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Preface

Many dynamical systems that occur naturally in the description of physical
processes are piecewise-smooth. That is, their motion is characterized by pe-
riods of smooth evolutions interrupted by instantaneous events. Traditional
analysis of dynamical systems has restricted its attention to smooth problems,
thus preventing the investigation of non-smooth processes such as impact,
switching, sliding and other discrete state transitions. These phenomena arise,
for example, in any application involving friction, collision, intermittently con-
strained systems or processes with switching components.

Literature that draws attention to piecewise-smooth systems includes the
comprehensive work of Brogliato [38, 39], the detailed analysis of Kunze [165],
the books on bifurcations in discontinuous systems [193, 177] and various re-
lated edited volumes [268, 35]. These books contain many examples largely
drawn from mechanics and control. Also there is a significant literature in the
control and electronics communities; see for example the book [193], which
has many beautiful examples of chaotic dynamics induced by non-smooth
phenomena. Earlier studies of non-smooth dynamics appeared in the East-
ern European literature; for instance the pioneering work of Andronov et al.
on non-smooth equilibrium bifurcations [5], Feigin [98, 80] on C-bifurcations,
Peterka [216] and Babitskii [19] on impact oscillators, and Filippov [100] on
sliding motion. Delving into this and other literature, one finds that piecewise-
smooth systems can feature rich and complex dynamics.

In one sense, jumps and switches in a system’s state represent the grossest
form of nonlinearity. On the other hand, many examples appear benign at
first glance since they are composed of pieces of purely linear systems, which
are solvable closed form. However, this solvability is in general an illusion
since one does not know a priori the times at which the switches occur. Nev-
ertheless, the analysis of such dynamics is not intractable, and indeed, many
tools of traditional bifurcation theory may be applied. However, it has become
increasingly clear that there are distinctive phenomena unique to discontinu-
ous systems, which can be analyzed mathematically but fall outside the usual
methodology for smooth dynamical systems.
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Indeed, for smooth systems, governed by ordinary differential equations,
there is now a well established qualitative, topological theory of dynamical
systems that was pioneered by Poincaré, Andronov and Kolmogorov among
others. This theory has led to a mature understanding of bifurcations and
routes to chaos—see, for example the books by Kuznetsov [168], Wiggins
[273], Arrowsmith & Place [9], Guckenheimer & Holmes [124] and Seydel [232].
The key step in the analysis is to use topological equivalence, Poincaré maps,
center manifolds and normal forms to reduce all possible transitions under pa-
rameter variation to a number of previously analyzed cases. These ideas have
also informed modern techniques for the numerical analysis of dynamical sys-
tems and, via time-series analysis, techniques for the analysis of experimental
data from nonlinear systems. The bifurcation theory methodology has shown
remarkable success in describing dynamics observed in many areas of applica-
tion including, via center-manifold and other reduction techniques, spatially
extended systems. However, most of these successes are predicated on the
dynamical system being smooth.

The purpose of this book then is to introduce a similar qualitative the-
ory for non-smooth systems. In particular we shall propose general techniques
for analyzing the bifurcations that are unique to non-smooth dynamical sys-
tems, so-called discontinuity-induced bifurcations (DIBs for short). This we
propose as a general term for all transitions in dynamics specifically brought
about through interaction of invariant sets of the system (‘attractors’) with
a boundary in phase space across which the system has some kind of dis-
continuity. First and foremost, we shall give a consistent classification of all
known DIBs for piecewise-smooth continuous-time dynamical systems (flows),
including such diverse phenomena as sliding, chattering, grazing and corner
collision. We will then describe a unified analytical framework for reducing
the analysis of each such bifurcation involving a periodic orbit to that of an
appropriately defined Poincaré map. This process is based on the construction
of so-called discontinuity mappings [198, 64], which are analytical corrections
made to account for crossing or tangency with discontinuity boundaries. We
introduce the notion of the degree of smoothness depending on whether the
state, the vector field or one of its derivatives has a jump across a disconti-
nuity boundary. We show how standard examples such as impact oscillators,
friction systems and relay controllers can be put into this framework, and
show how to construct discontinuity mappings for tangency of each kind of
system with a discontinuity boundary.

The analysis is completed by a classification of the dynamics of the
Poincaré maps so-obtained. Thus we provide a link between the theory of
bifurcations in piecewise-smooth flows and that associated with discontinuity
crossings of fixed points of piecewise-smooth maps—so-called border-collision
bifurcations [207, 21], which are just particular examples of a DIB. The pre-
sentation is structured in such a manner to make it possible for a reader to
follow a series of steps to take a non-smooth dynamical system arising in an
application from an outline description to a consistent mathematical charac-
terization.
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Throughout, the account will be motivated and illustrated by copious
examples drawn from several areas of applied science, medicine and engineer-
ing; from mechanical impact and friction oscillators, through power electronic
and control systems with switches, to neuronal and cardiac and models. In
each case, the theory is compared with the results of a numerical analysis or,
in some cases, with data from laboratory experiments. More general issues
concerning the numerical and experimental investigation of piecewise-smooth
systems are also discussed.

The manner of discourse will rely heavily on geometric intuition through
the use of sketch figures. Nevertheless, care will be taken to single out as
theorems those results that do have a rigorous proof, and where the proof is
not presented, a reference will be given to the appropriate literature.

The level of mathematics assumed will be kept to a minimum: nothing
more advanced than multivariable calculus, differential equations and linear
algebra traditionally taught at undergraduate level on mathematics, engineer-
ing or applied science degree programs. A familiarity with the basic concepts
of nonlinear dynamics would also be useful. Thus, although the book is aimed
primarily at postgraduates and researchers in any discipline that impinges on
nonlinear science, it should also be accessible to many final-year undergradu-
ates.

We now give a brief outline each chapters.

Chapter 1. Introduction. This serves as a non-technical motivation for
the rest of the book. It can in fact be read in isolation and is intended as
a primer for the non-specialist. After a brief motivation of why piecewise-
smooth systems are worthy of study, the main thrust of the chapter is to
immerse the reader in the kind of dynamics that are unique to piecewise-
smooth systems via a series of case studies. The first case study is the
single-degree-of-freedom impact oscillator. The notion of grazing bifurca-
tion is introduced along with the dynamical complexity that can result
from this seemingly innocuous event. Agreement is shown among theory,
numerics and physical experiment. After brief consideration of bi-linear
oscillators, we then consider two mathematically related systems that can
exhibit recurrent sliding motion: a relay controller and a stick-slip fric-
tion system. The next case study concerns a well-used electronic circuit
with a switch, the so-called DC–DC converter. Finally, we consider one-
dimensional maps that arise through the study of these flows, including a
simple model of heart attack prediction. Here we introduce the ubiquitous
period-adding cascade that is unique to non-smooth systems.

Chapter 2. Qualitative theory of non-smooth dynamical systems.
The aim here is to set out concisely the mathematical and notational
framework of the book. We present a brief introduction to the qualita-
tive theory of dynamical systems for smooth systems, including a brief
review of standard bifurcations, stressing which of these also makes sense
for piecewise-smooth systems. The formalism of piecewise-smooth systems
is introduced, although no specific attempt is made to develop an exis-
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tence and uniqueness theory. However, a brief introduction is given to the
extensive literature on other more rigorous mathematical formulations for
non-smooth dynamics, such as differential inclusions, complementarity sys-
tems and hybrid dynamical systems. A working definition of discontinuity-
induced bifurcation is given from a topological point of view, which moti-
vates a brief list of the kinds of discontinuity-induced bifurcations that are
likely to occur as a single parameter is varied. The notion of discontinuity
mapping is introduced, and such a map is carefully derived in the case
of transverse crossing of a discontinuity boundary. The chapter ends with
a discussion on numerical techniques, both direct and indirect, that will
be used throughout the rest of the book for investigating the dynamics of
example systems and calculating the appropriate bifurcation diagrams.

Chapter 3. Border collision in piecewise-smooth continuous maps.
This chapter contains results on the dynamics of discrete-time continuous
maps that are locally composed of two linear pieces. First border-collision
bifurcations are analyzed whereby a simple fixed point passes through the
boundary between the two map pieces. General criteria are established
for the existence and stability of simple period-one and -two fixed points
created or destroyed in such transitions, by using information only on the
characteristic polynomial of the matrix representation of the two sections
of the map. Analogs of simple fold and period-doubling bifurcations are
shown to occur, albeit where the bifurcating branch has a non-smooth
rather than quadratic character. The cases of one and two dimensions are
considered in detail. Here, more precise information can be established
such as conditions for the existence of period-adding, and cascades of such
as another parameter (representing the slope of one of the linear pieces)
is varied. Finally, we consider maps that are noninvertible in one part of
their domain. For such maps, conditions can be found for the creation of
robust chaos, which has no embedded periodic windows.

Chapter 4. Bifurcations in general piecewise-smooth maps. Here the
analysis of the previous chapter is generalized to deal with maps that
crop up as normal forms of the grazing and other non-smooth bifurcations
analyzed in subsequent chapters, and which change their form across a
discontinuity boundary. First, we treat maps that are piecewise-linear but
discontinuous. We then proceed to study continuous maps that are a com-
bination of a linear and a square-root map, and finally maps that combine
a linear map with an O(3/2) or a quadratic map. In each case we study
the existence of both periodic and chaotic behavior and look at the transi-
tions between these states. Of particular interest will be the identification
of period-adding behavior in which, under the variation of a parameter, the
period of a periodic state increases in arithmetic progression, accumulating
onto a chaotic solution.

Chapter 5. Boundary equilibrium bifurcations in flows. This chapter
collects and reviews various results on the global consequences of an equi-
librium point encountering the boundary between two smooth regions of
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phase space in a piecewise-smooth flow. Cases are treated where the vec-
tor field is continuous across the boundary and where it is not (and indeed
where the boundary may itself be attracting—the Filippov case). In two
dimensions, a more or less complete theory is possible since the most com-
plex attractor is a limit cycle, which may be born in a non-smooth analog
of a Hopf bifurcation. In the Filippov case, so-called pseudo-equilibria that
lie inside the sliding region can be created or destroyed on the boundary,
as they can for impacting systems.

Chapter 6. Limit cycle bifurcations in impacting systems. We re-
turn to the one-degree-of-freedom impact oscillator from the Introduction,
stressing a more geometrical approach to understanding the broad features
of its dynamics. Within this approach, grazing events are thought of as
leading to singularities in the phase space of certain Poincaré maps. These
singularities are shown to organize the shape of strange attractors and also
the basins of attraction of competing attractors. An attempt is made to
generalize such geometrical considerations to general n-dimensional hybrid
systems of a certain class. The narrative then switches to dealing with graz-
ing bifurcations of limit cycles within this general class. The discontinuity
mapping idea is used to derive normal form maps that have a square-root
singularity. The technique is shown to work on several example systems.
The chapter also includes a treatment of chattering (a countably infinite
sequence of impacts in a finite time) and multiple impacts, including a
simple example of a triple collision.

Chapter 7. Limit cycle bifurcations in piecewise-smooth flows. This
chapter treats the general case of non-Filippov flows and two specific kinds
of bifurcation event where a periodic orbit grazes with a discontinuity
surface. In the first kind the periodic orbit becomes tangent to a smooth
surface. In the second kind the periodic orbit passes through a non-smooth
junction between two surfaces. For both kinds, discontinuity mappings are
calculated and normal form mappings derived that can be analyzed using
the techniques of the earlier chapters. Examples of the theory are given
including general bilinear oscillators, a certain stick-slip system and the
DC–DC convertor introduced in Chapter 1.

Chapter 8. Sliding bifurcations in Filippov systems. The technique of
discontinuity mappings is now applied to the situations where flows can
slide along the attracting portion of a discontinuity set in the case where the
vector fields are discontinuous. Four non-generic ways that periodic orbits
can undergo sliding are identified that lead to four bifurcation events. Each
event involves the fundamental orbit involved in the bifurcation gaining
or losing a sliding portion. The mappings derived at these events typically
have the property of being non-invertible due to the loss of initial condition
information inherent in sliding. So a new version of the theory of Chapters
3 and 4 has to be derived, dealing with this added complication. Examples
of relay controllers and friction oscillators introduced in Chapter 1 are
given further treatment in the light of this analysis.
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Chapter 9. Further applications and extensions. This chapter contains
a series of additional case study applications that serve to illustrate further
bifurcations and dynamical features, a detailed analysis of which would
be beyond the scope of this book. Each application arises from trying
to understand or model some experimental or in service engineered or
naturally occurring system. The further issues covered include the notion
of parameter fitting to experimental data, grazing bifurcations of invariant
tori and examples of codimension-two bifurcations.
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XX Glossary

b Symbol to represent iterate of two-zone nonsmooth map in
region S2.

B Symbol representing iterate in S2 of part of a stable orbit
of a two-zone nonsmooth map.

BEB Boundary equilibrium bifurcation; see Chapter 5.
Cr The space of continuously r times differentiable functions.
CT Row vector multiplying linearisation with respect to x of

smooth function H(x) = CTx+Dμ representing disconti-
nuity surface Σ.

D Linearisation of discontinuity surface H with respect to
parameter μ.

D Domain of definition of a piecewise-linear system, x ∈ D ⊂
R

n.
DAE Differential algebraic equation.
DIB Discontinuity-induced bifurcation.
DM Discontinuity mapping (for transversal or non-transversal

crossing).
DoF Degree of freedom.
E Rank-one matrix representing difference between lineari-

sations N1 − N2 in piecewise-linear map x → N1x, if
CTx > 0, x → N2x if CTx < 0. Vector E multiplying
the scalar y =

√

−H(x) for x < 0 in square root map
written in simpest form.

f General expression for a (smooth or nonsmooth) vector
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1

Introduction

1.1 Why piecewise smooth?

Dynamical systems theory has proved a powerful tool to analyze and un-
derstand the behavior of a diverse range of problems. There is now a well-
developed qualitative, or geometric, approach to dynamical systems that typ-
ically relies on the system evolution being defined by a smooth function of
its arguments. This approach has proved extremely effective in helping to un-
derstand the behavior of many important physical phenomena such as fluid
flows, elastic deformation, nonlinear optical and biological systems. However,
this theory excludes many significant systems that arise in practice. These
are dynamical system containing terms that are non-smooth functions of their
arguments. Problems of this nature arise everywhere! Important examples are
electrical circuits that have switches, mechanical devices in which components
impact with each other (such as gear assemblies) or have freeplay, problems
with friction, sliding or squealing, many control systems (including their im-
plementation via adaptive numerical methods) and models in the social and
financial sciences where continuous change can trigger discrete actions. Such
problems are all characterized by functions that are piecewise-smooth but are
event driven in the sense that smoothness is lost at instantaneous events, for
example, upon application of a switch. They have fascinating dynamics with
significant practical application and a rich underlying mathematical structure.
It a serious omission that their behavior is not easily described in terms of
the modern qualitative theory of dynamical systems.

A commonly expressed reason for this omission is that there is strictly
speaking no such thing as a piecewise-smooth dynamical system and that in
reality all physical systems are smooth (at least at all length scales greater
than the molecular). However, this statement is misleading. The timescales
over which transitions such as an impact or a control-law switch occur in an
engineering system can be remarkably small compared with that of the over-
all dynamics, and thus, the correct global model is certainly discontinuous
on a macroscopic timescale. Furthermore, relatively simple phenomena when
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considered from the point of view of piecewise-smooth systems often turn
out to be natural limits of far more complex scenarios observed in smoother
systems. For example, it is quite natural for a piecewise-smooth system to un-
dergo a sudden jump from strongly stable periodic motion to full scale chaotic
motion under variation of a parameter. In a smooth system, such a scenario
would typically require an infinite sequence of bifurcations to occur, such as
the famous Feigenbaum cascade of period-doubling bifurcations, leading to
chaos.

A second reason for the exclusion of piecewise-smooth systems from the
established literature is that they challenge many of our assumptions about
dynamics. For example, how can we define concepts such as structural stabil-
ity, bifurcation and qualitative measures of chaos in such systems? By making
careful assumptions about the problems we investigate, which are not incon-
sistent with the physical problems leading to them, it will become apparent
that many of the concepts once thought to be the domain of smooth sys-
tems only, naturally extend to piecewise-smooth ones as well. But, and this
is the main thrust of this book, there are also dynamical phenomena that are
unique to piecewise-smooth systems that are, nevertheless, straightforward to
analyze.

The purpose of this introductory chapter is to be a self-contained and non-
technical guide to piecewise-smooth dynamical systems, which will outline the
more detailed treatment given in the later chapters; but can be read indepen-
dently from them. We will establish the basic foundations for discussion of
non-smooth dynamics in an informal, non-technical and applications-oriented
setting, through the description of case study examples arising from physical
models. We will also show how bifurcations in piecewise-smooth flows (sys-
tems of ordinary differential equations) naturally generate piecewise-smooth
mappings, or maps (discrete-time iteration processes), which is a connection
that lies at the heart of this book. The chapter is essentially designed to be
read like an extended essay. Italicized terms are used to introduce mathemat-
ical concepts that will be defined more accurately later on in the book. Also,
the application-oriented nature of the essay is aimed at answering the question
of why piecewise-smooth systems are worth studying.

As a first motivating example of a piecewise-smooth system, consider the
operation of a domestic central heating system that is trying to achieve a
desired temperature θ. If this temperature is exceeded, a thermostat causes
a switch to turn off the power supply to a boiler. The system then evolves
smoothly with the heating off, until the temperature falls below θ. At this
point the system dynamics changes, as the boiler is turned on and a different
set of evolution rules apply. Thus, if we view the switching process as taking an
infinitesimally short time compared with the heating and cooling phases, we
can view the dynamics of the temperature T (t) as being that of a continuous
piecewise-smooth flow. Two different smooth flow regimes describe the off and
on states, with switching occurring when the dynamics crosses the boundary
T (t) = θ between them.
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Let us suspend belief for a moment and imagine an instantly responsive
heating system. The natural dynamics would then be a state known as sliding
in which T (t) is permanently set to the threshold value θ, with the thermo-
stat poised between the on and off positions. As the temperature rises above
threshold, the boiler is switched off, which instantaneously causes the tem-
perature to fall below threshold. Thus, the boiler is reignited, causing the
temperature to rise above threshold, and so on. We shall see shortly that slid-
ing corresponds to a natural state of so-called relay controllers and also to the
stick phase of systems with dry friction that can exhibit stick-slip motion.

Returning to the more realistic situation where changes in temperature lag
behind the turning on or off of the boiler, we can consider the dynamics of this
example as being driven by events. The events are the times t at which T (t) =
θ and switching occurs. The system evolves smoothly between events such that
we can easily define a discrete-time event map that expresses the system state
at one switching as a function of the state at the previous switch. This map,
which may be smooth or non-smooth, effectively has a lower-dimensional state
space since we know that the temperature is at threshold. Suppose now that
the heating system has a timer device that switches on and off the heating at
fixed times each day. In this case we could consider sampling the temperature
at 24-hour intervals, producing a stroboscopic map that expresses the system
state at a fixed time each day as a function of the state at the same time the
previous day. This map is unlikely to be smooth, because the dynamics of a
system that starts with a temperature above θ is likely to be different from
one that starts below.

This simple example demonstrates that any discussion of piecewise-smooth
systems should naturally include both flows and maps. A third naturally aris-
ing kind of piecewise-smooth system is a combination of a flow and a map,
and we shall call these hybrid systems. Such systems arise when the effect of
the flow reaching the switching threshold is to cause an instantaneous jump
in the flow (which in effect becomes discontinuous). In the heating system,
this might occur if the result of the temperature dropping to θ is to instanta-
neously turn on an electric fire that heats the house very much more rapidly
than the boiler, so that (on a 24-hour timescale) we see an effectively instanta-
neous temperature rise. We begin our more detailed discussion of case studies
with a class of hybrid systems that have played a key role in the historical
development of the theory of piecewise-smooth systems.

1.2 Impact oscillators

Consider the motion of an elastic ball bouncing vertically on a rigid surface
such as a table. In unconstrained motion the ball falls smoothly under gravity
between impacts and has an ‘instantaneous’ reversal of its velocity at each
impact. Suppose that a simple Newtonian restitution law applies such that
reversed velocity is a coefficient 0 ≤ r ≤ 1 times the incoming velocity. Typical
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Fig. 1.1. Sketch figure of both (a) the position u(t) of a bouncing ball against time
and in (b), (u, v)-phase space, where v(t) is the velocity of the ball. Here R is the
map that takes v to −rv.

motion of the ball is represented in Fig. 1.1. Note that if r < 1 then a state
where the ball is at rest (stuck) on the table can be reached by simply releasing
the ball. After an infinite number of impacts (an accumulation of a chattering
sequence), but a finite time, the ball comes to rest. If we were to allow the
possibility of an oscillating rigid table (like a tennis player bouncing the ball
on his racket between rallies), then the dynamics can be incredibly rich [124,
Ch. 2], as we are about to see in a related model.

A bouncing ball is just a simple example of what are termed impact os-
cillators, which are low-degree-of-freedom mechanical systems with hard con-
straints that feature impacts (like the bounce of the ball on the table). impact
oscillators have played an important role in the historical development of
piecewise-smooth systems. Their dynamics has been studied in the Czech and
Russian literature since the 1950s (see, e.g., [98, 19] and references therein, es-
pecially [216, 217]), much or which was essentially rediscovered in the Western
literature in the 1980s and 1990s [237, 236, 251, 264, 197, 43, 102, 18, 67].

Impacting behavior is found in a large number of mechanical systems rang-
ing from gear assemblies [146, 149, 229, 249], impact print hammers [128, 256],
walking robots [138], boiler tube dynamics [212, 122], metal cutters [267], car
suspensions [29], vibration absorbers [234], [20], percussive drilling and moling
[269, 163] and many-body particle dynamics [228]; see also Fig. 1.1. The effect
of the rigid collisions is to make these systems highly nonlinear, and chaotic
behavior becomes the rule rather than the exception. Collisions also lead to
associated wear on the components of the system. If these components are,
for example, the tubes in a boiler [122] or gear teeth [146], then it is crucial to
estimate the average wear that might occur in certain operating conditions.

We will not consider the detailed physics of the impacting process in this
book. Such processes can be highly subtle, especially when involving the im-
pact of rough bodies, which may also involve friction. It is well covered in the
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many texts on impact mechanics and tribology; see for example [243, 279].
Instead, like in the bouncing ball example, we shall take simple coefficient of
restitution impact laws, which, despite their simplicity, we will see can give a
close match to experimental observations.

(a) (b)

(c)

(a) (b)

(c)

Fig. 1.2. Some examples of vibro-impact systems taken from [208], (a) a bell,
(b) a gear assembly and (c) an impact print hammer. (Reprinted from [208] with

We shall look at two case study examples of one-degree-of-freedom impact-
ing systems. First, we consider a simple model that contains an instantaneous
impact, where we find analytical, numerical and experimental evidence for
complex dynamics and the period-adding route to chaos. Second, in Sec. 1.2.4
we consider how this dynamics might arise via taking the limit of a sequence
of, possibly more realistic, continuous models that feature compliant impact.
Chapters 4, 6 and 7 will complete these studies by first presenting a general
theory of non-smooth maps, then of hybrid systems of arbitrary dimensions
(which includes impact oscillators as a special case), and finally of continuous
flows. The presentation of these case studies will draw heavily on work by
Peterka [216, 217], Nordmark [197], Whiston [264, 263, 265], Chillingworth
[53], Shaw & Holmes [237, 236], Thompson & Bishop [251, 103, 30, 31, 260],
Budd [171, 42, 43, 44, 45] and their co-workers.

permission from ASME).
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1.2.1 Case study I: A one-degree-of-freedom impact oscillator

Consider the motion of a body in one spatial dimension, which is completely
described by the position u(t) and velocity v(t) = du

dt of its center of mass.
Thus we think of this body as a single particle in space. When in free motion,
we suppose that there is a linear spring and dashpot that attach this particle
to a datum point so that its position satisfies the dimensionless differential
equation

d2u

dt2
+ 2ζ

du

dt
+ u = w(t), if u > σ. (1.1)

Here, the mass and stiffness have been scaled to unity, 2ζ measures the viscous
damping coefficient, and w(t) is an applied external force. We assume that
motion is free to move in the region u > σ, until some time t0 at which u = σ
where there is an impact with a rigid obstacle. Then, at t = t0, we assume that
(u(t0), v(t0)) := (u−, v−) is mapped in zero time to (u+, v+) via an impact
law

u+ = u− and v+ = −rv−, (1.2)

where 0 < r < 1 is Newton’s coefficient of restitution. An idealized mechanical
model of this system is given in Fig. 1.3.

The simplest form of forcing function w(t) can arise from an excitation
of the lower part of the oscillator. An equivalent problem is to set w(t) = 0
in (1.1) but to introduce an excitation on the whole system by moving the
obstacle (so that σ becomes a function of time) and using a collision law that
takes into account the relative velocity between the particle and the moving
obstacle so that

v+ − dσ/dt = −r
(

v− − dσ/dt
)

.

A simple translation in space, setting û(t) = u(t) − σ(t), and v̂(t) = v(t) −
dσ/dt, and dropping the hats recovers (1.1).

u = σ
u(t)

Fig. 1.3. A simple impact oscillator.
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Note that r2 measures the percentage of the kinetic energy that is absorbed
in the impact. The case r = 1 gives an elastic collision [170] (often assumed in
simulations of granular media, for example, [228]) and r = 0 is a completely
dissipative collision [238] (modeling, for example, the behavior of a clapper
inside a church bell [33]). In experiments, e.g. [209], a value of r = 0.95 is
found to be reasonable to model the case of a steel bar impacting with a rigid
point, whereas in [260], a different value of r was found to provide the best fit
for an impacting cantilever beam; see also [91]. This indicates that the value
r depends not only on the material properties of the impacting components,
but also on their geometry. This is because the restitution law represents the
overall effect of a much more rapid process of energy dissipation through the
propagation of shock waves (those of which in the audible range we hear as
the crack or bang associated with impact).

There have been many analytical and experimental investigations of the
forced impact oscillator with different types of forcing function w(t); see [30]
for a survey. In this case study we concentrate on periodic sinusoidal forcing:

w(t) = cos(ωt), with period T = 2π/ω. (1.3)

However, the literature also includes discussions of forcing caused by an ex-
ternal flow such as vortices shed from a boiler tube [57] or from an ocean
wave [172], quasi-periodic forcing [215, 214], stochastic forcing [276, 45] and
problems where w(t) is the solution of another problem, for example, a fur-
ther impact oscillator. The latter case arises quite commonly when energy is
transmitted via impacts in a loosely fitting mechanical structure, of which the
executive toy ‘Newton’s cradle’ is a simple example.

It is difficult, in practice, to realize such a system exactly in an experiment.
There is no such thing as a perfect, instantaneous impact, as the action of
the impact excites higher oscillatory modes in almost any vibrating system.
This difficulty can be reduced (although not entirely eliminated) by using a
highly massive moving object. Such an experimental impact oscillator used
by Popp and co-authors [209, 132] is depicted in Fig. 1.4. Here, a massive
beam is mounted on an almost frictionless air bearing and is allowed to move
freely under the restoring force of two springs that are carefully engineered
to behave elastically. The beam is excited by an electromagnetic field and
repeatedly comes into contact with a rigid stop. The velocity of the beam is
measured at discrete time intervals by using a laser-Doppler device, and this
measurement converted to a position measurement by integration. Results
from this experiment will be referred to several times in what follows and will
be compared with the results of numerical simulation of (1.1)–(1.3).

In the absence of impacts, the system (1.1) is linear and is therefore easy
to analyze. Its solutions comprise exponentially decaying free oscillations con-
verging to driven periodic motions at frequency ω. The form of these periodic
solutions is unique, up to phase, independent of initial conditions, and does
not change a great deal under parameter variation, provided that we avoid
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4

b c

a 1 2 3(a)

(b) (c)

Fig. 1.4. An experimental impact oscillator, after [208]. In this figure (a) shows
(1) the beam (2) the restoring springs and (3) the frictionless air bearing. Panel
(b) shows the electromagnetic excitation and (c) the impact with the rigid obstacle.

natural resonances ω = n for any integer n. This state of affairs changes com-
pletely when impacts occur, introducing a strong nonlinearity into the system.
Then we observe a multitude of different possible recurrent behaviors, which
include periodic motions of both higher and lower frequency than ω, and much
more irregular chaotic motions in which the orbit u(t) is highly irregular and
is acutely sensitive to its initial conditions The number and nature of these
different types of behavior now depend sensitively on the different parameters
in the system.

We can easily look at the dynamics of different types of such orbit by
plotting the solution trajectories of the solution in the phase plane (u, v). Note
that the phase space of this system is actually three-dimensional because for
a complete description of the dynamics we must include the phase variable

s = t mod 2π/ω.

(Reprinted from [208] with permission from ASME).
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Examples of three qualitatively different solutions of the idealized simple im-
pact oscillator are given in Fig. 1.5 for three differing, nearby input frequen-
cies. Here we see (a) periodic motion with two impacts per period, (b) more
complicated periodic motion and (c) chaotic motion.

v vv

u u u

(a) (b) (c)

It is valuable to compare the solutions of this simple model with those seen
in an experiment. For the experimental set up illustrated above, at the same
parameter values as in the simulation, we have the phase plane plots seen in
Fig. 1.6. The quantitative and qualitative agreement with the simulations is
striking. The main difference between model and experiment is the excita-
tion of a rapidly decaying higher mode of oscillation immediately after the
impact. However, this does not seem to have significant effect upon the global
dynamics. Note that the chaotic motion is entirely the result of the impacting
behavior and is quite different from solutions to a linear differential equation,
even though the motion between impacts is completely described by a linear
model.

v v v

uuu

(a) (b) (c)

Fig. 1.5. Solutions of the idealized impact oscillator (1.1)–(1.3) in which σ = 0,
r = 0.95, ζ = 0 and (a) ω = 3 , (b) ω = 2.76, (c) ω = 2.9. (Reprinted from [208]
with permission from ASME).

Fig. 1.6. The dynamics of the experimental impact oscillator at the corresponding
parameter values to those in Fig. 1.5. (Reprinted from [208] with permission from
ASME).
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Consider now the general motion of an impact oscillator. It is simplest to
start the analysis by assuming that the particle described by the oscillator
starts at the obstacle with an initial velocity of v0 > 0, at a time t0 and
a corresponding phase s0. The motion of the particle is then described by
the linear system (1.1) with initial data u(t0) = σ and v(t0) = v0. Provided
that v0 > 0, this motion will initially lie in the region u > σ, and in general
(certainly if ζ = 0), the trajectory will strike the obstacle at a later time t1
with velocity −v1/r < 0. After the impact, the velocity is v1. Setting v = v1
and t = t1 the motion then continues as above. The overall dynamics is thus
a series of smooth flows, interrupted by discontinuous changes in velocity.

Things are rather different if v0 = 0 at the point of release at t = t0.
If d2u/dt2 = f(t0) − σ < 0, then the particle cannot move and remains
stuck to the obstacle until it has a positive acceleration. (A simple example
of this being the motion of any particle under gravity, which, when placed on
an obstacle with zero velocity will simply stay stuck to that obstacle.) The
region over which sticking occurs is called the sticking region Z = {(u, v, t) =
(σ, 0, t)|w(t) − σ < 0}. If 0 < r < 1, then the particle generically enters a
sticking phase via an infinite sequence of impacts, a chattering sequence. (If
r = 0, a particle impacting with f(t0) − σ < 0 will stick immediately.)

Returning to the case with v0 > 0, let us try to construct solutions ana-
lytically. It is easiest to look at the case of no viscous damping ζ = 0 (which
we shall henceforth assume unless otherwise stated), which is with little loss
of generality if r < 1, because the restitution law provides the largest source
of damping on the system. The differential equation (1.1) is linear and so can
be solved using elementary methods. Taking the initial condition u(0) = s0,
du
dt (0) = v(0) = v0, we get

u(t; v0, s0) = (σ − γC0) cos(t− s0) + (v0 + ωγS0) sin(t− s0) + γC(t), (1.4)

where

γ =
1

1 − ω2
, C(t) = cos(ωt), S(t) = sin(ωt), C0 = C(s0), S0 = S(s0).

(1.5)
Now suppose that the orbit described by the flow (1.4) impacts with the

obstacle at a later time t1 so that

u(t1; v0, s0) = σ, (1.6)

with a velocity −v1/r before impact, and velocity v1 after impact [Fig. 1.7(a)].
Such trajectories implicitly define an impact map PI relating the time (phase)
and velocity of one impact to that of the next,

PI(s0, v0) = (s1, v1). (1.7)

We can continue this analysis further to look at subsequent impacts at times
ti with velocities vi > 0 immediately after impact, so that (ti+1, vi+1) =
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PI(ti, vi). As we are considering a system that is periodically forced with
period T , we can also define an alternative stroboscopic Poincaré map:

PS(u(t), v(t)) = (u(t+ T ), v(t+ T )), (1.8)

which we use a lot in the later analysis of the impacting system. Note that in
computing PS we must determine all impacts in the interval (t, t+ T ). Even
for the simple linear system described in (1.1) the computation of the impact
time t1 from (1.6) using (1.4) involves solving a (nonlinear) transcendental
equation. Hence, even though the system is piecewise-linear, we should regard
the system as fully nonlinear, since its evolution requires knowledge of t1.
Indeed, the general impossibility of solving such equations as (1.6) in closed
form renders the distinction between piecewise-linear and piecewise-smooth
systems essentially meaningless. For both, the grossest nonlinearity is usually
that introduced by interaction with a discontinuity surface. Fortunately, effi-
cient numerical methods exist to compute the smooth flows, to determine the
impact times and to follow these as the solution parameters vary.

A key feature of all the analysis in this book is a study of how solutions
close to certain distinguished trajectories of piecewise-linear systems behave.
Let us consider such analysis in the context of the impact oscillator, for the
case of a trajectory that impacts. To begin with consider the case in Fig. 1.7(a)
where the velocity v1 is not small and the trajectory τ impacts with the
obstacle at times t1, t2, etc. In this case if we look at a trajectory that starts
close to τ (so that it leaves the obstacle at a time close to t0 with an initial
velocity close to v0), then it will remain close to τ at least up to the time t2.

(a) u

t

σ

(b) u

t

σ

Fig. 1.7. (a) An impacting trajectory (solid) with a high-velocity impact and a
nearby trajectory (dashed) projected onto the (t, u)-plane. (b) An impacting tra-
jectory (solid) with a zero velocity impact at t1 and two nearby trajectories, one
(dashed) with no impact close to t1 and one (dot-dashed) with a low velocity im-
pact close to t1.


