also shown for comparison.
2.2.3

Fournier-Forand Scattering Phase Function

Measurements have shown that the particle size distribution (PSD) in oceanic water can be accurately described by a power law (Junge distribution) $n(r)=C\left(\xi, r_{1}, r_{2}\right) / r^{\xi}$, where $n(r)$ is the number of particles per unit volume per unit bin width, r [$\mu \mathrm{m}$] is the radius of the assumed spherical particles, and r_{1} and r_{2} denote the smallest and largest particle size, respectively. The normalization constant $C\left(\xi, r_{1}, r_{2}\right)\left[\mathrm{cm}^{-3} \cdot \mu \mathrm{~m}^{\xi-1}\right]$ is called the Junge coefficient, and $\xi>0$ is the PSD slope, which typically varies between 3.0 and 5.0 (Diehl and Haardt [76]; McCave [77]). The power-law PSD is further described in Section 2.4.3. By assuming a power law for the PSD, and letting each particle scatter in accordance with the anomalous diffraction approximation, Fournier and Forand [78] derived an analytic expression for the scattering phase function of oceanic water (hereafter referred to as the FF scattering phase function). A commonly used version of the FF scattering phase function is given by (Mobley et al., [79])

$$
\begin{align*}
p_{\mathrm{FF}}(\Theta) & =\frac{1}{4 \pi\left(1-\delta^{2} \delta^{v}\right.}\left\{v(1-\delta)-\left(1-\delta^{\nu}\right)+\frac{4}{\tilde{\tilde{u}}^{2}}\left[\delta\left(1-\delta^{\nu}\right)-v(1-\delta)\right]\right\} \\
& +\frac{1-\delta_{180}^{\nu}}{16 \pi\left(\delta_{180}-1\right) \delta_{180}^{v}}\left[3 \cos ^{2} \Theta-1\right] \tag{27}
\end{align*}
$$

where $v=0.5(3-\xi)$,

$$
\delta \equiv \delta(\Theta)=\frac{\tilde{u}^{2}(\Theta)}{3(n-1)^{2}}
$$

$\tilde{u}(\Theta)=2 \sin (\Theta / 2), \delta_{180}=\delta\left(\Theta=180^{\circ}\right)=\frac{4}{3(n-1)^{2}}, \Theta$ is the scattering angle, and n is the real part of the refractive index. Note that, in addition to the scattering angle Θ, the FF scattering phase function depends also on the real part of the refractive index of the particle relative to water and the slope parameter ξ characterizing the PSD.

Setting $x=-\cos \Theta$, and integrating the FF scattering phase function over the backward hemisphere, one obtains the backscattering ratio or backscatter fraction defined in Eq. (11), that is, [79]

$$
\begin{align*}
b_{\mathrm{FF}} & =\frac{1}{2} \int_{\pi / 2}^{\pi} p_{\mathrm{FF}}(\cos \Theta) \sin \Theta d \Theta=\frac{1}{2} \int_{0}^{1} p_{\mathrm{FF}}(-x) d x \\
& =1-\frac{1-\delta_{90}^{\nu+1}-0.5\left(1-\delta_{90}^{\nu}\right)}{\left(1-\delta_{90}\right) \delta_{90}^{\nu}} \tag{28}
\end{align*}
$$

where $\delta_{90}=\delta\left(\Theta=90^{\circ}\right)=\frac{4}{3(n-1)^{2}} \sin ^{2}\left(45^{\circ}\right)=\frac{2}{3(n-1)^{2}}$. Equation (28) can be solved for v in terms of b_{FF} and δ_{90}, implying that v and thus ξ can be determined if the real part of the refractive index n and the backscattering ratio b_{FF} are specified. As a consequence, the FF scattering phase function can be evaluated from the measured value of b_{FF} if the real part of the refractive index n is known.

Figure 2 Rayleigh [Eq. (23)], FF [Eq. (27)], and Petzold scattering phase functions.

2.2.4
 The Petzold Scattering Phase Function

The vsfs measured by Petzold [80] have been widely used by ocean optics researchers. These scattering phase functions are discussed by Mobley [69], who tabulated the vsfs for clear ocean, coastal ocean, and turbid harbor waters. Based on these three vsfs, an average scattering phase function for supposedly "typical" ocean waters was created (Mobley et al. [26], Table 2). This average Petzold scattering phase function, which has an asymmetry factor $g=0.9223$ and a backscattering ratio $b_{\mathrm{FF}}=0.019$, is shown in Figure 2 together with the Rayleigh scattering phase function and the FF scattering phase function. For the FF phase function, the power-law slope was set to $\xi=3.38$, but results for two different values of the real part of the refractive index are shown: $n=1.06$ and $n=1.18$. These values yield an asymmetry factor $g=0.9693$ and a backscattering ratio $b_{\mathrm{FF}}=0.0067$ for $n=1.06$ and $g=0.9160$ and $b_{\mathrm{FF}}=0.022$ for $n=1.18$. Note the similarity between the FF scattering phase function for $n=1.18$ and the average Petzold scattering phase function, which indicates that the average Petzold scattering phase function is more suitable for mineral-dominated waters than for pigment-dominated waters.

2.3
 Scattering Phase Matrix

The theoretical development of vector radiative transfer theory starts with the Stokes vector representation $\mathbf{I}=\left[I_{\|}, I_{\perp}, U, V\right]^{T}$, where the superscript T denotes

