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Preface

In a transparent medium, it follows from energy conservation that light
attenuation is proportional to the inverse square of the distance traveled. In a
translucent or turbid medium, light suffers attenuation in addition to that given
by the inverse-square law caused by absorption and scattering, which give an
exponential decay in accordance with the Beer–Lambert law to a first-order
approximation. Application of calculus to interpret experimental results in
light attenuation led to the foundation of radiometry and the development of
appropriate physical theories and mathematical models.

The most important quantity of classical radiative transfer (RT) theory is the
specific intensity (or radiance), defined as the radiant power transported through
a surface element in directions confined to a solid angle around the direction
of propagation. To treat the polarization properties of radiation, Stokes intro-
duced four parameters that describe the state of polarization, which were used
by Chandrasekhar to replace the specific intensity with a four-element column
vector to describe polarized radiation.

In many applications, an accurate description is required of light propagation
in two adjacent slabs of turbid media which are separated by an interface,
across which the refractive index changes. Three important examples of such
coupled media are atmosphere–water systems, atmosphere–sea ice systems,
and air–tissue systems, in which the change in the refractive index across the
interface between the two media plays an important role for the transport of
light throughout the coupled system. For imaging of biological tissues or satellite
remote sensing of water bodies, an accurate RT model for a coupled system is an
indispensable tool. In both cases, an accurate RT tool is essential for obtaining
satisfactory solutions of retrieval problems through iterative forward/inverse
modeling.

In optical remote sensing of the Earth from space, an important goal is to
retrieve atmospheric and surface parameters from measurements of the reflected
solar radiation emerging at the top of the atmosphere at a number of wave-
lengths. These retrieval parameters, such as aerosol type as well as loading and
concentrations of aquatic constituents in an open ocean or coastal water area,
depend on the inherent optical properties, that is, the scattering and absorption
coefficients of the atmosphere and the water. By having a model that provides a



XII Preface

link between retrieval parameters and inherent optical properties, one can use
a forward RT model to compute how the radiation measured by an instrument
deployed on a satellite will respond to changes in the retrieval parameters, and
then formulate and solve an inverse RT problem to derive information about the
retrieval parameters. A forward RT model employing inherent optical properties
that describes how atmospheric and aquatic constituents absorb and scatter
light can be used to compute the multiply scattered light field in any particular
direction at any particular depth level in a vertically stratified medium, such as
a coupled atmosphere–water system. In order to solve an inverse RT problem,
it is important to have an accurate and efficient forward RT model. Accuracy
is important in order to obtain reliable and robust retrievals, and efficiency is
an issue because standard iterative solutions of nonlinear inverse RT problems
require executing a forward RT model repeatedly to compute the radiation field
as well as the partial derivatives with respect to the retrieval parameters (the
Jacobians).

This book is aimed at students with a good undergraduate background in math-
ematics and physics, but it is kept at a fairly fundamental level. It will teach the
reader how to formulate and solve forward and inverse RT problems related to
coupled media and gives examples of how to solve concrete problems in remote
sensing of coupled atmosphere–surface systems. Thus, it is suitable as a teaching
tool for the next generation of environmental scientists and engineers and remote-
sensing specialists. It will also be useful for researchers (in academia, industry,
and government institutions) in atmospheric and planetary sciences as well as in
remote sensing of the environment.

This book discusses RT in coupled media such as the atmosphere–ocean system
with Lambertian and non-Lambertian reflecting ground surfaces for polarized as
well as unpolarized radiation. The polarized reflectance from natural ground sur-
faces such as plant canopies and wind-roughened water surfaces is discussed, and
emphasis is placed on the mathematical description of the inherent optical prop-
erties of natural media including atmospheric gases and particles, water bodies
with embedded impurities (particles), and snow/ice bodies. The spectral range
from the ultraviolet to the microwave region of the electromagnetic spectrum is
considered, and multispectral and hyperspectral remote sensing are discussed, as
well as solutions of forward problems for unpolarized and polarized radiation in
coupled media. A unique feature of this book is that it contains a basic descrip-
tion of inverse methods together with a comprehensive and systematic coverage
of formulations and solutions of inverse problems related to coupled media.

Knut Stamnes
Hoboken, New Jersey, USA

June 30, 2015
Jakob J. Stamnes
Bergen, Norway

June 30, 2015
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1
Introduction

1.1
Brief History

The idea or notion that light attenuation is proportional to the inverse square of
the distance traveled can be traced to Kepler [1]. Its experimental verification was
provided by Bouguer [2], who used the inverse square dependence to establish the
exponential extinction law by studying the attenuation of light passing through
translucent media. A mathematical foundation of radiometry was provided by
Lambert [3], who used calculus to interpret experimental results and thereby
develop appropriate mathematical models and physical theories. As pointed
out by Mishchenko [4], although the first introduction of the radiative transfer
equation (RTE) has traditionally been attributed to Schuster [5], the credit should
go instead to Lommel [6], who derived an integral form of the RTE by considering
the directional flow of radiant energy crossing a surface element; almost identical
results were obtained independently by Chwolson [7].

The specific intensity (or radiance) I(𝐫, ̂𝛀) is the most important quantity of
classical radiative transfer theory (RTT). Planck [8] defined it by stating that the
amount of radiant energy dE transported through a surface element dA in direc-
tions confined to a solid angle d𝜔 around the direction of propagation ̂𝛀 in a
time interval dt is given by dE = I(𝐫, ̂𝛀) cos 𝜃dAdtd𝜔, where 𝐫 is the position vec-
tor of the surface element dA, and 𝜃 is the angle between ̂𝛀 and the normal to
dA. This definition was adopted in the works of Milne [9], Hopf [10], and Chan-
drasekhar [11], and has since been used in many monographs [12–16] and text-
books [17–21] on RTT. To treat the polarization properties of radiation Stokes
[22] introduced four parameters to describe the state of polarization. These so-
called Stokes parameters were used by Chandrasekhar [11, 23] to replace the spe-
cific intensity with the four-element column vector 𝐈(𝐫, ̂𝛀) to describe polarized
radiation.

The heuristic derivation of the RTE adopted in Chapter 3 of this book for unpo-
larized as well as polarized radiation is based on classical RTT invoking the spe-
cific intensity and simple energy conservation arguments. Such a derivation is easy
to understand and sufficient for our purpose. Mandel and Wolf [24] noted that a
more fundamental derivation that can be traced to the Maxwell equations was

Radiative Transfer in Coupled Environmental Systems: An Introduction to Forward and Inverse Modeling,
First Edition. Knut Stamnes and Jakob J. Stamnes.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.



2 1 Introduction

desirable, and stated “In spite of the extensive use of the theory of radiative energy
transfer, no satisfactory derivation of its basic equation... from electromagnetic
theory... has been obtained up to now.” Recently, however, much progress toward
such a derivation has been made, as reported by Mishchenko [25].

1.2
What is Meant by a Coupled System?

In many applications, an accurate description is required of light propagation
in two adjacent slabs of turbid media that are separated by an interface, across
which the refractive index changes. Such a two-slab configuration will be referred
to as a coupled system. Three important examples are atmosphere–water systems
[26, 27], atmosphere–sea ice systems [28, 29], and air–tissue systems [30]. In
each of these three examples, the change in the refractive index across the
interface between the two media must be accounted for in order to model the
transport of light throughout the respective coupled system correctly. In the
second example, the refractive-index change, together with multiple scattering,
leads to a significant trapping of light inside the strongly scattering, optically
thick sea-ice medium [28, 29]. For imaging of biological tissues or satellite remote
sensing of water bodies, an accurate radiative transfer (RT) model for a coupled
system is an indispensable tool [31, 32]. In both cases, an accurate RT tool
is essential for obtaining satisfactory solutions of retrieval problems through
iterative forward/inverse modeling [33, 34].

In remote sensing of the Earth from space, one goal is to retrieve atmospheric
and surface parameters from measurements of the radiation emerging at the top
of the atmosphere (TOA) at a number of wavelengths [35, 36]. These retrieval
parameters (RPs), such as aerosol type and loading and concentrations of aquatic
constituents in an open ocean or coastal water area, depend on the inherent opti-
cal properties (IOPs) of the atmosphere and the water. If there is a model providing
a link between the RPs and the IOPs, a forward RT model can be used to compute
how the measured TOA radiation field should respond to changes in the RPs, and
an inverse RT problem can be formulated and solved to derive information about
the RPs [37, 38]. A forward RT model, employing IOPs that describe how atmo-
spheric and aquatic constituents absorb and scatter light can be used to compute
the multiply scattered light field in any particular direction (with specified polar
and azimuth angles) at any particular depth level (including the TOA) in a ver-
tically stratified medium, such as a coupled atmosphere–water system [34, 39].
In order to solve the inverse RT problem, it is important to have an accurate and
efficient forward RT model. Accuracy is important in order to obtain reliable and
robust retrievals, and efficiency is an issue because standard iterative solutions of
the nonlinear inverse RT problem require executing the forward RT model repeat-
edly to compute the radiation field and its partial derivatives with respect to the
RPs (the Jacobians) [37, 38].
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1.3
Scope

While solutions to the scalar RTE, which involve only the first component of the
Stokes vector (the radiance or intensity), are well developed, modern RT models
that solve the vector RTE are capable of also accounting for polarization effects
described by the second, third, and fourth components of the Stokes vector. Even
if one’s interest lies primarily in the radiance, it is important to realize that solu-
tions of the scalar RTE, which ignores polarization effects, introduce errors in the
computed radiances [40–42].

In this book, we will consider the theory and applications based on both scalar
and vector RT models, which include polarization effects. There are numerous
RT models available that include polarization effects (see Zhai et al. [43] and ref-
erences therein for a list of papers), and the interest in applications based on polar-
ized radiation is growing. There is also a growing interest in applications based on
vector RT models that apply to coupled systems. Examples of vector RT modeling
pertinent to a coupled atmosphere–water system include applications based on
the doubling-adding method (e.g., Chowdhary [44], Chowdhary et al., [45–47]),
the successive order of scattering method (e.g., Chami et al., [48], Min and Duan
[49], Zhai et al., [43]), the matrix operator method (e.g., Fisher and Grassl, [50], Ota
et al., [51]), and Monte Carlo methods (e.g., Kattawar and Adams [40], Lotsberg
and Stamnes [52]).

Chapter 2 provides definitions of IOPs including absorption and scattering
coefficients as well as the normalized angular scattering cross section, commonly
referred to as the scattering phase function, and the corresponding scattering
phase matrix needed for vector RT modeling and applications. In several subsec-
tions basic scattering theory with emphasis on spherical particles (Mie–Lorenz
theory) is reviewed, and IOPs for atmospheric gases and aerosols as well those
for surface materials including snow/ice, liquid water, and land surfaces are
discussed. The impact of a rough interface between the two adjacent slabs is also
discussed.

In Chapter 3, an overview is given of the scalar RTE as well as the vector RTE
applicable to a coupled system consisting of two adjacent slabs with different
refractive indices. Several methods of solution are discussed: the successive order
of scattering method, the discrete-ordinate method, the doubling-adding method,
and the Monte Carlo method. In Chapter 4, we discuss forward RT modeling in
coupled environmental systems based on the discrete-ordinate method, while
Chapter 5 is devoted to a discussion of the inverse problem. Finally, in Chapter 6,
a few typical applications are discussed including (i) how spectral redundancy can
be exploited to reduce the computational burden in atmospheric RT problems,
(ii) simultaneous retrieval of total ozone column amount and cloud effects from
ground-based irradiance measurements, (iii) retrieval of aerosol and snow-ice
properties in coupled atmosphere–cryosphere systems from space, (iv) retrieval
of aerosol and aquatic parameters in coupled atmosphere–water systems from
space, (v) vector RT in coupled systems, and (vi) how polarization measurements
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can be used to improve retrievals of atmospheric and surface parameters in
coupled atmosphere–surface systems.

1.4
Limitations of Scope

We restrict our attention to scattering by molecules and small particles such as
aerosols and cloud particles in an atmosphere, hydrosols in water bodies such as
oceans, lakes, and rivers, and inclusions (air bubbles and brine pockets) embed-
ded in ice. To explain the meaning of independent scattering, let us consider an
infinitesimal volume element filled with small particles that are assumed to be
randomly distributed within the volume element. Such infinitesimal volume ele-
ments are assumed to constitute the elementary scattering agents. Independent
scattering implies that each particle in each of the infinitesimal volume elements
is assumed to scatter radiation independently of all other volume elements.

Although there are many applications that require a three-dimensional (3-D)
RT treatment, in this book we limit our discussion to plane-parallel systems with
an emphasis on the coupling between the atmosphere and the underlying sur-
face consisting of a water body, a snow/ice surface, or a vegetation canopy. For a
clear (cloud- and aerosol-free) atmosphere, 3-D effects are related to the impact
of the Earth’s curvature on the radiation field. To include such effects, a pseudo-
spherical treatment (see Dahlback and Stamnes [53]) may be sufficient, in which
the direct solar beam illumination is treated using spherical geometry, whereas
multiple scattering is done using a plane-parallel geometry. This pseudo-spherical
approach has been implemented in many RT codes [54, 55]. There is a large body of
literature on 3-D RT modeling with applications to broken clouds. Readers inter-
ested in RT in cloudy atmospheres may want to consult books like that of Marshak
and Davis [12] or visit the Web site http://i3rc.gsfc.nasa.gov/.

3-D RT modeling may also be important for analysis and interpretation of lidar
data. In this context, the classical “searchlight problem" [56], which considers the
propagation of a laser beam through a turbid medium, is relevant. Long-range
propagation of a lidar beam has been studied both theoretically and experimen-
tally [57]. Monte Carlo simulations are well suited for such studies [58], and use of
deterministic models such the discrete-ordinate method, discussed in Chapters 3
and 4 of this book, have also been reported [59, 60].

Most RT studies in the ocean have been concerned with understanding the
propagation of sunlight, as discussed by Mobley et al. [26]. For these applications,
the transient or time-dependent term in the RTE can be ignored, because changes
in the incident illumination are much slower than the changes imposed by the
propagation of the light field through the medium. While this assumption is sat-
isfied for solar illumination, lidar systems can use pulses that are shorter than the
attenuation distance of seawater divided by the speed of light in water. Also, as

http://i3rc.gsfc.nasa.gov/
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pointed out by Mitra and Churnside [61], due to multiple light scattering, under-
standing the lidar signal requires a solution of the time-dependent RTE. Although
such studies are beyond the scope of this book, the transient RT problem can
be reduced to solving a series of time-independent RT problems, as discussed by
Stamnes et al. [62].

We restrict our attention to elastic scattering, although inelastic scattering pro-
cesses (Raman and Brillouin) certainly can be very important and indeed essential
in some atmospheric [63–65] and aquatic [66, 67] applications. Although most
particles encountered in nature have nonspherical shapes – cloud droplets
being the notable exception – we will not consider nonspherical particles in this
book. Although the general introduction to the scattering problem provided in
Chapter 2 is generic in nature and thus applies to particles of arbitrary shape, our
more detailed review is limited to spherical particles (Mie–Lorenz theory). The
reader is referred to the books by Bohren and Huffman [68] and Zdunkowski
et al. [20] for a more comprehensive discussion of the Mie-Lorenz theory and
to the recent book by Wendisch and Yang [21] for an excellent introduction to
scattering by nonspherical particles.
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2
Inherent Optical Properties (IOPs)

2.1
General Definitions

2.1.1
Absorption Coefficient and Volume Scattering Function

The optical properties of a medium can be categorized as inherent or apparent.
An inherent optical property (IOP) depends only on the medium itself, and not
on the ambient light field within the medium [69]. An apparent optical property
(AOP) depends also on the illumination, and hence on light propagating in
particular directions inside and outside the medium1).

The absorption coefficient 𝛼 and the scattering coefficient 𝛽 are important IOPs,
defined as [18]

𝛼(s) = 1
Ii

(dI𝛼
ds

)

(1)

𝛽(s) = 1
Ii

(dI𝛽
ds

)

. (2)

Here, Ii is the radiance of the incident light beam entering a volume element
dV = dA ds of the medium of cross-sectional area dA and length ds, and dI𝛼 > 0
and dI𝛽 > 0 are, respectively, the radiances that are absorbed and scattered in
all directions as the light beam propagates the distance ds, which is the thick-
ness of the volume element dV along the direction of the incident light beam.
If the distance ds is measured in meters, the unit for the absorption or scattering
coefficient defined in Eq. (1) or Eq. (2) becomes [m−1]. The extinction coefficient 𝛾
is the sum of the absorption and scattering coefficients

𝛾(s) = 𝛼(s) + 𝛽(s) (3)

1) Apparent optical properties (i) depend both on the medium (the IOPs) and on the geometric (direc-
tional) structure of the radiance distribution, and (ii) display enough regular features and stability
to be useful descriptors of a water body [69]. Hence, a radiance or an irradiance would satisfy only
the first part of the definition, while a radiance or irradiance reflectance, obtained by division of the
radiance or the upward irradiance by the downward irradiance, would satisfy also the second part
of the definition.

Radiative Transfer in Coupled Environmental Systems: An Introduction to Forward and Inverse Modeling,
First Edition. Knut Stamnes and Jakob J. Stamnes.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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and the single-scattering albedo𝜛 is defined as the ratio of 𝛽 to 𝛾

𝜛(s) = 𝛽(s)
𝛾(s)
. (4)

Thus, given an interaction between an incident light beam and the medium, the
single-scattering albedo, which varies between 0 and 1, gives the probability that
the light beam will be scattered rather than absorbed.

The angular distribution of the scattered light is given in terms of the volume
scattering function (vsf), which is defined as

vsf(s, ̂𝛀′
,
̂𝛀) = 1

Ii
d2I𝛽

ds d𝜔
= 1

Ii
d
ds

(
dI𝛽
d𝜔

)

[m−1sr−1]. (5)

Here, d2I𝛽 is the radiance scattered from an incident direction ̂𝛀′ into a cone of
solid angle d𝜔 around the direction ̂𝛀 as the light propagates the distance ds along
̂𝛀′. The plane spanned by the unit vectors ̂𝛀′ and ̂𝛀 is called the scattering plane,
and the scattering angle Θ is given by cosΘ = ̂𝛀′ ⋅ ̂𝛀. Integration on the far right
side of Eq. (5) over all scattering directions yields, using Eq. (2)

𝛽(s) = 1
Ii

d
ds ∫4𝜋

(
dI𝛽
d𝜔

)

d𝜔 = 1
Ii

(dI𝛽
ds

)

= ∫4𝜋
vsf(s, ̂𝛀′
,
̂𝛀)d𝜔 = ∫

2𝜋

0 ∫
𝜋

0
vsf(s, cosΘ, 𝜙) sinΘdΘd𝜙 (6)

where Θ and 𝜙 are, respectively, the polar angle and the azimuth angle in a spher-
ical coordinate system, in which the polar axis is along ̂𝛀′. As indicated in Eq. (6),
the vsf is generally a function of bothΘ and𝜙, but for randomly oriented scatterers
one may assume that the scattering potential is spherically symmetric, implying
that there is no azimuthal dependence, so that vsf = vsf(s, cosΘ). Then one finds,
with x = cosΘ

𝛽(s) = 2𝜋 ∫
𝜋

0
vsf(s, cosΘ) sinΘdΘ = 2𝜋 ∫

1

−1
vsf(s, x)dx. (7)

2.1.2
Scattering Phase Function

A normalized vsf, denoted by p(s, cosΘ) and referred to hereafter as the scattering
phase function, may be defined as follows:

p(s, cosΘ) = 4𝜋 vsf(s, cosΘ)
∫4𝜋 vsf(s, cosΘ)d𝜔

= vsf(s, cosΘ)
1
2
∫ 1
−1 vsf(s, x)dx

(8)

so that

1
4𝜋 ∫4𝜋

p(s, cosΘ)d𝜔 = 1
2 ∫

1

−1
p(s, x)dx = 1. (9)

The scattering phase function has the following physical interpretation: Given that
a scattering event has occurred, p(s, cosΘ)d𝜔∕4𝜋 is the probability that a light
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beam traveling in the direction ̂𝛀′ is scattered into a cone of solid angle d𝜔 around
the direction ̂𝛀 within the volume element dV with thickness ds along ̂𝛀′.

The scattering phase function p(s, cosΘ) describes the angular distribution
of the scattering, while the scattering coefficient 𝛽(s) describes its magnitude.
A convenient measure of the “shape” of the scattering phase function is the
average over all scattering directions (weighted by p(s, cosΘ)) of the cosine of the
scattering angle Θ, that is,

g(s) = ⟨cosΘ⟩ = 1
4𝜋 ∫4𝜋

p(s, cosΘ) cosΘ d𝜔

= 1
2

𝜋

∫
0

p(s, cosΘ) cosΘ sinΘ dΘ = 1
2

1

∫
−1

p(s, x) x dx (10)

where x = cosΘ. The average cosine g(s) is called the asymmetry factor of the
scattering phase function. Equation (10) yields complete forward scattering
if g = 1 and complete backward scattering if g = −1, and g = 0 if p(s, cosΘ) is
symmetric aboutΘ = 90∘. Thus, isotropic scattering also gives g = 0. The scattering
phase function p(s, cosΘ) depends on the refractive index as well as the size of
the scattering particles, and will thus depend on the physical situation and the
practical application of interest. The probability of scattering into the backward
hemisphere is given by the backscattering ratio (or backscatter fraction) b,
defined as

b(s) = 1
2 ∫
𝜋

𝜋∕2
p(s, cosΘ) sinΘ dΘ = 1

2

1

∫
0

p(s,−x) dx. (11)

The scattering phase function may be approximated by a finite sum of (M + 1)
Legendre polynomials (dropping for simplicity the dependence on the position s)

p(cosΘ) ≈
M∑

𝓁 = 0
(2𝓁 + 1)𝜒𝓁P𝓁(cosΘ) (12)

where P𝓁 is the 𝓁th Legendre polynomial, and the expansion coefficient is given by

𝜒𝓁 = 1
2 ∫

1

−1
P𝓁(x)p(x)dx. (13)

The Legendre polynomials satisfy an orthogonality relation

1
2 ∫

+1

−1
P𝓁(x)Pk(x)dx = 1

2𝓁 + 1
𝛿𝓁k (14)

as well as an Addition Theorem:

P𝓁(cosΘ) = P𝓁(u′)P𝓁(u) + 2
𝓁∑

m=1
Λm

𝓁 (u
′)Λm

𝓁 (u) cos m(𝜙′ − 𝜙) (15)

where u = cos 𝜃, u′ = cos 𝜃′,

Λm
𝓁 (u) =

√

(𝓁 − m)!
(𝓁 + m)!

Pm
𝓁 (u)
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and Pm
𝓁 (u) is the associated Legendre polynomial. For m = 0, we have Λ0

𝓁(u) =
P0
𝓁(u) = P𝓁(u). The scattering angle Θ is related to the polar and azimuthal

angles by

cosΘ = uu′ +
√

1 − u2
√

1 − u′2 cos(𝜙′ − 𝜙) (16)

where (𝜃′, 𝜙′) and (𝜃, 𝜙) are the polar and azimuthal angles before and after
scattering, respectively. Substituting Eq. (15) into Eq. (12), we have

p(cosΘ) = p(u′
, 𝜙

′;u, 𝜙) ≈
M∑

𝓁 = 0
(2𝓁 + 1)𝜒𝓁

×
{

P𝓁(u′)P𝓁(u) + 2
𝓁∑

m= 1
Λm

𝓁 (u
′)Λm

𝓁 (u) cos m(𝜙′ − 𝜙)
}

(17)

which can be rewritten as a Fourier cosine series

p(u′
, 𝜙

′;u, 𝜙) ≈
M∑

m= 0
(2 − 𝛿m0) pm(u′

,u) cos m(𝜙′ − 𝜙) (18)

where 𝛿0m is the Kronecker delta, that is, 𝛿0m = 1 for m = 0 and 𝛿0m = 0 for m ≠ 0,
and

pm(u′
,u) ≈

M∑

𝓁 =m
(2𝓁 + 1)𝜒𝓁Λm

𝓁 (u
′)Λm

𝓁 (u). (19)

In a plane-parallel or slab geometry, irradiances and the scalar radiance (mean
intensity) depend on the azimuthally averaged phase function. Application of
azimuthal averaging, that is, 1

2𝜋
∫ 2𝜋

0 d𝜙 · · ·, to both sides of Eq. (12), combined
with Eq. (15) or Eq. (18) gives

p(u′
,u) ≡ p0(u′

,u) = 1
2𝜋 ∫

2𝜋

0
p(u′
, 𝜙

′;u, 𝜙)d𝜙

≈
M∑

𝓁 = 0
(2𝓁 + 1)𝜒𝓁P𝓁(u)P𝓁(u′). (20)

From Eq. (20), it follows that

1
2 ∫

1

−1
p(u′
,u)Pk(u′)du′ ≈

M∑

𝓁 = 0
(2𝓁 + 1)𝜒𝓁P𝓁(u)

1
2 ∫

1

−1
P𝓁(u′)Pk(u′)du′ (21)

which by the use of orthogonality [Eq. (14)] leads to

𝜒𝓁 = 1
P𝓁(u)

1
2 ∫

1

−1
p(u′
,u)P𝓁(u′)du′

. (22)

Thus, to calculate the expansion coefficients or moments 𝜒𝓁 , we can use the
azimuthally averaged phase function p(u′

,u) given by Eq. (20).
Four different scattering phase functions, which are useful in practical applica-

tions, are discussed below.
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2.2
Examples of Scattering Phase Functions

2.2.1
Rayleigh Scattering Phase Function

When the size d of a scatterer is small compared to the wavelength of light (d <
1

10
𝜆), the Rayleigh scattering phase function gives a good description of the angular

distribution of the scattered light. It is given by [see Eq. (59)]

pRay(cosΘ) = 3
3 + f

(1 + f cos2 Θ) (23)

where the parameter f = 1−𝜌
1+𝜌

, and 𝜌 is the depolarization factor defined in Eq. (63),
attributed to the anisotropy of the scatterer (the molecule) [70–73]. Originally,
this scattering phase function was derived for light scattering by an electric dipole
[74]. Since the Rayleigh scattering phase function is symmetric about Θ = 90∘,
the asymmetry factor is g = 𝜒1 = 0. If the Rayleigh scattering phase function is
expanded in Legendre polynomials, the expansion coefficients𝜒𝓁 [see Eqs. (13) and
(22)] are simply given by 𝜒0 = 1, 𝜒1 = 0, 𝜒2 = 2f

5(3+f )
, and 𝜒𝓁 = 0 for 𝓁 > 2 (see

Problem 2.1). For Rayleigh scattering, a value of 𝜌 = 0.04 for air gives fair = 0.923,
while for water the numerical value 𝜌 = 0.09 is commonly used, implying fwater =
0.835. For inelastic Raman scattering, the scattering phase function is the same as
for Rayleigh scattering except that 𝜌 = 0.29, implying f Raman

water = 0.55.

2.2.2
Henyey–Greenstein Scattering Phase Function

In 1941, Henyey and Greenstein [75] proposed a one-parameter scattering phase
function given by (suppressing the dependence on the position s)

pHG(cosΘ) =
1 − g2

(1 + g2 − 2g cos Θ)3∕2 (24)

where the parameter g is the asymmetry factor defined in Eq. (10). The Henyey–
Greenstein (HG) scattering phase function has no physical basis, but is very useful
for describing a highly scattering medium, such as turbid water or sea ice, for
which the actual scattering phase function is unknown. The HG scattering phase
function is convenient for Monte Carlo simulations and other numerical calcula-
tions because of its analytical form. In deterministic plane-parallel RT models, it is
also very convenient because the addition theorem of spherical harmonics can be
used to expand the scattering phase function in a series of Legendre polynomials
[18], as reviewed in the previous section. For the HG scattering phase function,
the expansion coefficients 𝜒𝓁 in this series [see Eqs. (13) and (22)] are simply given
by 𝜒𝓁 = g𝓁 , implying that the HG scattering phase function can be approximated
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by a finite sum of (M + 1) Legendre polynomials [see Eq. (12) and Problem 2.2)]

pHG(cosΘ) =
1 − g2

(1 + g2 − 2g cos Θ)3∕2 ≈
M∑

𝓁 = 0
(2𝓁 + 1)g𝓁P𝓁(cosΘ). (25)

The HG scattering phase function is useful for scatterers with sizes comparable to
or larger than the wavelength of light.

The probability of scattering into the backward hemisphere, the backscattering
ratio (or backscatter fraction) becomes [see Eq. (11)]:

bHG = 1
2

1

∫
0

p(s,−x) dx =
1 − g2

2

1

∫
0

dx
(1 + g2 + 2g x)3∕2

=
1 − g

2g

[
(1 + g)

√
(1 + g2)

− 1
]

. (26)

Figure 1 shows the scattering phase functions computed for a collection of parti-
cles with a log-normal size distribution (see Section 2.4.3 and Eq. (102)). The left
panel pertains to nonabsorbing aerosol particles with refractive index n = 1.385,
mode radius rn = 0.3 μm, and standard deviation 𝜎n = 0.92, and the smallest and
largest radii are selected to be r1 = 0.005 μm and r2 = 30 μm. The right panel
pertains to nonabsorbing cloud droplets with refractive index n = 1.339, mode
radius rn = 5 μm, and standard deviation 𝜎n = 0.4, and the smallest and largest
radii are selected to be r1 = 0.005 μm and r2 = 100 μm.
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Figure 1 Scattering phase functions
calculated using a Mie code. (a) For aerosols
with asymmetry factor 0.79275. (b) For
clouds with asymmetry factor 0.86114. HG
scattering phase functions [see Eq. (24)] with

asymmetry factors equal to those for the
cloud and aerosol particles are shown for
comparison. The Rayleigh scattering phase
function [Eq (23)] describing molecular scat-
tering is also shown for comparison.
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2.2.3
Fournier–Forand Scattering Phase Function

Measurements have shown that the particle size distribution (PSD) in oceanic
water can be accurately described by a power law (Junge distribution)
n(r) = C(𝜉, r1, r2)∕r𝜉 , where n(r) is the number of particles per unit volume
per unit bin width, r [μm] is the radius of the assumed spherical particles,
and r1 and r2 denote the smallest and largest particle size, respectively. The
normalization constant C(𝜉, r1, r2) [cm−3 ⋅ μm𝜉−1] is called the Junge coefficient,
and 𝜉 > 0 is the PSD slope, which typically varies between 3.0 and 5.0 (Diehl
and Haardt [76]; McCave [77]). The power-law PSD is further described in
Section 2.4.3. By assuming a power law for the PSD, and letting each particle
scatter in accordance with the anomalous diffraction approximation, Fournier
and Forand [78] derived an analytic expression for the scattering phase function
of oceanic water (hereafter referred to as the FF scattering phase function).
A commonly used version of the FF scattering phase function is given by
(Mobley et al., [79])

pFF(Θ) =
1

4𝜋(1 − 𝛿)2
𝛿
𝜈

{

𝜈(1 − 𝛿) − (1 − 𝛿𝜈) + 4
ũ2 [𝛿(1 − 𝛿𝜈) − 𝜈(1 − 𝛿)]

}

+
1 − 𝛿𝜈180

16𝜋(𝛿180 − 1)𝛿𝜈180
[3 cos2 Θ − 1] (27)

where 𝜈 = 0.5(3 − 𝜉),

𝛿 ≡ 𝛿(Θ) = ũ2(Θ)
3(n − 1)2

ũ(Θ) = 2 sin(Θ∕2), 𝛿180 = 𝛿(Θ = 180∘) = 4
3(n−1)2

, Θ is the scattering angle, and n is
the real part of the refractive index. Note that, in addition to the scattering angle
Θ, the FF scattering phase function depends also on the real part of the refractive
index of the particle relative to water and the slope parameter 𝜉 characterizing
the PSD.

Setting x = − cosΘ, and integrating the FF scattering phase function over the
backward hemisphere, one obtains the backscattering ratio or backscatter fraction
defined in Eq. (11), that is, [79]

bFF =
1
2 ∫
𝜋

𝜋∕2
pFF(cosΘ) sinΘdΘ = 1

2 ∫
1

0
pFF(−x) dx

= 1 −
1 − 𝛿𝜈+1

90 − 0.5(1 − 𝛿𝜈90)
(1 − 𝛿90)𝛿𝜈90

(28)

where 𝛿90 = 𝛿(Θ = 90∘) = 4
3(n−1)2

sin2(45∘) = 2
3(n−1)2

. Equation (28) can be solved
for 𝜈 in terms of bFF and 𝛿90, implying that 𝜈 and thus 𝜉 can be determined if the
real part of the refractive index n and the backscattering ratio bFF are specified.
As a consequence, the FF scattering phase function can be evaluated from the
measured value of bFF if the real part of the refractive index n is known.
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Figure 2 Rayleigh [Eq. (23)], FF [Eq. (27)], and Petzold scattering phase functions.

2.2.4
The Petzold Scattering Phase Function

The vsfs measured by Petzold [80] have been widely used by ocean optics
researchers. These scattering phase functions are discussed by Mobley [69],
who tabulated the vsfs for clear ocean, coastal ocean, and turbid harbor waters.
Based on these three vsfs, an average scattering phase function for supposedly
“typical" ocean waters was created (Mobley et al. [26], Table 2). This average
Petzold scattering phase function, which has an asymmetry factor g = 0.9223
and a backscattering ratio bFF = 0.019, is shown in Figure 2 together with the
Rayleigh scattering phase function and the FF scattering phase function. For the
FF phase function, the power-law slope was set to 𝜉 = 3.38, but results for two
different values of the real part of the refractive index are shown: n = 1.06 and
n = 1.18. These values yield an asymmetry factor g = 0.9693 and a backscattering
ratio bFF = 0.0067 for n = 1.06 and g = 0.9160 and bFF = 0.022 for n = 1.18.
Note the similarity between the FF scattering phase function for n = 1.18 and
the average Petzold scattering phase function, which indicates that the average
Petzold scattering phase function is more suitable for mineral-dominated waters
than for pigment-dominated waters.

2.3
Scattering Phase Matrix

The theoretical development of vector radiative transfer theory starts with the
Stokes vector representation 𝐈 = [I∥, I⟂,U,V ]T , where the superscript T denotes


