WILEY-VCH

ULLMANN'S Polymers and Plastics

Products and Processes

Ullmann's Polymers and Plastics

Excellence since 1914

Built from generations of expertise, for generations to come.

If you want to learn more about novel technologies in biochemistry or nanotechnology or discover unexpected new aspects of seemingly totally familiar processes in industrial chemistry - ULLMANN'S Encyclopedia of Industrial Chemistry is your first choice.

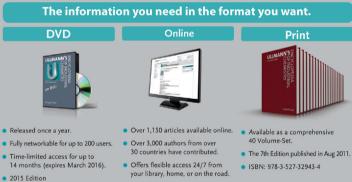
For over 100 years now, this reference provides top-notch information on the most diverse fields of industrial chemistry and chemical engineering.

When it comes to definite works on industrial chemistry, it has always been ULLMANN'S.

ISBN: 978-3-527-33754-5

Welcome to the **ULLMANN'S ACADEMY**

Kick-start your career!


Key topics in industrial chemistry explained by the ULLMANN'S Encyclopedia experts – for teaching and learning, or for simply refreshing your knowledge.

What's new?

The Smart Article introduces new and enhanced article tools for chemistry content. It is now available within ULLMANN'S.

For further information on the features and functions available, go to wileyonlinelibrary.com/thesmartarticle

• Updated 4 times per year. ISBN: 978-3-527-30673-2

- our website to Find sample chapters

Learn more about the history, the Editor-in-Chief and the Editorial Advisory Board

Discover the ULLMANN'S ACADEMY and more ...

wileyonlinelibrary.com/ref/ullmanns

ULLMANN

Only interested in a specific topic?

ULLMANN'S Fine Chemicals

ULLMANN'S Fibers

ISBN: 978-3-527-31605-2

ISBN: 978-3-527-33369-1 **ULLMANN'S** Agrochemicals 2 Volume Set • ISBN: 978-3-527-31604-5 ULLMANN'S Biotechnology and

Biochemical Engineering 2 Volume Set • ISBN: 978-3-527-31603-8

and Plant Design

Visit

ULLMANN'S Reaction Enginee 2 Volume Set • ISBN: 978-3-527-33371-4 ULLMANN'S Industrial Toxicology 2 Volume Set + ISBN: 978-3-527-31247-4 ULLMANN'S Chemical Engineering

2 Volume Set • ISBN: 978-3-527-31111-8

ULLMANN'S Energy 3 Volume Set • ISBN: 978-3-527-33370-7

3 Volume Set • ISBN: 978-3-527-33477-3

2 Volumes • ISBN: 978-3-527-31772-1

ULLMANN'S Renewable Resources

ULLMANN'S Modeling and Simulation

Ullmann's Polymers and Plastics

Products and Processes

Editor in Chief:

Dr. Barbara Elvers, Hamburg, Germany

All books published by **Wiley-VCH** are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <<u>http://dnb.d-nb.de></u>.

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

978-3-527-33823-8
978-3-527-68595-0
978-3-527-68596-7
978-3-527-68597-4

Cover Design

Grafik-Design Schulz, Fußgönheim, Germany

Typesetting Printing and Binding

Printed on acid-free paper

Preface

This handbook features selected articles from the 7th edition of *ULLMANN'S Encyclopedia of Industrial Chemistry*, including newly written articles that have not been published in a printed edition before. True to the tradition of the ULLMANN'S Encyclopedia, polymers and plastics are addressed from an industrial perspective, including production figures, quality standards and patent protection issues where appropriate. Safety and environmental aspects which are a key concern for modern process industries are likewise considered.

More content on related topics can be found in the complete edition of the ULLMANN'S Encyclopedia.

About ULLMANN'S

ULLMANN'S Encyclopedia is the world's largest reference in applied chemistry, industrial chemistry, and chemical engineering. In its current edition, the Encyclopedia contains more than 30,000 pages, 15,000 tables, 25,000 figures, and innumerable literature sources and cross-references, offering a wealth of comprehensive and well-structured information on all facets of industrial chemistry.

1,100 major articles cover the following main areas:

- Agrochemicals
- Analytical Techniques
- · Biochemistry and Biotechnology
- Chemical Reactions
- · Dyes and Pigments
- Energy
- · Environmental Protection and Industrial Safety
- Fat, Oil, Food and Feed, Cosmetics
- Inorganic Chemicals
- Materials
- · Metals and Alloys
- Organic Chemicals
- Pharmaceuticals
- Polymers and Plastics
- Processes and Process Engineering
- Renewable Resources
- Special Topics

First published in 1914 by Professor Fritz Ullmann in Berlin, the *Enzyklopädie der Technischen Chemie* (as the German title read) quickly became the standard reference work in industrial chemistry. Generations of chemists have since relied on ULLMANN'S as their prime reference source. Three further German editions followed in 1928–1932, 1951–1970, and in 1972–1984. From 1985 to 1996, the 5th edition of ULLMANN'S Encyclopedia of Industrial Chemistry was the first edition to be published in English rather than German language. So far, two more complete English editions have been published in print; the 6th edition of 40 volumes in 2002, and the 7th edition in 2011, again comprising 40 volumes. In addition, a number of smaller topic-oriented editions have been published.

Since 1997, *ULLMANN'S Encyclopedia of Industrial Chemistry* has also been available in electronic format, first in a CD-ROM edition and, since 2000, in an enhanced online edition. Both electronic editions feature powerful search and navigation functions as well as regular content updates.

Contents

Volume 1	••
Symbols and Units	IX
Conversion Factors	XI
Abbreviations	XIII
Country Codes X	VIII
-	XIX
Part 1: Fundamentals	1
Plastics, General Survey, 1. Definition,	
Molecular Structure and Properties	3
Plastics, General Survey, 2. Production of	
Polymers and Plastics	149
Plastics, General Survey, 3. Supermolecular	
Structures	187
Plastics, General Survey, 4. Polymer	
Composites	205
Plastics, General Survey, 5. Plastics and	
Sustainability	223
Plastics, Analysis	231
Polymerization Processes, 1. Fundamentals	265
Polymerization Processes, 2. Modeling of	
Processes and Reactors	315
Plastics, Processing, 1. Processing of	
Thermoplastics	367
Plastics, Processing, 2. Processing of	
Thermosets	407
Plastics Processing, 3. Machining, Bonding,	
Surface Treatment	439
Plastics, Properties and Testing	471
Plastics, Additives	527
Plasticizers	581
	501
Volume 2	
Part 2: Organic Polymers	601
Fluoropolymers, Organic	603
Polyacrylamides and Poly(Acrylic Acids)	659
Polyacrylates	675
Polyamides	697
Polyaspartates and Polysuccinimide	733
Polybutenes	747
Polycarbonates	763
Polyester Resins, Unsaturated	781
Polyesters	791
Polyethylene	817
Polyimides	859
Polymethacrylates	885

Polyoxyalkylenes	899
Polyoxymethylenes	911
Poly(Phenylene Oxides)	927
Polypropylene	937
Volume 3	
Polystyrene and Styrene Copolymers	981
Polyureas	1029
Polyurethanes	1051
Poly(Vinyl Chloride)	1111
Polyvinyl Compounds, Others	1141
Poly(Vinyl Esters)	1165
Poly(Vinyl Ethers)	1175
Poly(Vinylidene Chloride)	1181
Polymer Blends	1197
Polymers, Biodegradable	1231
Polymers, Electrically Conducting	1261
Polymers, High-Temperature	1281
Reinforced Plastics	1325
Specialty Plastics	1343
Thermoplastic Elastomers	1365
	1000
Volume 4	
Part 3: Films, Fibers, Foams	1405
Films	1407
Fibers, 4. Polyamide Fibers	1435
Fibers, 5. Polyester Fibers	1453
Fibers, 6. Polyurethane Fibers	1487
Fibers, 7. Polyolefin Fibers	1495
Fibers, 8. Polyacrylonitrile Fibers	1513
Fibers, 9. Polyvinyl Fibers	1529
Fibers, 10. Polytetrafluoroethylene Fibers	1539
High-Performance Fibers	1541
Foamed Plastics	1563
	1000
Part 4: Resins	1595
Alkyd Resins	1597
Amino Resins	1615
Epoxy Resins	1643
Phenolic Resins	1733
Resins, Synthetic	1751
Part 5: Inorganic Polymers	1775
Inorganic Polymers	1777
Author Index	1817
Author Index	1817
Subject Index	1823

Symbols and Units

Symbols and units agree with SI standards (for conversion factors see page XI). The following list gives the most important symbols used in the encyclopedia. Articles with many specific units and symbols have a similar list as front matter.

Symbol	Unit	Physical Quantity
a _B		activity of substance B
A _r		relative atomic mass (atomic weight)
Α	m ²	area
c _B	mol/m ³ , mol/L (M)	concentration of substance B
С	C/V	electric capacity
c_p, c_v	$\rm Jkg^{-1}K^{-1}$	specific heat capacity
d	cm, m	diameter
d		relative density (Q/Qwater)
D	m ² /s	diffusion coefficient
D	Gy (=J/kg)	absorbed dose
е	С	elementary charge
Ε	J	energy
Ε	V/m	electric field strength
Ε	V	electromotive force
$E_{\rm A}$	J	activation energy
f		activity coefficient
F	C/mol	Faraday constant
F	N	force
g	m/s ²	acceleration due to gravity
G	J	Gibbs free energy
b h	m	height
ħ	$W \cdot s^2$	Planck constant
H	J	
n I	A	enthalpy electric current
_		
[cd	luminous intensity
k	(variable)	rate constant of a chemical reaction
k	J/K	Boltzmann constant
K	(variable)	equilibrium constant
!	m	length
m	g, kg, t	mass
M_r		relative molecular mass (molecular weight)
$n_{\rm D}^{20}$		refractive index (sodium D-line, 20 °C)
n	mol	amount of substance
N _A	mol ⁻¹	Avogadro constant $(6.023 \times 10^{23} \text{ mol}^{-1})$
Р	Pa, bar [*]	pressure
2	J	quantity of heat
r	m	radius
R	$\mathrm{JK}^{-1}\mathrm{mol}^{-1}$	gas constant
R	Ω	electric resistance
S	J/K	entropy
t	s, min, h, d, month, a	time
t	°C	temperature
Г	К	absolute temperature
и	m/s	velocity
U	V	electric potential

Symbols and Units (Continued from p. IX)

Symbol	Unit	Physical Quantity
U	J	internal energy
V	m ³ , L, mL, μL	volume
W		mass fraction
W	J	work
x_B		mole fraction of substance B
Z		proton number, atomic number
α		cubic expansion coefficient
α	$Wm^{-2}K^{-1}$	heat-transfer coefficient (heat-transfer number)
α		degree of dissociation of electrolyte
[α]	$10^{-2} \text{deg cm}^2 \text{g}^{-1}$	specific rotation
η	Pa·s	dynamic viscosity
θ	°C	temperature
х		c_p/c_v
λ	$Wm^{-1}K^{-1}$	thermal conductivity
λ	nm, m	wavelength
μ		chemical potential
ν	Hz, s^{-1}	frequency
ν	m^2/s	kinematic viscosity (η/ϱ)
π	Ра	osmotic pressure
Q	g/cm ³	density
σ	N/m	surface tension
τ	$Pa (N/m^2)$	shear stress
φ	× /	volume fraction
χ	$Pa^{-1} (m^2/N)$	compressibility

*The official unit of pressure is the pascal (Pa).

SI unit	Non-SI unit	From SI to non-SI multiply by
Mass		
kg	pound (avoirdupois)	2.205
kg	ton (long)	9.842×10^{-4}
kg	ton (short)	1.102×10^{-3}
Volume		
m ³	cubic inch	6.102×10^4
m ³	cubic foot	35.315
m ³	gallon (U.S., liquid)	2.642×10^2
m ³	gallon (Imperial)	2.200×10^2
Temperature		
°C	°F	°C×1.8+32
Force		
Ν	dyne	1.0×10^{5}
Energy, Work		
J	Btu (int.)	9.480×10^{-4}
J	cal (int.)	2.389×10^{-1}
J	eV	6.242×10^{18}
J	erg	1.0×10^{7}
J	kW·h	2.778×10^{-7}
J	kp∙m	1.020×10^{-1}
Pressure	-	
MPa	at	10.20
MPa	atm	9.869
MPa	bar	10
kPa	mbar	10
kPa	mm Hg	7.502
kPa	psi	0.145
kPa	torr	7.502

Conversion Factors

Powers of Ten

E (exa)	10 ¹⁸	d (deci)	10^{-1}
P (peta)	10 ¹⁵	c (centi)	10^{-2}
T (tera)	10 ¹²	m (milli)	10^{-3}
G (giga)	10 ⁹	μ (micro)	10^{-6}
M (mega)	10 ⁶	n (nano)	10^{-9}
k (kilo)	10 ³	p (pico)	10^{-12}
h (hecto)	10^{2}	f (femto)	10^{-15}
da (deca)	10	a (atto)	10^{-18}

Abbreviations

The following is a list of the abbreviations used in the text. Common terms, the names of publications and institutions, and legal agreements are included along with their full identities. Other abbreviations will be defined wherever they first occur in an article. For further abbreviations, see page IX, Symbols and Units; page XVII, Frequently Cited Companies (Abbreviations), and page XVIII, Country Codes in patent references. The names of periodical publications are abbreviated exactly as done by Chemical Abstracts Service.

abs.	absolute	BGA	Bundesgesundheitsamt (Federal
a.c. ACGIH	alternating current American Conference of Governmental	BGB1.	Republic of Germany) Bundesgesetzblatt (Federal Republic
ACOIN	Industrial Hygienists	DUD1.	of Germany)
ACS	American Chemical Society	BIOS	British Intelligence Objectives Subcom-
ADI	acceptable daily intake		mittee Report (see also FIAT)
ADN	accord européen relatif au transport	BOD	biological oxygen demand
	international des marchandises danger-	bp	boiling point
	euses par voie de navigation interieure	B.P.	British Pharmacopeia
	(European agreement concerning the in-	BS	British Standard
	ternational transportation of dangerous	ca.	circa
	goods by inland waterways)	caled.	calculated
ADNR	ADN par le Rhin (regulation concerning	CAS	Chemical Abstracts Service
	the transportation of dangerous goods on the Dhine and all notional waterways of	cat. CEN	catalyst, catalyzed
	the Rhine and all national waterways of	cf.	Comité Européen de Normalisation
ADP	the countries concerned) adenosine 5'-diphosphate	CFR	compare Code of Federal Regulations (United
ADR	accord européen relatif au transport	CIK	States)
7 IDK	international des marchandises danger-	cfu	colony forming units
	euses par route (European agreement	Chap.	chapter
	concerning the international transporta-	ChemG	Chemikaliengesetz (Federal Republic
	tion of dangerous goods by road)		of Germany)
AEC	Atomic Energy Commission (United	C.I.	Colour Index
	States)	CIOS	Combined Intelligence Objectives Sub-
a.i.	active ingredient		commitee Report (see also FIAT)
AIChE	American Institute of Chemical	CLP	Classification, Labelling and Packaging
	Engineers	CNS	central nervous system
AIME	American Institute of Mining,	Co.	Company
	Metallurgical, and Petroleum Engineers	COD	chemical oxygen demand
ANSI	American National Standards Institute	conc.	concentrated
AMP	adenosine 5'-monophosphate	const.	constant
APhA API	American Pharmaceutical Association American Petroleum Institute	Corp. crit.	Corporation critical
ASTM	American Society for Testing and	CSA	Chemical Safety Assessment according
ASIM	Materials	COA	to REACH
ATP	adenosine 5'-triphosphate	CSR	Chemical Safety Report according to
BAM	Bundesanstalt für Materialprüfung		REACH
	(Federal Republic of Germany)	CTFA	The Cosmetic, Toiletry and
BAT	Biologischer Arbeitsstofftoleranzwert		Fragrance Association (United States)
	(biological tolerance value for a work-	DAB	Deutsches Arzneibuch, Deutscher
	ing material, established by MAK		Apotheker-Verlag, Stuttgart
	Commission, see MAK)	d.c.	direct current
Beilstein	Beilstein's Handbook of Organic Chem-	decomp.	decompose, decomposition
	istry, Springer, Berlin – Heidelberg –	DFG	Deutsche Forschungsgemeinschaft
DET	New York	1:1	(German Science Foundation)
BET	Brunauer – Emmett – Teller	dil.	dilute, diluted

DIN	Deutsche Industrienorm (Federal Republic		(regulation in the Federal Republic of
DIN	of Germany)		Germany concerning the transportation
DMF	dimethylformamide		of dangerous goods by rail)
DNA	deoxyribonucleic acid	GGVS	Verordnung in der Bundesrepublik
DOE	Department of Energy (United States)		Deutschland über die Beförderung
DOT	Department of Transportation –		gefährlicher Güter auf der Straße
	Materials Transportation Bureau		(regulation in the Federal Republic of
	(United States)		Germany concerning the transportation
DTA	differential thermal analysis		of dangerous goods by road)
EC	effective concentration	GGVSee	Verordnung in der Bundesrepublik
EC	European Community		Deutschland über die Beförderung
ed.	editor, edition, edited		gefährlicher Güter mit Seeschiffen
e.g.	for example		(regulation in the Federal Republic of
emf	electromotive force		Germany concerning the transportation
EmS	Emergency Schedule		of dangerous goods by sea-going
EN	European Standard (European		vessels)
	Community)	GHS	Globally Harmonised System of Chemi-
EPA	Environmental Protection Agency		cals (internationally agreed-upon system,
	(United States)		created by theUN, designed to replace the
EPR	electron paramagnetic resonance		various classification and labeling stan-
Eq.	equation		dards used in different countries by using
EŜCA	electron spectroscopy for chemical		consistent criteria for classification and
	analysis		labeling on a global level)
esp.	especially	GLC	gas-liquid chromatography
ESR	electron spin resonance	Gmelin	Gmelin's Handbook of Inorganic
Et	ethyl substituent $(-C_2H_5)$		Chemistry, 8th ed., Springer, Berlin -
et al.	and others		Heidelberg –New York
etc.	et cetera	GRAS	generally recognized as safe
EVO	Eisenbahnverkehrsordnung (Federal	Hal	halogen substituent (-F, -Cl, -Br, -I)
	Republic of Germany)	Houben-	Methoden der organischen
exp ()	$e^{(\ldots)}$, mathematical exponent	Weyl	Chemie, 4th ed., Georg Thieme Verlag,
FAO	Food and Agriculture Organization		Stuttgart
	(United Nations)	HPLC	high performance liquid
FDA	Food and Drug Administration		chromatography
	(United States)		hazard statement in GHS
FD&C	Food, Drug and Cosmetic Act	IAEA	International Atomic Energy Agency
FIIGA	(United States)	IARC	International Agency for Research on
FHSA	Federal Hazardous Substances Act		Cancer, Lyon, France
	(United States)	IATA-DGR	International Air Transport
FIAT	Field Information Agency, Technical		Association, Dangerous Goods
	(United States reports on the chemical		Regulations
D:-	industry in Germany, 1945)	ICAO	International Civil Aviation
Fig.	figure	· -	Organization
fp Friedländer	freezing point P. Friedländer, Fortschritte der	i.e.	that is
Friedlander	Teerfarbenfabrikation und verwandter	i.m. IMDG	intramuscular
		IMDG	International Maritime Dangerous Goods Code
	Industriezweige Vol. 1–25, Springer, Berlin 1888–1942	MO	
FT	Fourier transform	IMO	Inter-Governmental Maritime Consul- tive Organization (in the past: IMCO)
Г1 (g)	gas, gaseous	Inst.	Institute
GC	gas chromatography	i.p.	intraperitoneal
GefStoffV	Gefahrstoffverordnung (regulations in	I.p. IR	infrared
Geistoniv	the Federal Republic of Germany con-	ISO	International Organization for
	cerning hazardous substances)	100	Standardization
GGVE	Verordnung in der Bundesrepublik	IUPAC	International Union of Pure and
	Deutschland über die Beförderung		Applied Chemistry
	gefährlicher Güter mit der Eisenbahn	i.v.	intravenous

Kirk- Othmer	Encyclopedia of Chemical Technology, 3rd ed., 1991–1998, 5th ed., 2004–2007,	no. NC
(1)	John Wiley & Sons, Hoboken liquid	NR
Landolt- Börnstein	Zahlenwerte u. Funktionen aus Physik, Chemie, Astronomie, Geophysik u.	NR
Domistem	Technik, Springer, Heidelberg 1950–	NS
	1980; Zahlenwerte und Funktionen aus	NS
	Naturwissenschaften und Technik,	110
	Neue Serie, Springer, Heidelberg, since 1961	NT
LC ₅₀	lethal concentration for 50 % of the test	OE
LC ₅₀	animals	UL
LCLo	lowest published lethal concentration	OS
LD ₅₀	lethal dose for 50% of the test animals	
LDLo	lowest published lethal dose	р.,
ln	logarithm (base e)	Pat
LNG	liquefied natural gas	
log	logarithm (base 10)	
LPG	liquefied petroleum gas	
М	mol/L	PB
М	metal (in chemical formulas)	r
MAK	Maximale Arbeitsplatzkonzentration	
	(maximum concentration at the work-	PE
	place in the Federal Republic of	Ph
	Germany); cf. Deutsche Forschungsge-	Ph.
	meinschaft (ed.): Maximale Arbeits-	
	platzkonzentrationen (MAK) und	phr
	Biologische Arbeitsstofftoleranzwerte	PN
	(BAT), WILEY-VCH Verlag,	ppr
	Weinheim (published annually)	P s
max.	maximum	q.v
MCA	Manufacturing Chemists Association	RE
MCA	(United States)	ILL.
Me	methyl substituent $(-CH_3)$	
	Methodicum Chimicum, Georg Thieme	
MFAG	Verlag, Stuttgart Medical First Aid Guide for Use in	
MIFAU		ref.
MIZ	Accidents Involving Dangerous Goods	
MIK	maximale Immissionskonzentration (maximum immission concentration)	resj
min.		R_f R.H
	minimum	RII
mp MS	melting point	КП
MS	mass spectrum, mass spectrometry	
NAS	National Academy of Sciences (United	
MAGA	States)	
NASA	National Aeronautics and Space	DN
100	Administration (United States)	RN
NBS	National Bureau of Standards	Rŗ
NOTO	(United States)	()
NCTC	National Collection of Type Cultures	
	(United States)	rpn
NIH	National Institutes of Health	RT
	(United States)	
NIOSH	National Institute for Occupational	
	Safety and Health (United States)	
NMR	nuclear magnetic resonance	(s)

no.	number
NOEL	no observed effect level
NRC	Nuclear Regulatory Commission (United States)
NRDC	National Research Development
	Corporation (United States)
NSC	National Service Center (United States)
NSF	National Science Foundation
	(United States)
NTSB	National Transportation Safety Board
OFCD	(United States)
OECD	Organization for Economic Cooperation and Development
OSHA	Occupational Safety and Health
001111	Administration (United States)
р., рр.	page, pages
Patty	G.D. Clayton, F.E. Clayton (eds.):
	Patty's Industrial Hygiene and
	Toxicology, 3rd ed., Wiley Interscience,
	New York
PB	Publication Board Report (U.S.
report	Department of Commerce, Scientific
•	and Industrial Reports)
PEL	permitted exposure limit
Ph	phenyl substituent ($-C_6H_5$)
Ph. Eur.	European Pharmacopoeia, Council of
	Europe, Strasbourg
phr	part per hundred rubber (resin)
PNS	peripheral nervous system
ppm	parts per million
P statement	precautionary statement in GHS
q.v.	which see (quod vide)
REACH	Registration, Evaluation, Authorisation
	and Restriction of Chemicals (EU regu-
	lation addressing the production and use
	of chemical substances, and their
	potential impacts on both human health
	and the environment)
ref.	refer, reference
resp.	respectively
R_f	retention factor (TLC)
R.H.	relative humidity
RID	réglement international concernant le
	transport des marchandises dangereuses
	par chemin de fer (international conven-
	tion concerning the transportation of
RNA	dangerous goods by rail)
	ribonucleic acid
R phrase	risk phrase according to
(R-Satz)	ChemG and GefStoffV (Federal Republic of Germany)
rom	Republic of Germany) revolutions per minute
rpm RTECS	Registry of Toxic Effects of
MILCO	Chemical Substances, edited by the
	National Institute of Occupational Safety
	and Health (United States)
(s)	solid
(~)	

SAE	Society of Automotive Engineers (United States)		der Technischen Chemie, 4th ed., Verlag Chemie, Weinheim 1972–1984; 3rd ed.,
SAICM	Strategic Approach on International Chemicals Management (international		Urban und Schwarzenberg, München 1951–1970
	framework to foster the sound management of chemicals)	USAEC	United States Atomic Energy Commission
s.c. SI	subcutaneous	USAN USD	United States Adopted Names United States Dispensatory
SIMS	International System of Units secondary ion mass spectrometry	USDA	United States Dispensatory United States Department of Agriculture
S phrase	safety phrase according to	U.S.P.	United States Pharmacopeia
(S-Satz)	ChemG and GefStoffV (Federal	UV	ultraviolet
STEL	Republic of Germany) Short Term Exposure Limit (see TLV)	UVV	Unfallverhütungsvorschriften der Ber- ufsgenossenschaft (workplace safety
STEL	standard temperature and pressure $(0^{\circ}C,$		regulations in the Federal Republic of
	101.325 kPa)		Germany)
T _g TA Luft	glass transition temperature Technische Anleitung zur Reinhaltung	VbF	Verordnung in der Bundesrepublik Deutschland über die Errichtung und
IA Luit	der Luft (clean air regulation in Federal		den Betrieb von Anlagen zur
	Republic of Germany)		Lagerung, Abfüllung und Beförderung
TA Lärm	Technische Anleitung zum Schutz		brennbarer Flüssigkeiten (regulation in
	gegen Lärm (low noise regulation in Federal Republic of Germany)		the Federal Republic of Germany con- cerning the construction and operation of
TDLo	lowest published toxic dose		plants for storage, filling, and transpor-
THF	tetrahydrofuran		tation of flammable liquids; classification
TLC TLV	thin layer chromatography Threshold Limit Value (TWA		according to the flash point of liquids, in accordance with the classifi-
IL V	and STEL); published annually by		cation in the United States)
	the American Conference of Govern-	VDE	Verband Deutscher Elektroingenieure
	mental Industrial Hygienists (ACGIH), Cincinnati, Ohio	VDI	(Federal Republic of Germany) Verein Deutscher Ingenieure (Federal
TOD	total oxygen demand	VDI	Republic of Germany)
TRK	Technische Richtkonzentration	vol	volume
TOCA	(lowest technically feasible level)	vol.	volume (of a series of books)
TSCA	Toxic Substances Control Act (United States)	vs. WGK	versus Wassergefährdungsklasse (water hazard
TÜV	Technischer Überwachungsverein	W OIL	class)
	(Technical Control Board of the Federal	WHO	World Health Organization (United
TWA	Republic of Germany) Time Weighted Average	Winnacker-	Nations) Chemische Technologie, 4th ed., Carl
UBA	Umweltbundesamt (Federal	Küchler	Hanser Verlag, München, 1982-1986;
	Environmental Agency)		Winnacker-Küchler, Chemische
Ullmann	Ullmann's Encyclopedia of Industrial		Technik: Prozesse und Produkte,
	Chemistry, 6th ed., Wiley-VCH, Wein- heim 2002; Ullmann's Encyclopedia of	wt	Wiley-VCH, Weinheim, 2003–2006 weight
	Industrial Chemistry, 5th ed., VCH	\$	U.S. dollar, unless otherwise stated
	Verlagsgesellschaft, Weinheim		
	1985–1996; Ullmanns Encyklopädie		

Frequently Cited Companies (Abbreviations)

Air	Air Products and Chemicals	IFP	Institut Français du Pétrole
Products		INCO	International Nickel Company
Akzo	Algemene Koninklijke Zout	3M	Minnesota Mining and
	Organon		Manufacturing Company
Alcoa	Aluminum Company of America	Mitsubishi	Mitsubishi Chemical Industries
Allied	Allied Corporation	Chemical	
Amer.	American Cyanamid	Monsanto	Monsanto Company
Cyanamid	Company	Nippon	Nippon Shokubai Kagaku Kogyo
BASF	BASF Aktiengesellschaft	Shokubai	
Bayer	Bayer AG	PCUK	Pechiney Ugine Kuhlmann
BP	British Petroleum Company	PPG	Pittsburg Plate Glass Industries
Celanese	Celanese Corporation	Searle	G.D. Searle & Company
Daicel	Daicel Chemical Industries	SKF	Smith Kline & French Laboratories
Dainippon	Dainippon Ink and Chemicals Inc.	SNAM	Societá Nazionale Metandotti
Dow	The Dow Chemical Company	Sohio	Standard Oil of Ohio
Chemical		Stauffer	Stauffer Chemical Company
DSM	Dutch Staats Mijnen	Sumitomo	Sumitomo Chemical Company
Du Pont	E.I. du Pont de Nemours & Company	Toray	Toray Industries Inc.
Exxon	Exxon Corporation	UCB	Union Chimique Belge
FMC	Food Machinery & Chemical	Union	Union Carbide Corporation
	Corporation	Carbide	
GAF	General Aniline & Film Corporation	UOP	Universal Oil Products Company
W.R.	W.R. Grace & Company	VEBA	Vereinigte Elektrizitäts- und Bergwerks-
Grace			AG
Hoechst	Hoechst Aktiengesellschaft	Wacker	Wacker Chemie GmbH
IBM	International Business Machines		
	Corporation		
ICI	Imperial Chemical Industries		

Country Codes

The following list contains a selection of standard country codes used in the patent references.

AT	Austria	IL	Israel
AU	Australia	IT	Italy
BE	Belgium	JP	Japan*
BG	Bulgaria	LU	Luxembourg
BR	Brazil	MA	Morocco
CA	Canada	NL	Netherlands*
CH	Switzerland	NO	Norway
CS	Czechoslovakia	NZ	New Zealand
DD	German Democratic Republic	PL	Poland
DE	Federal Republic of Germany	PT	Portugal
	(and Germany before 1949)*	SE	Sweden
DK	Denmark	SU	Soviet Union
ES	Spain	US	United States of America
FI	Finland	YU	Yugoslavia
FR	France	ZA	South Africa
GB	United Kingdom	EP	European Patent Office*
GR	Greece	WO	World Intellectual Property
HU	Hungary		Organization
ID	Indonesia		-

*For Europe, Federal Republic of Germany, Japan, and the Netherlands, the type of patent is specified: EP (patent), EP-A (application), DE (patent), DE-OS (Offenlegungsschrift), DE-AS (Auslegeschrift), JP (patent), JP-Kokai (Kokai tokkyo koho), NL (patent), and NL-A (application).

Periodic Table of Elements

element symbol, atomic number, and relative atomic mass (atomic weight)

1A "European" group designation and old IUPAC recommendation
1 group designation to 1986 IUPAC proposal

		uropean" group designation and old IUPAC recommendation 0										-					
	group de	•															18
IA "	"American" group designation, also used by the Chemical Abstracts Service until the end of 1986											VIIIA					
1	2A											ЗB	4B	5B	6B	7B	2
н	2											13	14	15	16	17	He
1.0079	IIA											IIIA	IVA	VA	VIA	VIA	4.0026
3	4											5	6	7	8	9	10
Li	Be											в	С	N	0	F	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12	ЗA	4A	5A	6A	7A	8	8	8	1B	2B	13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S	СІ	Ar
22.990	24.305	IIIB	IVB	VB	VIB	VIIB	VIII	VIII	VIII	IB	IIB	26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.409	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc*	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85.468	87.62	88.906	91.224	92.906	95.94	98.906	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi	Po*	At*	Rn*
132.91	137.33		178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	208.98	209.99	222.02
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116		118
Fr*	Ra*		Rf*	Db*	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut ^a	FI	Uup ^a	Lv		Uuo ^a
223.02	226.03		261.11	262.11													

^a provisional IUPAC symbol

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm*	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
138.91	140.12	140.91	144.24	146.92	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac*	Th*	Pa*	U*	Np*	Pu*	Am*	Cm*	Bk*	Cf*	Es*	Fm*	Md*	No*	Lr*
227.03	232.04	231.04	238.03	237.05	244.06	243.06	247.07	247.07	251.08	252.08	257.10	258.10	259.10	260.11

* radioactive element; mass of most important isotope given.

Part 1

Fundamentals

Plastics, General Survey, 1. Definition, Molecular Structure and Properties

HANS-GEORG ELIAS, Michigan Molecular Institute, Midland, United States ROLF MÜLHAUPT, Institute for Macromolecular Chemistry, Freiburg, Germany

1.	Introduction	5
1.1.	Polymers	5
1.1.1.	Fundamental Terms	5
1.1.2.	Nomenclature	6
1.2.	Plastics	8
1.2.1.	Fundamental Terms	8
1.2.2.	Designations	9
1.3.	History of Plastics	15
1.4.	Economic Importance	16
2.	Molecular Structure of Polymers	
		18
2.1.	Constitution	18
2.1.1.	Homopolymers	18
2.1.2.	Copolymers	19
2.1.3.	Branched Polymers	20
2.1.4.	Ordered Chain Assemblies	21
2.1.5.	Unordered Networks	22
2.2.	Molar Masses and Molar Mass	
	Distributions	23
2.2.1.	Molar Mass Average	23
2.2.2.	Determination of Molar Mass	23
2.2.3.	Molar Mass Distributions	25
2.2.4.	Determination of Molar Mass	
	Distributions	27
2.3.	Configurations	28
2.4.	Conformations	29
2.4.1.	Microconformations	29
2.4.2.	Conformations in Ideal Polymer	
	Crystals	31
2.4.3.	Conformations in Polymer Solutions	32
2.4.4.	Unperturbed Coils	32
2.4.5.	Perturbed Coils	33
2.4.6.	Wormlike Chains	33
3.	Polymer Manufacture	34
3.1.	Raw Materials	34
3.1.1.	Wood	34
3.1.2.	Coal	35
3.1.3.	Natural Gas and Fracking	35
3.1.4.	Petroleum	35

3.1.5.	Other Renewable Resources and	
	Biorefineries	35
3.2.	Polymer Syntheses: Overview	37
3.2.1.	Classifications	37
3.2.2.	Functionality	39
3.2.3.	Cyclopolymerizations	40
3.3.	Chain-Growth Polymerization	40
3.3.1.	Thermodynamics	40
3.3.2.	Free-Radical Polymerizations	41
3.3.3.	Anionic Polymerizations	47
3.3.4.	Cationic Polymerizations	48
3.3.5.	Ziegler-Natta, ROMP and ADMET	
	Catalysis	48
3.3.6.	Copolymerizations	56
3.4.	Polycondensations and	
	Polyadditions	57
3.4.1.	Bifunctional Polycondensations	57
3.4.2.	Multifunctional Polycondensations	
	and Hyperbranched Polymers	60
3.4.3.	Polyaddition	60
3.5.	Polymer Reactions	61
3.5.1.	Polymer Transformations	61
3.5.2.	Block and Graft Formations	62
3.5.3.	Cross-Linking Reactions	62
3.5.4.	Degradation Reactions	62
4.	Plastics Manufacture	63
4.1.	Homogenization and	
	Compounding	63
4.2.	Additives	63
4.2.1.	Overview	63
4.2.2.	Chemofunctional Additives	64
4.2.3.	Processing Aids	65
4.2.4.	Extending and Functional Fillers	65
4.2.5.	Plasticizers	68
4.2.6.	Colorants	68
4.2.7.	Blowing Agents	68
4.3.	Processing	69
5.	Supermolecular Structures	70
5.1.	Noncrystalline States	70

ULLMANN'S

5.1.1.	Structure	70
5.1.2.	Orientation	70
5.2.	Polymer Crystals	71
5.2.1.	Introduction	71
5.2.2.	Crystal Structures	71
5.2.3.	Crystallinity	72
5.2.4.	Morphology	72
5.3.	Mesophases and Liquid-	
	Crystalline Polymers	76
5.3.1.	Introduction	76
5.3.2.	Types of Liquid Crystals	76
5.3.3.	Mesogens.	77
5.3.4.	Lyotropic Liquid-Crystalline	,,
5.5.4.	Polymers	79
5.3.5.	Thermotropic Liquid Crystal	19
5.5.5.		01
526	Polymers	81
5.3.6.	Block Copolymers.	81
5.3.7.	Ionomers	82
5.4.	Gels	83
5.5.	Polymer Surfaces	84
5.5.1.	Structure	84
5.5.2.	Interfacial Tension	84
5.5.3.	Adsorption	84
6.	Thermal Properties	85
6.1.	Molecular Motion	85
6.1.1.	Thermal Expansion	85
6.1.2.	Heat Capacity	85
6.1.3.	Heat Conductivity	86
6.2.	Thermal Transitions and	00
0.2.	Relaxations	86
6.2.1.	Overview	86
6.2.2.	Crystallization.	88
6.2.3.		89
6.2.4.	Melting	
	Liquid Crystal Transitions	90
6.2.5.	Glass Transitions.	91
6.2.6.	Other Transitions and	
	Relaxations	92
6.2.7.	Technical Methods	92
6.3.	Transport	92
6.3.1.	Self-Diffusion	92
6.3.2.	Permeation	93
7.	Rheological Properties	95
7.1.	Introduction	95
7.2.	Shear Viscosities at Rest	95
7.2.1.	Fundamentals	95
7.2.2.	Molar Mass Dependence	96
7.2.3.	Concentrated Solutions	96
7.3.	Non-Newtonian Shear	20
	Viscosities	97
7.3.1.	Overview	97
7.3.2.	Flow Curves.	98
1.3.4.	1 10 W Cui ves	20

7.3.3.	Melt Viscosities	98
7.4.	Extensional Viscosities	100
7.4.1.	Fundamentals	100
7.4.2.	Melts	100
7.4.3.	Solutions	101
8.	Mechanical Properties	
	•••••	101
8.1.	Introduction	101
8.1.1.	Deformation of Polymers	101
8.1.2.	Tensile Tests	102
8.1.3.	Moduli and Poisson Ratios	104
8.2.	Energy Elasticity	104
8.2.1.	Theoretical Moduli	104
8.2.2.	Real Moduli	105
8.2.3.	Temperature Dependence	105
8.3.	Entropy Elasticity	106
8.4.	Viscoelasticity	107
8.4.1.	Fundamentals	107
8.4.2.	Time-Temperature	
	Superposition	108
8.5.	Dynamic Behavior	109
8.5.1.	Fundamentals	109
8.5.2.	Molecular Interpretations	110
8.6.	Fracture	111
8.6.1.	Overview	111
8.6.2.	Theoretical Fracture Strength	111
8.6.3.	Real Fracture Strength	112
8.6.4.	Impact Resistance	114
8.6.5.	Stress Cracking.	114
8.6.6.	Fatigue	115
8.7.	Surface Mechanics	115
8.7.1.	Hardness	115
8.7.2.	Friction	115
8.7.3.	Abrasion and Wear	116
9.	Electric Properties	116
9.1.	Dielectric Properties	116
9.1.1.	Relative Permittivity	116
9.1.2.	Dielectric Loss	117
9.1.3.	Dielectric Strength and Tracking	117
9.1.5.	Resistance	118
9.1.4.	Electrostatic Charging	119
9.1.4. 9.2.	Electrical Conductivity.	119
9.2. 9.3.	Photoconductivity	121
9.5. 10.	•	121
	Optical Properties	121
11. 11.1.	Polymer CompositesIntroduction	122
11.1.1.	Overview	122
11.1.2.	Mixture Rules.	123
11.2.	Filled Polymers	126
11.2.1.	Microcomposites	126
11.2.2.	Molecular Composites	128

12.1.	Plastics and Environment	137
12.	Plastics and Sustainability	137
11.5.	Expanded Plastics	136
11.4.4.	Thermoplastic Elastomers	136
11.4.3.	Toughened Plastics	135
11.4.2.	Blend Formation	134
11.4.1.	Compatible Polymers	134
11.4.	Heterogeneous Blends	134
11.3.4.	Plastic Blends	134
11.3.3.	Rubber Blends	133
11.3.2.	Plastification	132
11.3.1.	Thermodynamics	131
11.3.	Homogeneous Blends	131
11.2.4.	Nanocomposites	129
11.2.3.	Macrocomposites	128

12.2.	Green Polymer Chemistry and Life	
	Cycle Assessment.	139
12.3.	Plastics Waste Recycling	140
12.3.1.	Mechanical Recycling	140
12.3.2.	Feedstock Recycling	141
12.3.3.	Energy Recycling	141
12.3.4.	Biodegradation and Bio-based	
	Plastics	141
12.3.5.	Plastics from Carbon Dioxide	142
12.4.	Polymers for Sustainable	
	Development	143
	References	144

1. Introduction

Plastics are commercially used materials that are based on polymers or prepolymers. The name plastics refers to their easy processibility and shaping (Greek: *plastein* = to form, to shape). Plastics and polymers, also termed macromolecules (Greek: *macro* = large), are not synonyms. Polymers or prepolymers are raw materials for plastics; they become plastics only after processing. The same polymers may be used as plastics or as fibers, paints, rubbers, coatings, adhesives, thickeners, surfactants, and ionexchange membranes. Properties of polymers are engineered by varying the molecular architecture or the formulation, combining them with different materials in multicomponent and multiphase systems. Typically, plastics contain additives that are needed to enhance their stability and to tune their properties. Unparalleled by any other material, polymers are exceptional regarding their attractive combination of facile processing with low mass and high versatility in terms of properties, applications, flexible choice of feedstocks, and recycling. The system integration of functional polymers represents the key to the development of advanced technologies with applications ranging from lightweight engineering to packaging, construction, aerospace and automotive industries, as well as biomedical engineering. Whereas most plastics are passive, advanced functional

plastics are rendered interactive and capable of responding to environmental stimuli. Today, highly cost-, resource-, eco-, and energyefficient polymers play a prominent role in sustainable development of advanced materials and technologies.

1.1. Polymers

1.1.1. Fundamental Terms [1–16]

The term polymer refers to macromolecules composed of many units (Greek: poly = many, meros = parts). As first proposed by HERMANN STAUDINGER in 1920, who was awarded the Nobel Price of Chemistry for his groundbreaking concept in 1953, macromolecules consist of many atoms, usually a thousand or more, thereby having high molar masses. Prior to STAUDINGER, the term polymer was not related to high molar mass. For example, benzene was originally called a polymer which was "polymerized" from three acetylene molecules. What is now called a polymer consists of molecules with hundreds and thousands of such units; it was therefore termed "high polymer" in the ancient literature. The term polymer carries with it the connotation of molecules composed of many equal "mers", such as the ethylene units

in polyethylene, $R'(CH_2CH_2)_n R''$. The number *n* of monomer units in the polymer molecule is called the degree of polymerization X. There are, however, many polymer molecules (especially biopolymer molecules) with very different types of monomers per molecule, such as protein molecules H(NH-CHR-CO)_nOH with up to 20 different R substituents. In accordance with STAUDINGER's view, a less constraining and more general term for polymer molecule is thus macromolecule. However, there is no sharp dividing line with respect to the number of units per molecule between macromolecules and low molar mass compounds. In principle, linear thermoplastic polymers are considered polymers when entanglement occurs, thus accounting for the viscoelastic properties typical for polymeric thermoplastics.

It was HERMANN STAUDINGER who recognized that polymers in industry and in nature are synthesized according to the same blueprint. Similar to pearls in a pearl necklace, monomer molecules are linked together by covalent bond formation. In the early days of polymer sciences and engineering, all polymers were biobased, because efficient synthetic polymerization processes were not at hand. Prominent examples of biopolymers include proteins, polynucleotides, cis-1,4-polyisoprene as natural rubber, polysaccharides (carbohydrates) with cellulose as the most abundant polymer and major component of biomass. Wood is a composite of two biopolymers, i.e., cellulose and lignin. As pointed out by STAUDINGER and others, most silicates are inorganic polymers derived by polymerization of silicic acid and its derivatives. Some of these naturally occurring polymers are used by man without further chemical transformation (e.g., cellulose for paper and cardboard). Yet, the chemical transformation of natural polymers with retention of their chain structures leads to solution and even melt processable semisynthetic materials, for example, cellulose acetates from cellulose. Chains of other natural polymers are crosslinked before commercial use. Examples are the hardening of casein (a protein) by formaldehyde to produce galalith (plastic) or the vulcanization of *cis*-1,4-polyisoprene (natural rubber) to afford an elastomer.

Today, most polymers are synthesized chemically from synthetic monomers. Examples include the preparations of polyethylene from ethylene, poly(vinyl chloride) from vinyl chloride, nylon 6 from ε -caprolactam, or nylon 66 from adipic acid and hexamethylenediamine. Whereas the majority of monomers are derived from oil and gas in petrochemistry, the progress in biotechnology and the quest for green economy are stimulating the production of bio-based synthetic monomers, such as butadiene, ethylene, propene, acrylic acid, glycol, and lactic acid in biorefineries using biomass as feedstock. Some industrial polymers result from the chemical conversion of other synthetic polymers, for example, poly(vinyl alcohol) from poly(vinyl acetate). In contrast to natural polymer syntheses and biotechnology, most large scale commercial synthetic polymers are produced in the absence of water either in bulk or gas phase. Moreover, compared to biopolymers, synthetic polymers, including the synthetic bio-based polymers derived from renewable feedstocks, are much easier to tailor with respect to their molar mass distribution, short- and long-chain branching and stereochemistry, thus meeting the demands of polymer melt processing and polymer applications. In contrast to protein synthesis, where polypeptide chains are produced with identical molar mass and comonomer sequence distribution, is rather problematic to produce thermoplastics with shear thinning resulting from long chain branching and multimodal molar mass distribution with enzyme-catalyzed reactions.

1.1.2. Nomenclature [1, 5, 17–19]

The nomenclature of individual polymers and plastics is as confusing as their classification according to properties. Various systems of nomenclature are used simultaneously. Abbreviations and acronyms abound, sometimes with different meanings for the same letter combinations and other times without explanation. In addition, many thousands of trade names are used worldwide for plastics, fibers, elastomers, and polymeric additives. Furthermore, a polymer from a certain company may come in many different grades depending on the processibility and application, sometimes up to 100 per polymer type. Some of these grades may even bear different trade names for various applications. The following nomenclature systems are commonly used for polymers.

Long-known Natural Polymers often have Trivial Names. Examples are cellulose, the polymeric sugar (-ose) of the plant cell; casein, the most important protein of milk and cheese (Latin: *caseus* = cheese); nucleic acids, the acids found in the cell nucleus; catalase, a catalyzing enzyme.

Synthetic Polymers are often Named after Their Monomers. Polymers of ethylene thus lead to polyethylene, styrene to polystyrene, vinyl chloride to poly(vinyl chloride), and lactic acid to a polylactic acid. This "polymonomer" nomenclature has the disadvantage that the constitution of monomeric units of the polymer molecules is not identical with the constitution of the monomers themselves. For example, the polymerization of ethylene, CH₂=CH₂, leads to ~ $(CH_2-CH_2)_n$ ~, a saturated compound and thus a polyalkane, not an unsaturated "ene" as the name polyethylene may suggest. The polymerization of lactams (cyclic amides) does not give macromolecules with intact lactam rings in the polymer chains but gives openchain polyamides, etc. This polymonomer scheme is also ambiguous if a monomer can lead to more than one characteristic unit in a polymer. An example is acrolein, CH₂=CH (CHO), which can polymerize via the ethylenic double bond to give \sim [CH₂-CH(CHO)]_n \sim , via the aldehyde group to $\sim [O-CH(CH=CH_2)]_n$, or via both to give six-membered rings in polymer chains.

For trade purposes, certain polymer names may denote not only homopolymers but also copolymers, contrary to what the "chemical" names imply. For example, the copolymers of ethylene with up to 10% butene-1, hexene-1, or octene-1 are known as linear low-density polyethylenes (LLDPEs). The commonly used chemical names of plastics thus often do not indicate the true chemical structure of the monomeric units of the polymers on which they are based.

Polymers are often Named after Characteristic Groups in Their Repeating Units. Polyamides are thus polymers with amide groups -NHCOin their repeating units; for example ~[NHCO $(CH_2)_5]_n \sim =$ polyamide 6 = nylon 6 = poly (ɛ-caprolactam). Other examples are polyesters with ester groups -COO- or polyurethanes with urethane groups -NH-CO-O- in the chains. A disadvantage is that this naming scheme is identical with that of organic chemistry where a polyisocyanate denotes a low molar mass compound with more than one isocyanate group per molecule [e.g., $C_6H_3(NCO)_3$]. A macromolecular polyisocyanate would thus be a polymer with many intact isocyanate groups per chain, for example, poly (vinyl isocyanate) ~ $[CH_2-CH(NCO)]_n$ ~. The polyisocyanates of polymer chemistry, on the other hand, possess polymerized isocyanate groups as, for example, in $\sim (NR-CO)_n \sim$. Such compounds are unfortunately also often called polyisocyanates.

IUPAC Names. IUPAC recommends the use of constitutive names, similar to those used in inorganic and organic chemistry. The nomenclature of low and high molar mass inorganic molecules follows the additivity principle; those of low molar mass organic molecules the substitution principle. The nomenclature of organic macromolecules is a hybrid of both principles: The smallest repeating units are thought of as biradicals according to the substitution principle; then their names are added according to the additivity principle, put in parentheses, and prefixed with "poly." Names of repeating units are written without spaces between words. The polymer $\sim [O-CH_2]_n \sim$ from formaldehyde, H₂C=O, is thus called poly(oxymethylene), abbreviated as POM. The polycondensation of ethylene glycol HO-CH2-CH2-OH with terephthalic acid HOOC- $(p-C_6H_4)$ -COOH leads to a polymer ~ $[O-CH_2CH_2-O-OC(p-C_6H_4)CO]_n$ ~ with the systematic name poly(oxyethyleneoxyterephthaloyl). The trivial names of this polymer are poly (ethylene terephthalate) and poly(ethylene glycol terephthalate). It is also known as PET

(an acronym) or PETP (an abbreviation) in the plastics literature, by the acronym PES in the fiber literature, and as PETE for recycling purposes.

With exception of POM, IUPAC names are rarely used in the plastics literature. They are however important for systematic searches in *Chemical Abstracts* and other literature services.

1.2. Plastics

1.2.1. Fundamental Terms [20–56]

Early plastics resembled natural resins. Natural resin refers mainly to oleoresins from tree sap but is also used for shellac, insect exudations, and mineral hydrocarbons (\rightarrow Resins, Natural). Early plastics were thus sometimes called synthetic resins. The word resin is today occasionally used for any organic chemical compound with medium to high molar mass that serves as a raw material for plastics (for a definition of the term resin according to current standards, see \rightarrow Resins, Synthetic). Resin is not to be confused with rosin, which refers to mixtures of C₂₀ fused-ring monocarboxylic acids, such as pine oil, tall oil, and kauri resin. Rosin is the main component of naval stores $(\rightarrow \text{Resins. Natural}).$

Plastics are usually divided into two groups according to their hardening processes. Those that yield solid materials by simple cooling of a polymer melt (a physical process) and soften while being heated are called *thermoplastics*. *Thermosets*, on the other hand, harden through chemical cross-linking reactions between polymer molecules; when heated, they do not soften but decompose chemically (\rightarrow Thermosets). The shaping of a thermoplastic is thus a reversible process: The same material can be melted and processed again. A thermoset cannot be remelted and reshaped; its formation is irreversible.

Thermoplastics are normally composed of fairly high molar mass molecules because many physical properties effectively become molar mass independent only above a certain molar mass enabling chain entanglement. Examples are melting temperatures and the moduli of elasticity. Other properties, however, increase with increasing molar mass and entanglement (e.g., melt viscosities).

Thermosets are usually generated from fairly low molar mass polymers, called oligomers (science) or prepolymers (industry). Oligomers containing functional endgroups are named telechelics, and telechelics containing polymerizable endgroups are termed macromonomers. High molar masses are unnecessary here because chemical reactions between prepolymer molecules lead to an interconnection of these molecules (cross-linking or advancement, respectively) and thus to a giant molecule with 100% conversion of the prepolymer. Prepolymers are thus thermosetting materials and become true thermosets only after the hardening reaction.

Plastics are usually divided into four groups: Commodity plastics (also called standard plastics or bulk plastics), engineering plastics (sometimes referred to as technical plastics or technoplastics), high-performance plastics, and functional plastics (or specialty plastics). A commodity, engineering, or high-performance plastic may have many different applications, whereas a functional plastic has one very specific application. Polyethylene, a commodity plastic, may according to its type or grade be used for containers, as packaging film, as agricultural mulch, etc. Poly(ethylene-co-vinyl alcohol) with a high content of vinyl alcohol units, on the other hand, is a functional plastic that is used only as an oxygen barrier resin. Other functional plastics are employed in optoelectronics, as resists, as piezoelectric materials, etc. Functional plastic is not synonymous with functional polymer or functionalized polymer, because the latter terms refer to polymers with functional chemical groups (i.e., groups with specific chemical reactivities).

Commodity plastics are manufactured in great amounts at low cost; hence, the terms bulk plastics or standard plastics. Engineering plastics possess improved mechanical properties and improved dimensional stability as compared to commodity plastics. Such improved properties may be higher moduli of elasticity, higher heat distortion temperature, smaller cold flows, higher impact strengths, etc. Engineering plastics are also often defined as those thermoplastics that maintain dimensional stability and