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Introduction

In this book, we present the results of our research on the
modeling and design of a software system allowing for
systems with a very strong sense of autonomy with
intentionality. We are operating in the context of systems
built with a complex substratum, which have multiple
electronic components deploying a variety of specific
features. The scale of the development of these electronic
systems is very important in the current technological
climate, allowing the construction and use of technological
components in all areas. These systems, however, still have
an autonomy that is limited to the use of their functional
capabilities, as is the case of automated robotic systems
used in various industrial, economic and cultural fields.
They require human operators to control them, as is the
case for drones. The main problem involves providing these
types of systems with a computing level which allows for an
intentional autonomy that will drive their behaviors.

We present a complete model that gives these systems a
very strong behavioral autonomy, providing them with the
ability to make behavioral decisions based on desires, to
have their own intentions and even to be aware of their
autonomy. We will, therefore, be presenting how to give
these systems the ability to intentionally generate artificial
representations of things that they perceive and design, so
that they behave in the way they want, of course within the
limits of a common sociality. The idea is, indeed, to develop
a proto-self.

We believe that a truly autonomous system, which has a
substrate composed of many distributed mechanical and
electronic components, can be unified by the development
of a meta-software layer that would consider this substrate



to be its corporeity. With this understanding of corporeity,
the system can generate its own internal representations of
its situation: representations of its condition, its posture,
allowing it to develop its actions intentionally. This meta-
software layer must enable total self-regulation of the
substrate of the system by itself, without any external
control, and it would need to be reliable. It must
continuously generate what we call representations, which
are the complex generated constructs composed of a
number of software agents activating and aggregating to
create shapes and images expressing all the semantic
aspects. These representations should indicate what the
system apprehends in its environment, based on the
knowledge it has acquired but also based on its tendencies
and its desires, feeling these representations to deepen
them. This software layer will allow the system to
continuously manage its own action plans, evaluate them
and memorize them in order to improve and evolve.
Therefore, in this work, we describe a new model of the
autonomy of artificial systems, an autonomy strongly
inspired by higher living organisms.

We present the computable concepts for the perception of
object situated in a system’s environment, the notions of
representation for something and the system’s concerns
that will lead it to be interested in one thing rather than
another. For this, we will establish a specific definition of
the computing architecture of the layer generating the
representations, with all the necessary elements for the
system to develop tendencies, desires and needs. For this,
we will develop a new concept for control in massive multi-
agent systems to meet, in real-time, the aggregations of
agents with multiple semantic indications.

We also show that such systems inherently communicate
with each other, such that they have the tendency to unite
in order to form a very large metasystem. As these models



are perfectly implementable today, it will be up to the
scientific community to decide whether or not to create
them and whether or not to put them at the disposal of the
people for their use. We hope such developments will be
applied in very ethical fields.
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1
Systems and their Design

1.1. Modeling systems

A system is designed to provide one or more services. It is
made up of hardware, software and human resources, with
the aim to satisfy a precise, well-defined need. Such
systems abound in the history of science. Thanks to
accumulating experience, technological progress and ever
improving modeling approaches, methods to develop these
are constantly gaining efficiency. The description of a
system potentially involves various notions about its
components, their aggregation and their interactions with
each other and with the system’s environment.

A system usually consists of a set of interdependent entities
whose functions are fully specified. The system is
completely characterized according to an equational or
functional approach, in an iterative top-down or bottom-up
process. The process is top-down in an analytical approach
whereby each part can be broken down into smaller
subparts that are complete sub-systems themselves.
Conversely, when the approach consists of building a
system up from the basis of simpler sub-systems, the
iterative process is called bottom-up. The system’s
realization and potential evolution are predetermined in a
strict, narrow field, and its functionalities can pertain to
various applicative areas such as electricity, electronics,
computer science, mechanics, etc.

Because of the advances being made in system design as
well as in information and communication technologies,
there is a tendency to design ever larger systems that



involve an increasing number of strongly connected
elements and which handle large volumes of data.

Systems can be categorized according to various
typologies. Here, we will only focus on two classes:
conventional systems and complex systems.

1.1.1. Conventional systems

Systems said to be individual or conventional have their
inputs and outputs fully specified, in the sense that
everything is already designed for them in the early stages
of their conception. The vast majority of the systems we
interact with belong to this class. Management
applications, scientific computation programs and musical
creation aids are all examples of conventional systems. The
constitutive elements of such systems are defined and
organized precisely to accomplish the tasks for which the
system was formatted. They process inputs and produce
actions or results that are the essential goals of the system,
i.e. its “raison d’étre”. Even if it continues to evolve while it
is operational, as soon as it starts to depend on a project
manager the system belongs to the class of conventional
systems, for whom everything is delimited by a tight
framework. An automatic teller machine (ATM) is a good
example of such a system. Every single use-case must have
been clearly defined, modeled and tested so that the
machine is able to perform its duties reliably and respond
accurately to its users (the customers and the bank).
Operating in a degraded mode or in the event of
unforeseen circumstances must have also been considered.

Conventional systems benefit from the development of
computer networks, which expand their access to
resources and their ability to interact. They also tend to
become more complex, but they remain essentially
conventional systems. Let us consider the example of



service-oriented architectures (SOA) with, for instance, the
recent development of cloud computing services. The great
variety of services offered entails an intricate organization
of many different subsystems within one global cloud. The
architecture nevertheless remains a conventional system as
long as the services offered can be deduced from the sum
of the services provided by its subsystems. Integrating new
systems in order to add new services will create a larger
system that remains conventional because of its functional
description. In such systems, the management of
malfunctions is usually also built in.

1.1.2. Complex systems

Among the many types of systems that are detailed in the
literature, complex systems are particularly often focused
upon because of their unpredictable behavior. Complex
systems usually apply to subjects in which a
multidisciplinary approach is an essential part of any
understanding: economy, neuroscience, insect sociology,
etc.

Authors globally agree to define a complex system as a
system composed of a large number of interacting entities
and whose global behavior cannot be inferred from the
behaviors of its parts. Hence, the concept of emergence: a
complex system has an emergent behavior, which cannot be
inferred from any of its constitutive systems. Size is not
what qualifies a system as complex: if its parts have been
designed and arranged so that they interact in a known or
predictable way, then it is not a complex system. However,
a non-complex system becomes complex as soon as it
integrates a human being as one of its constituents.

Many behavioral features of complex systems are subject to
intense research and scrutiny: self-organization,
emergence, non-determinism, etc. To study complex



systems, researchers usually resort to simulations, which
enable them to grasp an idea, if incomplete, of the behavior
of a system. In fact, complex systems exhibit some
behavioral autonomy, a notion that will be detailed further
on, when we relate it to the concept of proactivity.

Any information system that includes functional elements
while taking human decisions and actions into account as
well as handling multiple perspectives is a complex system
in which the components are set in various levels of a
multi-scale organization.

1.1.3. System of systems

The concept of system of systems (SoS) [JAM 08] was
introduced into the research community without being
characterized by a clear, stable definition. Several
approaches to refine the concept can be found in the
literature. It primarily implies that several systems operate
together [ZEI 13]. Architectures that ultimately fall back in
the conventional system class, where a centralized
mechanism fully regulates the behavior, like in families of
systems, are not considered to be SoS. Examples of SoS
can be found in super-systems based on independent
complex components that cooperate towards a common
goal, or in large scale systems of distributed, competing
systems.

The most common type of SoS [MAI 99] is that which is
made of a number of systems that are all precisely

specified and regulated so as to provide their own
individual services but that do not necessarily report to the
global system. To qualify as an SoS, the global system must
also exhibit an emergent behavior, taking advantage of the
activities of its subsystems to create its own. The number of
subsystems can not only be large, but it can also change, as
subsystems are able to quit or join the global system at any



moment. This description highlights the absence of any
predefined goal and underlines the essentially different
mode of regulation of such an SoS. In other words, the
general goal of an SoS need not be defined a priori.

The SoS can evolve constantly by integrating new systems,
whether it be for financial reasons or because of
technological breakthroughs. An SoS can thus gain or lose
parts “live” [ABB 06]. This shows that an SoS cannot be
engineered in a conventional manner, neither with a top-
down nor with a bottom-up construction process.

This approach demands a specific architecture whose
functioning implies some level of coordination/regulation as
well as a “raison d’étre”, manifesting itself by a drive
towards one or several goals. This raises several issues
about autonomy, the reasons for such an organization in
autonomous systems, behavioral consistency, orientation of
activity and regulation of such systems.

To approximate the behavior of an SoS, one can use
distributed simulations. These simulations are similar to
peer-to-peer simulations except that additional tools are
required to apprehend emergent behaviors (see Figure
1.1).

51

53

Figure 1.1. Peer-to-peer organization around a network

1.2. Autonomous systems



The concept of an autonomous system (within the field of
robotics) implies a system able to act by itself in order to
perform the necessary steps towards the achievement of
predefined goals, taking into account stimuli that, in
robotics for example, come from sensors. In the literature,
the perspectives on the notion of autonomy are diverse
because the capacity to act by oneself can have various
aspects and defining features, depending on whether it is
applied to, for example, an automaton, a living being, or
even a system able to learn in order to improve its activity.

Implied by the notion of autonomous system, which goes
beyond that of non-autonomous system, the notion of
intelligent regulation goes beyond the notion of regulation.
Intelligent regulation calls upon algorithmic notions as well
as upon linguistics and mathematics applied to systems and
processes [SAR 85]. The regulation of hierarchical systems
is often described by three level models that are widely
documented in the literature. The following briefly reminds
the reader of the basics of this modeling approach, which
can be studied in more detail in the original paper by
Saridis [SAR 85]. The three levels are:

- the organizational level;
- the coordination level;
- the executive level.
The first level seeks to mimic human functions, with a

tendency towards analytical approaches. The following
remarks can be formulated about this approach:

- the proposed model is hierarchical (top-down) and
therefore describes a machine submitted to the diktat of
the organizational level (the question remains of how
information is communicated upwards);



- the approach relies heavily on computation and
ignores any work on knowledge representation.
Therefore, processing is done in a “closed world”, which
seems prone to prevent any adaptation to
multidisciplinary;

- the detailed definitions of each of these levels worsen
this separation: for example, the two first levels do not
even take into account notions such as organization and
emergence;

- integrating two systems seems impossible in Saridis’s
approach. Since there is absolutely no notion of
proactivity in that approach, integrating a new proactive
system is not plausible. Working on an a priori
knowledge means that regulation is determined in
advance, whereas a proactive element can’t be strictly
regulated;

- that the notion of perspective, or point of view, is
lacking is another significant point, as it is essential to
our approach. In fact, one of our fundamental
assumptions is that knowledge depends on perspective,
which makes it relative. In our approach, knowledge is,
therefore, subjective and we do not assume any absolute
truth.

In this work, we propose a biology-inspired model of
autonomous systems. It differs from the model described
above. Our approach will show that we do not address the
same issues as these addressed by strictly analytical
approaches.

In order for the system to behave like an autonomous
organism, its architecture must be made of elements that
are considered as artificial organs. More importantly, the
most elementary levels of the system must be made of
informational components that also have some level, even if



minimal, of autonomy, that are sensitive to their
environment and that alter themselves merely by activating
themselves and operating.

1.3. Agents and multi-agent systems

The concept of agents is used in various areas. Definitions
differ according to the area to which the notion of an agent
is applied. In economy, for instance, agents are defined as
selfish human entities, which is not pertinent for the
computer science field. In the specific field this work
focuses on, an agent is defined as [NEW 82]:

An active, autonomous entity who is able to accomplish
specific tasks. This definition comes from A. Newell’s
rational agent, in which the knowledge level is set
above the symbolic level. The knowledge represented
by rational agents is not only made of what it knows,
but also of its goals as well as its means of action and
communication.

More precisely, an agent is:

- an intelligent entity that acts rationally and
intentionally towards a goal, according to the current
state of its knowledge;

- a high-level entity, although slave to the global system,
which acts continuously and autonomously in an
environment where processes take place and where
other agents exist.

Furthermore, in order to specify the bounds of the concept,
M. Woolridge and N.R. Jennings introduced the strong and
weak notions of agent [WOO 94].

1.3.1. The weak notion of agent



An agent pertaining to the weak notion of agent must
exhibit the following features:

- it must be able to act without any intervention from
any third party (human or agent) and it must be able to
regulate its own actions as well as its internal state,
using predefined rules;

- it must be endowed with some sociality, in other
words, it must be able to interact with other (software or
human) agents when the situation demands it, in order
to accomplish its tasks or help other agents accomplish
theirs;

- it must be proactive, in other words, it must exhibit an
opportunistic behavior and an ability to make its own
decisions.

1.3.2. The strong notion of agent

The two authors define agents pertaining to the strong
notion as having, in addition to the abilities of weak agents,
the following features:

- beliefs: what the agent knows and interprets of its
environment;

- desires: the goals of the agent, defined according to its
motives;

- intentions: in order to realize its desires, the agent
performs actions that manifest its intentions.

This strong notion of agent qualifies them as truly
autonomous complex systems rather than as the usual
software agents that constitute a system that might be, on
the whole, complex. The three features are non-trivial
because they are inspired from human psychology, which
Artificial Intelligence (Al) specialists can hardly make



models from on the basis of classical knowledge
representation formalisms. In this work, we won’t be using
the strong notion; we will instead focus on systems based
on architectures of numerous agents in the weak sense. We
assume that beliefs, desires and intentions can only exist at
the global level of the whole architecture, emerging as
patterns from the coordinated, organized behavior of the
agents.

1.3.3. Cognitive agents and reactive agents

Computer science initially saw agents in two different
ways. The first one, called “cognitive”, considers agents as
intelligent entities that are able to solve problems by
themselves. Any such agent can rely on a limited
knowledge base, some strategies and some goals to plan
and accomplish its tasks. These entities, that we can qualify
as “intelligent”, will necessarily have to cooperate and
communicate with each other. In order to study this
collaborative feature of cognitive agents, researchers rely
on sociological work to address issues related to
coordination of social agents.

The second perspective on agents is called “reactive”. In
this perspective, the intelligent behavior of the system is
considered to emerge from the interactions of the various
behaviors of its agents, behaviors that are much simpler
than these of cognitive agents. In this framework, agents
are designed with neither complex cognitive
representations nor fine-grained reasoning mechanisms.
They only have mechanisms that enable them to react in
various manners to the events they perceive.

Nowadays, agents are widely considered to have cognitive
abilities that, albeit limited, are effective because they are
specified with rules and meta-rules that are implemented in
the agent’s structure as early as during the design stage.



The central issue is thus how to make such agents relate to
each other, interact and how some agents can establish
themselves as hegemonic. These issues need to be
addressed in order to understand how, on the basis of the
set of active agents and according to the current situation,
the most appropriate and efficient behavior can emerge in
the global system. This approach will therefore not focus its
reflection on the notion of individual agents but rather on
notions such as agent organization. Such organizations will
be constituted of very large numbers of agents whose
interactions will have to be used and regulated. This leads
us to the notion of multi-agent systems, well-organized sets
of agents that perform various actions that, when
combined, constitute the system’s behavior.

Let us nevertheless give a minimal definition of agents, in
the constructionist perspective of systems modeling.
Agents considered as conceptual entities should have,
according to J. Ferber [FER 99], the following properties:

- ability to act in a planned manner, within its
environment;

- skills and services to offer;

- resources owned by itself;

- ability to perceive its environment, although in a
limited manner because it can only build a partial
representation of that environment;

- ability to communicate directly with other agents
through links called relations of acquaintance;

- willing to act in order to reach or optimize individual
goals according to a satisfaction function, or even to a
survival function;

- intentional behavior towards reaching its goals, taking
into account its resources and skills as well as what it



perceives and communications it receives.

1.3.4. Multi-agent systems

A multi-agent system (MAS) is made of many agents that
constitute an organization, i.e. an identified system that
reorganizes itself through its actions and through the
relations between its elements. It configures and
reconfigures itself in order to realize its action on the
environment. Systems that are developed in Al simulate, in
a specific domain, some human reasoning abilities on the
basis of inference-based reasoning mechanisms that
operate on knowledge representation structures. On the
contrary, MAS are designed and implemented as sets of
agents that interact in modes involving cooperation,
concurrence or negotiation and continuously reconfigure
themselves in order to always set up the most efficient
organization.

An MAS is thus defined by the following features:

- each of its constitutive agent has limited information
and problem solving abilities. Its knowledge and
understanding are partial, local with respect to the
general problem that the MAS must process and solve;

- there is no global, centralized control system in the
MAS. This is essential;

- the data the systems relies upon is also distributed.
Some interface agents gather data and manage its
distribution as well as timing issues;

- the problem-solving computation that the MAS must
perform each time it is solicited, its actual functioning,
emerges from the asynchronous coordination of its
constitutive agents. This emergence selects a limited
number of agents who are in charge of realizing the
problem’s action/solution.



The MAS can also be seen as a set of agents that are
situated in an environment made of other agents and
objects, which are different from agents. Agents use the
objects of the environment. These objects, in a strictly
functional, computer science sense, are purely reactive
entities that provide information and produce functional
actions. Agents can interpret both the information that the
objects’ methods provide and the behavior of other agents,
with the necessarily incurred delays. In other words,
agents use objects and communicate with other agents in
order to reach their goals. This model enables us to
discriminate the information to be gathered accurately,
which will be produced by objects systematically (this
defines the role of objects) from its analyses and multi-level
conceptual interpretations produced by the organization of
agents (this defines the role of the organization of agents).

1.3.5. Reactive agent-based MAS

The agents that constitute these systems are considered to
be merely reactive. A range of reflex methods are
programmed so that the agents can react to any event that
might occur. Actions are broken down into elementary
behavioral actions that are distributed among agents. The
efficient synchronization of the distributed actions then
becomes the issue to address. Each agent is in charge of a
so-called stimulus-action link that it must manage with
accurate timing, taking the state of the environment into
account. Globally, the system analyzes any stimulus via its
apprehension by agents whose nature is to be sensitive to
it. It then finds the appropriate reflex methods in the
appropriate agents, provided they exist, and responds by
making the agents and methods found act with as much
synchronization as possible. Such systems may seem
intelligent when they operate exactly as expected, but since
they do not attach any meaning to their action, they remain



purely functional. Strictly speaking, coordinating agents
does not go beyond the issue of functional regulation in
order to optimize efficiency. Plus, such systems have often
been designed to operate within a very specific range of
situations, making them very vulnerable to unforeseen
events.

Reactive agent-based MAS that exhibit behavioral
emergence nonetheless remain among the best examples of
successful reactive systems. They are especially well-known

for computer applications applied to specific, well-delimited
fields.

1.3.6. Cognitive agent-based MAS

These multi-agent systems are able to separate and
interpret information coming from their external
environment, thanks to cognitive symbolization processes
based on various predefined features that are implemented
in the structures of the agents. They apprehend semantic
features of information that is initially received as data and
distinguish their unifying meaning according to their
subjective situation. A perceptive system considers a
perceived event as a complex fact. It transforms it into a
series of interrelated symbolic features that are organized
by groups of agents. These groups of agents have the
necessary knowledge to elaborate various possible
interpretations. Each active group of agents then
constitutes a semantic pattern that symbolizes the
perceived event. The various active semantic patterns, in
turn, construct a multi-scale categorization of the
represented facts. When, in this work, we detail this type of
multi-agent system, the central issue will be to understand
this semantic categorization pattern of any event that the
autonomous system apprehends accurately.



To design the mechanism that will enable the system to
interpret its situation in the current environment, we will
use a massive multi-agent system in which each entity has
some level of proactivity. Let us define this important
notion: an agent is a proactive concept-based element if it
is active when it needs be and if it uses its knowledge
according to its internal state and to its situation in the
environment, responding or not to the solicitations of other
agents.

So, the two main reasons for using organizations of agents
to model autonomous systems are:

- agents can dynamically reify any specific item of
knowledge by relating it to knowledge represented in
other agents. This means that specific items of
knowledge can be considered as aspects of a large
relational organization. This organization is what
expresses, with continuously updated dynamical
constructs, the appropriate causal relations, and the
relevant global perspective of the system on its current
situation;

- the proactive as well as very communicative behavior
of agents enables the constitution of aggregates of
agents acting and communicating with each other. Such
aggregates can, to some extent, be seen as analogous to
the sociological notion of “social groups”. Because
relations evolve continuously, aggregates with a higher
activity will become distinguishable. The combination of
the specific features of each more or less active
aggregate will outline a shared feature, a common
perspective according to which the knowledge is
organized. Beyond the mere resolution of a well-defined
optimization problem with functions and variables in a
fully determined space, the stake consists of making
cognitive patterns emerge from the communication of



many agents, so that these cognitive patterns represent
the multiple aspects of the system’s functionality as well
as decisions that are truly relevant to a complex and
ever-changing situation.

These two rich features are specific to organizations of
agents. Objects of object-oriented languages are entities
that are perfectly fit for the rational design of a priori well-
defined structures whose possible actions are all
anticipated and whose overall behavior is fully planned. Of
course, the agents are to be built with objects, processes,
distant objects and threads but they will be able to alter
their own attributes, to create new objects/processes and
at the conceptual level they will blend activities, knowledge
representation, migration and the creation of new
instances and classes.

1.4. Systems and organisms

In the following, we will focus on open systems, i.e. systems
that interact with their environment. Such systems are to
be understood as groups of elements that are in relation
with each other and whose coordinated actions are
organized to produce the system’s action on the
environment. These systems are, therefore, defined both by
the set of their elements and by all the continuous relations
that make them exist and act on their environments.

An organism, in biology, is defined as the set of organs of a
living being. “Organ” is a biological term that denotes
several tissues that perform one or a few specific
physiological functions. An organ is thus a constitutive
element of a biological system that performs all the
functions pertaining to a specific area. Organs and their
relations are represented by anatomical diagrams or charts
that depict their organization within the unified framework



that constitutes the living organism. The organism can thus
be identified with the living being.

Some artificial systems can be seen as analogous to natural
organisms, in so far as one analyzes them in terms of their
constitutive elements and underlying relations between
these elements. Relations between elements of a system
can be seen as information processing. To this end, let us
consider a two-level organization:

- the level of physical elements, made of basic elements
and their aggregates;

- the level of information processing and exchange
between the various physical elements.

Here, we take an approach that transposes fundamental
features of living organisms into the field of artificial
systems. Such an approach demands a novel design
strategy and requires that very specific building blocks be
used.

1.5. The issue of modeling an
autonomous system

Artificial corporeity results from an organization of
distributed electronic and informational elements that,
although they have well-defined functions and are locally
controlled by information processors, act as a unified whole
that endows all their relations and individual actions with
meaning by continuously coordinating them.

Within this framework, an artificial organ is a particular
element composed of a specific electronic system that
activates electromechanical parts and of an informational
control system that associates these various parts and
represents their specific functions in order to use them in a



very precisely coordinated manner. The organ is situated
within a corporeity of multiple other organs and is
managed, together with the other organs, as a strongly
coactive element.

Two essential concepts will guide the definition of the
complex architecture of the artificial organism we intend to
design:

- the first one is the concept of corporeity, which means
that the physical components of the system, in order to
be considered as organs, must fall under a very precise
and elaborate organization;

- the second major concept is that of an interpreting
system. It will continuously manage the behavioral state
of the system, as well as process and interpret any
gathered information in the light of the whole of its
knowledge. The interpreting system will enable the
artificial organism to continuously generate, with
intentionality, series of representations derived from
what it apprehends, conceives, believes or desires, and
to thus engage in continuously intentional and
interpreted actions.

The goal here is to provide the system with a generator of
series of clear representations, in order for it to be able to
express its intentions, wills and desires while experiencing
sensations. The design of such a system, which would fully
use its corporeity and apprehend itself as an organism, is
key for the current concept of autonomy.

The interpreting system, key to the autonomy of the global
system, will make series of representation emerge from
what is apprehended and desired by the system at any
time. Such a system, set at a purely informational level, can
be seen as a proto-self. Knowledge representation in such a
system is very specific. Further on in this work, we will



detail our proposal to use swarms of active software
agents. The challenge will then consist of being able to
orient them towards making representations emerge from
what is apprehended. Our suggestion is to use a self-
regulation mechanism to apply incentive regulation, which
has so far not been developed.

This is what a truly autonomous system will be. It won’t be
merely using various knowledge bases to produce
predetermined appropriate responses to more or less
complicated situations. It will cognitively and sensitively
interpret the reality it apprehends in order to deploy and
situate its own identity completely within it. The physical
level will be immersed in a computational system, the
essential component of the artificial autonomous organism.
In the following, we detail the architecture of this
computational system.



2
The Global Architecture of an
Autonomous System

2.1. Introduction

We consider a system that is made of numerous elements
pertaining to various fields, which is in a continuous
reorganization state. The elements that compose the
system strongly interact with each other, conforming to
rules that specify the local and global actions of the system
on itself and its environment. Such a system is considered
open because it communicates with its environment
systematically, gathering and expressing information
continuously. The essential function of some of its
components is therefore to communicate back and forth
with the environment. In this chapter, we start with
presenting the physical, hardware layer of an autonomous
system. It is made of electronic or mechanical elements
that constitute the system’s corporeity. Some of them can
also be specific informational applications. The global
system appreciates their situations so that it is able to
organize them in structures at another scale and consider
them as organs or parts of organs.

2.2. Reactivity of a system

The notion of reactivity that we introduce here is in clear
contrast with that of autonomy. The most common systems
are reactive, considered as tools to perform well-defined
actions. A reactive informational system reacts in the most
appropriate way to external stimuli, according to an



unvarying, predetermined plan. The diagram of a reactive
system (see Figure 2.1) should be compared to those of
autonomous systems, which are radically different.

- Systematic
Stimulus

reaction

Analysis of stimulus and

context

~

Strictly structured memory

Figure 2.1. Diagram of a reactive system

It must be noted that the hardware elements that
constitute the corporeity of an autonomous system cannot
be considered as merely reactive. They will arrange
themselves to compose the organs of an organized
corporeity. This corporeity will be regulated by a specific
system in charge of continuously assessing its state while
planning strategies of action within its environment.
Introducing a merely reactive component in an autonomous
system will weaken it, as it will tend to disrupt its
behavioral organization.

2.3. The basic structure of an
autonomous system: the substratum



The physical layer of the systems we are to study is made
of interrelated electro-mechanical parts, in a distributed
and communicating hardware structure. All these elements
and appliances are interrelated so that their individual
activities are integrated into a global and coherent activity.

Such a system, therefore, has what is called a functional
substratum. This substratum is relatively complex, more
elaborate than just a few simple local elements. Its
components are in constant informational communication
along multiple channels, detailing their state and functional
abilities, so that coherent actions on the environment are
produced. The system needs to be integrated with an
internal structure that handles the necessary information
to connect the various functional elements and the
numerous remote components to multiple processing
points, as is the case in global monitoring systems. It will
always be interacting with the external world through
sensors that enable it to perceive it or with other systems
via network communication protocols.

Let us define the notion of autonomous system substratum
precisely:

- we call the substratum of a system the whole of its
mechanical and electronic elements. This physical layer
can be handled at the informational level. Its elements
can be highly numerous but can all be controlled at the
level of their information input as well as with specific
commands. They form a whole that is situated in a both
physical and virtual space and that has boundaries (see
Figure 2.2). Each component has one or several specific
functions, and their whole forms the functional
substratum, applicable to specific and well-defined
fields. The substratum is the basis of the corporeity of
the system and has to be continuously interpreted by the
system.



The components of the substratum, therefore, enable the
representation of the basis of the system’s corporeity. The
substratum includes elements that can perform various
movements as well as many sensors and effectors. It has
cameras grabbing images like eyes grab flows of photons.
It can have various levels of complexity. It can also
represent the equivalent of organs such as a mouth, able to
pronounce sounds with a certain tone, words, and
sentences, or such as an arm and hand that can grasp
things. In addition to the substratum, there is an internal
system that uses and interprets it. This internal system is,
to a certain extent, equivalent to the brain of a living being,
which generates mental representations of its body, thus
enabling it to use it to its full capacity.

To interpret the substratum, we first represent it in a layer
of objects, following a classical computer science method.
Each object describes a distinct physical element,
specifying its functions, its state and the objects it is linked
to. The substratum allows knowing the state of each of its
local physical component, to use it and act for control on it.
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Figure 2.2. The system and its functional substratum

The substratum of pervasive homes, for example, is
composed of all the electronic elements of the house,
domestic appliances, video cameras, and sensors, which
must communicate with each other. This is also the case of
a rocket propelling and guiding system, of a traffic
regulation system applied to all the circulating vehicles of a
city or of the information on the production and economic
exchanges within a market in which operators use many
smart phones and databases.

2.3.1. A detailed example: smoothing the flow
or urban traffic

Here, we detail the example of a system that regulates the
traffic of a whole urban area in order to prevent or reduce
occurrences of traffic jams. On the one hand, the systems
regulate traffic lights to smooth the flows of vehicles, and



