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Preface

This volume presents contributions on handling data in which the postulate of
independence in the data matrix is violated. When this postulate is violated
and the methods assuming independence are applied nevertheless, the estimated
parameters are likely to be biased, and inference statistical conclusions are very
likely to be incorrect. Cook (2012) describes four contexts in which the postulate of
independence is violated:

1. Repeated measures (longitudinal data)
2. Clustered data (e.g., siblings in schools, children in families, patients in hospitals)
3. Data from individuals who live closely together (e.g., people from the same

neighborhood)
4. People in social networks (e.g., dyads, triads)

Cook elaborates on the significance of the problems with dependent data that
“unlike some assumptions of statistical theory (e.g., normal distribution), which
can sometimes be violated without very serious consequences, violation of the
independence assumption typically has serious consequences” (2012, p. 522). This
problem has been known for some time, which is reflected in the development of
tailored methods for the analysis of dependent data (e.g., methods for the analysis
of repeated measures), in corrections, taking into account the extent of dependence,
adjustments of test statistics (e.g., adjustment of F values in repeated measures
ANOVA), or adjustments of degrees of freedom. Examples of such developments
can be found in various areas of statistics.

Solutions for handling serious violations of assumptions for dependent data
are being developed and created constantly, but they are in many areas not yet
completely satisfying. This volume is an effort to present the status quo of the
progress in various statistical areas in managing dependence. We present modern
up-to-date statistical methods for dealing appropriately with problems related to
dependent data, including real data examples. These methods also reveal the power
of those modern techniques. At the same time, examples are presented that illustrate
problems from not dealing appropriately with assumptions of independence. All

v



vi Preface

authors of this volume are leading experts in their field of applying or developing
new statistical methods for dependent data scenarios.

This book consists of five parts: (1) growth curve modeling, (2) directional
dependence in regression models, (3) dyadic data modeling, (4) item response
modeling, and (5) other methods for the analysis of dependent data such as mul-
tidimensional scaling techniques, methods for modeling cross-section dependence
in panel data, and mixed models. In the following paragraphs, we briefly introduce
the content of each part.

Part I: Growth curve modeling. Jack McArdle starts with a discussion of
approaches to modeling change from the Cognition in the USA (CogUSA) survey.
He tests multiple factorial invariance over time by estimating various models of
latent change. Paolo Ghisletta, Eva Cantori, and Nadège Jacot demonstrate how
to handle latent curve models including data with serious forms of nonlinearity.
Jost Reinecke, Maike Meyer, and Klaus Boers apply a stage-sequential growth
mixture model to the data of their study of Crime in the Modern City (CRIMOC), a
criminological panel dataset. Mark Stemmler and Friedrch Lösel present a latent
change model that includes five mixture groups in the real life example of the
Erlangen-Nuremberg Development and Prevention Study (ENDPS). The first part
of this volume concludes with a contribution by Jang Schiltz who extends Nagin’s
mixture models by adding a slope component.

Part II: Directional dependence in regression models. This part discusses issues
related to causality. In the first chapter of this part, Alexander von Eye, Wolfgang
Wiedermann, and Ingrid Koller present the concept of Granger causality. Granger
causation is interesting from a developmental perspective. It allows researchers to
test hypotheses concerning the causal relations between two series of observations
which may develop simultaneously. In the second chapter, Wolfgang Wiedermann
proposes decisions concerning the direction of effects in linear regression models
based on fourth central moments.

Part III: Dyadic data modeling. Numerous techniques have been developed for
the analysis of dyadic data. The most prominent of these involve regression, path,
and structural equation models. Rainer Alexandrowicz extends these approaches
by considering Item Response Theory (IRT) Models. His approach combines the
advantages of metric dyadic data analysis with a model for discrete data, thus
allowing for categorical items while drawing inferences based on the estimated true
scores on an interval scale. In the second chapter of this part, Heather Foran and
Sören Kliem apply models for latent variables in longitudinal analysis of dyads.
Several competing models and their applications are demonstrated. In the final
chapter of this part, Ting Wang, Phillip K. Wood, and Andrew C. Heath discuss
the application of psychometric measurement models (with a focus on Bayesian
estimation of random intercept models) to quantify environmental and genetic
components in behavior genetic models.

Part IV: Item response modeling. More data examples and solutions for problems
dealing with dependent data in Item Response Theory (IRT) are discussed in
the fourth part. Ingrid Koller, Wolfgang Wiedermann, and Judith Glück exhibit
quasi-exact tests for the investigation of pre-conditions for measuring change.
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Steffi Pohl, Kerstin Haberkorn, and Claus Carstensen illustrate how to measure
competencies across the lifespan using IRT models. Ferdinand Keller and Ingrid
Koller demonstrate the use of mixed Rasch models for analyzing the stability of
response styles across time. In their data example, the authors use data of the Beck
Depression Inventory (BDI-II).

Part V: Other methods for the analysis of dependent data. Finally, the last part
introduces various methods for the analyses of dependent data that did not belong
to any of the above four topics. Cody Ding shows a data example from educational
research using Multidimensional Scaling for the analysis of growth patterns. Harry
Haupt and Joachim Schnurbus use a nonparametric approach to modeling cross-
section dependence in panel data. Finally, Christof Schuster and Dirk Lubbe contrast
MANOVA to Mixed Models and discuss the advantages and disadvantages of each
method in terms of handling within-subject dependency.

Cook, W. L. (2012). Foundational issues in nonindependent data analysis. In B.
Laursen, T. D. Little, & N. A. Card (Eds.), Handbook of developmental research
methods (pp. 521–536). New York: The Guilford Press.

Erlangen, Germany Mark Stemmler
East Lansing, MI, USA Alexander von Eye
Columbia, MO, USA Wolfgang Wiedermann
Summer 2015
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Growth Curve Modeling



The Observed Dependency of Longitudinal Data

John J. McArdle

Abstract It is well known that longitudinal data can deal with different concepts
than cross-sectional data (see Baltes & Nesselroade, 1979; McArdle & Nesselroade,
2014). The key is in the observed dependency—that allows us to examine individual
changes. Thus, all of the individual changes that can be examined are due to
the longitudinal models (see McArdle, 2008) allowing dependencies among the
observed scores at various time points. It is demonstrated here that the statistical
power to detect changes is an explicit function of the positive dependencies and the
timing of the observations. A lot of time is spent on the move to the latent curve
model (LCM) from the basic regression structural model and the repeated measures
model (RANOVA) because the latter seems standard in the field now. This LCM is
introduced in this chapter as a principle that does have power to detect many more
changes than the usual regression analysis but it comes along with several (to be
discussed) assumptions.

The four articles to follow in this volume are reviewed with longitudinal
dependency in mind, and the highlights of each chapter are brought out. The chapter
“Nonlinear Growth Curve Models” extends the LCM to handle serious forms
of nonlinearity, and this is clearly prevalent in Psychology. The chapter “Stage-
Sequential Growth Mixture Modeling” extends this work to include multistage
models, Poisson relations, all in the context of a multiple mixture model. This is
a fairly complex example. The chapter “General Growth Mixture Modeling: The
Study of Developmental Pathways of Externalizing Behavior from Preschool Age to
Adolescence” is a real-life example that includes LCMs for five mixture groups. The
chapter “A Generalization of Nagin’s Finite Mixture Model” extends the mixture
models further, mainly by adding a slope component.

But what is also important in this regard is “measurement invariance” and how
this can be crucial to understanding changes. Some elaboration of the early work

A contribution for a book on “Dependent Data in Social Science Research” Edited by M. Stemmler,
A. von Eye and W. Wiedermann.

J.J. McArdle (�)
Department of Psychology, University of Southern California, Los Angeles, CA, USA
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4 J.J. McArdle

on scales is further developed for selected items. The data to be considered here
for LCM are a subset of the full set of data collected in the Cognition in the USA
(CogUSA survey; McArdle & Fisher, 2015). These scales were chosen in a way
that would be consistent with the principles of multiple factorial invariance over
time (MFIT) but the result of the age-related changes over two waves was largely
unknown and in need of establishment. Basically, we first try to establish MFIT over
the two waves and then look for latent changes in these scales over age. Thus there
are only eight scales to consider here (four cross-sectional scales by two longitudinal
occasions), so there is still a lot of work to do!

It is well known that longitudinal data can deal with different concepts than cross-
sectional data (see Baltes & Nesselroade 1979; McArdle & Nesselroade 2014).
That is, cross-sectional data has many good opportunities for “between person
differences” but it cannot deal with “within a person changes.” The first dependency
that is created and observed is that the same person is used at multiple occasions.
This dependency has been used in multivariate modeling a great deal. Because the
same person has multiple inputs and outcomes we can deal with this in different
ways. All of the individual changes that can be examined are due to the longitudinal
models (see McArdle 2008) allowing dependencies among the observed scores at
various time points. This dependency is also responsible for the popularity of multi-
level modeling (see Bryk & Raudenbush, 1987, 1992). It is demonstrated here
that the statistical power to detect changes is an explicit function of the positive
dependencies and the timing of the observations.

The typical lack of dependency is monitored in statistics by a careful assessment
of the original scores, typically using linear regression with an outcome score (Yn)
and a predictor (Xn) score and usually written as

Yn D “0 C “1Xn C en; (1)

where the regression terms “0 and “1 are thought to apply to everyone, and the
residual term (en) is an individual characteristic that is unmeasured and supposedly
follows a normal distribution. This is an effort to find the relationships between some
outcome Y and the input variable X. If X is a group then this model provides a way to
determine group differences on the outcome (the usual ANOVA as a between groups
t-test). But this is not an effort to deal with observed dependency in traditional
regression analysis (see Fox 1999).

But some people noticed that having an individual measured more than once
created a statistical virtue. Indeed this was the stimulus for progressively repeated
measures. One classical representation of longitudinal data can be found in the
repeated measures model for the analysis of variance (RANOVA; see Fisher 1925).
In this first model the individual score at any time point (Y[t]n) is assumed to be
decomposed as
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YŒt�n D “0n C “1Xn C eŒt�n (2)

where the individual (n D 1 to N) is allowed to differ at all throughout the time
series (t D 1 to T) in two ways: (1) Individuals are different from one another at
all times, and (2) there are random normal fluctuations at each time point (e[t]n).
The use of the X weighted function is an adjustment in the mean of the scores for
group differences in the trends over time. This model can give correct statistics for
the mean of the individuals and the effect of X (assuming it is the same over all
occasions) as long as the contrast questions are “spherical” in shape (among others,
see Davidson 1972; Huynh & Feldt 1976).

The repeated measures model permits the power to detect differences between
treatment groups in means (or over time) as a function of the standard deviations
of the scores (as usual, with the sample size included as the square root of N at the
end). But in repeated measures, the variance at the second occasion is also based on
the correlation of the observed scores over time:

�d D .m Œ1� � m Œ2�/ =
�

sŒ1�2 C sŒ2�2
�

� 2 ..s Œ1�C s Œ2�/ r Œ1; 2�/ (3)

where we have symbolized the estimated mean difference as �d, using the two
observed means as m[1] and m[2], the two observed variances as s[1]2 and s[2]2,
and the observed correlation over time as r[1,2]. This is nothing more than the mean
difference over the standard deviation, but the correlation is for the same measure at
two occasions. So for the same mean difference (m[1] � m[2]) as found in a cross
section we can say we have found a significant different from zero if the correlation
of the two measures is positive (which it typically is; see Bonate 2000; Cribbie &
Jamieson 2004). For this reason, it is typically far better (depending on the sign
of the correlation) to measure a person twice than to measure twice as many people
just once. That is, the longitudinal case is far more powerful than the cross-sectional
case. This is not the only issue of statistical power (see Tu et al. 2005) that could be
considered, but it is relevant here. Of course, there are more than two time points
over which change is to be measured, and this typically increases our power.

The Move to a Latent Curve Model

A straightforward generalization of this RANOVA model allows the move to a latent
curve model (LCM) and makes it not very hard to understand. This LCM was
first used by Tucker (1958, 1960 1966) and Rao (1958), and later Meredith and
Tisak (1990) gave it a structural equation model (SEM) interpretation (also see
McArdle 1986 and McArdle & Epstein 1987) to determine the best fitting curve to
the observed data. Basically, the slope can vary along with any way the individual
changes. Each individual is assumed to have three latent variables, defined as



6 J.J. McArdle

YŒt�n D Ln C Sn� Œt�C uŒt�n (4)

so the three sources of variation in any response are: (1) A constant change for the
individual over all times (the latent level D L), (2) a systematic change (based on a
slope score D S, which is systematic with the set of basis coefficients D�[t]), and
(3) a unique change D u[t], which is essentially random with respect to the other
changes. We can examine that the set of basis coefficients (�[t] is not necessarily
linear) to determine the slope of the best fitting line or trajectory of the data, but this
line supposedly has the same coefficients for everyone.

All sources of individual differences are indexed by variance (¥L
2, ¥S

2, and §2).
In addition, the constant change is allowed to have covariance (¥LS) or be correlated
(¡LS) with the systematic changes. The variance that remains (the uniquenesses,
§2) is assumed to be uncorrelated with the changes or the starting point and is
furthermore assumed to be equal over time.

We can also have the observed group effects on these individual coefficients,
and we can do what we want with them. What is usually done follows the usual
regression logic with two of the latent variables as new outcomes:

Ln D ’0 C ’1Xn C eLn and Sn D “0 C “1Xn C eSn (5)

in which case the eL and eS account for the residual variance and covariance. This
kind of mixed model function, including both fixed (’0, ’1, “0, “1, and �[t]) and
random (¥L

2, ¥S
2, §2, and ¥LS) effects, can be evaluated for goodness of fit using

the standard SEM statistical logic (see Meredith & Tisak 1990; McArdle 1986). If
the model fits the data of means and covariances we assume that the score model (of
[4] and [5]) is reasonable.

The kind of change we will test is dependent largely on the set of basis
coefficients we employ. We can force the systematic change to be linear with the
time simply by fixing the coefficients �[t] D [0,1,2,3 : : :T]. This is often done, but
it is only one option, and there are many others. We can even estimate some of the
coefficients (T-2 in the one factor case) so that they form an optimal curve for the
data. This is basically what the earliest pioneers (Tucker, Rao, Meredith, etc.) did.
But there are many more ways to examine the curves and a lot can be done here.
Using the basic logic, we can also consider more than one curve for these data (as
done in later chapters).

The LCM is considered useful now because it can describe both, group (i.e.,
fixed) and individual (i.e., random). For this reason it is popular in psychology
where we often are interested in group effects but individual differences from the
same perspective. We should note that it is not widely used in other areas of science
(e.g., Econometrics) where the dominant paradigm uses time as a causal hinge,
so which measure came last in time is regressed on all the prior instances. The
same longitudinal data can be used in this way (see McArdle 2008; McArdle &
Nesselroade 2014).
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We note immediately that the LCM does not try to explain how the prior time
points (if measured) impact the subsequent events. This makes the procedures of
LCM more descriptive than inferential. But all is not lost because there is some
savings in the number of parameters used to define these differences.

Model Fit and Model Selection

A good question can be asked about “Does the model fit the data?” This question
can be answered in a number of ways. But what we want is a model that has easy to
understand parameters and fits as well or better than others of its kind. The approach,
known by the Bayesian Information Criteria (BIC) is used throughout this book so it
is useful to investigate it further now, according to Raftery (1996) and Nagin (2005,
p.64) the formula for BIC can be written as

BIC D log .L/–1=2p log.n/ (6)

where the log is the natural logarithm, and L is the model’s maximum likelihood,
and this is penalized (lowered) by p, the effective number of parameters used, and n,
the sample size of individuals used. “If one is comparing several models we should
prefer the one the lowest BIC values.” (Raftery 1996, p. 145). In this way, the BIC
“counterbalances” a good fitting model by the number of parameters and the sample
size used. So, although it does not seem to be the fit of the model, it can help choose
one model among many others. What we hope to obtain is a model where the BIC
is as negative as possible, although there are several ways to use this information.
Several keen insights into how this BIC behaves are given in Nagin (2005), and
these will not be repeated here, but the use of Bayes factors is illustrated. The use
of the BIC is obviously Nagin’s favored device for model selection with groups, but
he does conclude that:

Such debate is important for advancing the theoretical foundations of model
selection. However, disagreement about the technical merits of alternative criteria
may obscure a fundamental point—there is no correct model. Statistical models are
just approximations. The strengths and weaknesses of alternative model specifica-
tions depend upon the substantive questions being asked and the data available for
addressing these questions. Thus the choice of the best model specification cannot
be reduced to the application of a single test statistic. To be sure, the application of
formal statistical criteria to the model selection process serves to discipline and
constrain subjective judgment with objective measures and standards. However,
there is no escaping the need for judgment; otherwise insight and discovery will
fall victim to the mechanical application of method. In the end the objective of
model selection is not the maximization of some statistic of model fit. Rather it is
to summarize the distinctive features of the data in as parsimonious a fashion as
possible (Nagin 2005, p.77).

I can easily say I am in complete agreement about these model-fitting issues.
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Potential Biases

Thus, the collection of longitudinal data is useful because: (1) They allow the study
of the natural history of the development of problem behavior, such as externalizing
behavior, its onset and termination. (2) They allow the study of trajectories or
pathways. A pathway is defined as “when a group of individuals experience a
behavioral development that is distinct from the behavioral development of another
group of individuals” (Loeber & Farrington, 1994, p. 890). Trajectories or pathways
provide information of processes of continuity and discontinuity and on inter-
individual differences. In addition, Loeber and Farrington (1994) postulate that
the best studies now rely on multiple informants. The chapter by Stemmler and
Lösel (Chapter 4) meets all of these criteria and this chapter should be considered
carefully.

But we need to be clear about the difference between a repeated measures design
and a multivariate design because both allow correlation over time. For both, sample
members are measured on several occasions, or trials. But in the repeated measures
design, each trial represents the measurement of the same characteristic, in the same
way, at a different time. In contrast, for the multivariate design, each trial represents
the measurement of a different characteristic. It is generally inappropriate to test for
mean differences between disparate measurements, so the difference score is useful
(in contrast to what is stated in Cronbach & Furby 1970).

But the longitudinal method is not without some well-reasoned detractors (see
Rogosa 1988). Among many critiques of the longitudinal method: (1) It is hard to
get the representative sample to come back to a second testing, and the people who
do come back have done very well at the first time (see McArdle 2012); (2) if they do
come back, they have seen the measures before, so it is difficult to measure exactly
the same constructs at a second time, without retest or practice effects; and (3) the
construct or thing that we want to measure may have changed, and we will not know
it by simply looking at the variance or taking the difference between measures.
These are some of the many potential confounds of the longitudinal method.

The results of these problems lead us to think that a cross-sectional study had
less potential confounds than a longitudinal study. This is hardly ever true because
these conditions can occur in cross sections as well, and we may not know it.

Assumption 1: In the LCM, the Latent Scores Used Are
Related to Latent Change Scores

It seems that all the prior work has focused on the “change” at the individual and
group levels but very few researchers are willing to say so. Instead, words like
“curve” or “slope” or “trajectory” are used. But there turns out to be an easy way to
represent these basic change ideas and we will usually do so here.

We can define the basic model of change to isolate the functions as

http://dx.doi.org/10.1007/978-3-319-20585-4_4
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YŒt�n D Ln C
X

i D 1; t f�yŒi�ng C uŒt�n (7)

so the changes are just accumulated up to that time (i D 1 to t). This is not intended
to be a controversial statement and it leads to the same fit as the prior linear models,
but it is really another way to consider have the outcome at time t (after McArdle,
2008).

The change as an outcome can be strictly defined at that latent variable level
(after McArdle & Nesselroade 2014) as

�yŒt�n D yŒt � 1�n– yŒt�n or yŒt�n D yŒt � 1�n C�yŒt�n; (8)

so the latent score is the source of all inquiry. This can be useful in a number of
interpretations, especially for the regression of latent changes. For example, we now
can fit

�yŒt�n D “0 C “1Xn C e�n (9)

so the latent change score is modeled directly, and has a residual (e�n). But the
LCS approach is entirely consistent with the LGM approach, as stated by McArdle
(2008) and this is why the same values emerge for various estimates. The LCS
model is largely a clearer change-based re-interpretation of the LCM, and the LCS
model can be programmed and used efficiently (see McArdle 2008; McArdle &
Nesselroade 2014).

Latent changes are apparent in this model. Much more could be said about this
approach, but this is all that will be needed here.

Assumption 2: In the LCM, the Model Parameters Have
the Same Shape for Everyone

This assumption is also true of all regression models (see Eq. (1)) but it is most
clearly not appropriate here. That is, we can control the size and sign of some
parameters of the trajectory with the means and the variances of the latent variables,
but the shape of the latent change is a combination that is beyond the usual reach.

The chapters listed here do distinguish between these shapes using an unobserved
difference between people. That is, this clear difference between individuals is recast
at the main reason they are members of a latent grouping—a mixture of different
distributions. This was evidenced in the brilliant early work of Tucker (1960 1966,
also see Tucker 1992), and the subsequent maximum-likelihood formalizations of
Nagin (1999 2005) and Muthén and Sheddon (1999).

This logic using multiple groups is indeed a good idea, because it is focused on
different kinds of changes within the person. But Tucker (1960 1966 1992) seems
to have found a way to differentiate people with standard methods of factor-cluster
analysis. Perhaps the first time this procedure was used in real questions and stated
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Fig. 1 From McCall,
Applebaum & Hogarty (1973,
p. 48)
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clearly was by McCall, Applebaum, and Hogarty (1973, pp. 44–48) who suggest
that there are five clusters of people based on their changes over age in IQ tests over
age (see Fig. 1).

Now it is clear that Tucker (1958 1960 1966) did not have all the statistical tests
(or MLE) to support these choices, nor did he have or did develop the mixture
model as the possibility of a person belonging to multiple clusters (this allowing
for a much better mixture), but he did distinguish large group of persons on their
trajectory using multiple factors and he resolved multiple clusters, so we will
generally consider Tucker’s (1958 1966) work as pre-dating the more recent work
of Nagin (1999 2005) and Muthén and Sheddon (1999).

Assumption 3: In the LCM, the Residuals Are Equal
and Uncorrelated, and the Model Fits

There is much more that could be said about the equality of the unique variance (for
details, see Grimm & Widaman 2010) but the basic idea is on must have an a priori
theory about why these kind of unique but uncorrelated changes are needed. If we
do have such ideas we can remove the variance terms at each time and achieve a
much better fit to the data. We will not deal with these issues too much here. In this
regard this is an unchallenged assumption that deserves much more scrutiny.
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The simple fact that “everything else” is supposedly uncorrelated is actually
never met and yet this is what is tested by the model fit. The test of goodness of
fit is supposed to test whether or not the LCM can be considered viable. But the
way we typically test any hypothesis is to remove all other features until all that
are left are random variables. This is primarily because we do know how to test for
random events (usually with the �2 goodness-of-fit test; but see Raftery 1996).

Assumption 4: In the LCM, the Model Has the Properties
of Invariant Measurement

In all cases, it is also necessary to illustrate the loss of fit due to “multiple
factorial invariance over time,” (MFIT) and how this invariance can be crucial to
understanding changes. That is, some things may not change while others will. Here
we will only use common factor analysis in a simple example. This is a second
dependency because the measures are somewhat the same within a time. Some
elaboration of the early work on any scale is further developed for items. This is
related to both “test bias” and “harmony.” That is, if we assume that a test is a good
measurement of a construct, it should behave the same way at all waves.

I do not view MFIT as a “testable hypothesis” as many others do (e.g., Meredith
1993) but I view this as a necessary feature of longitudinal data. That is, in the
absence of MFIT it is not clear that we can take differences between successive
occasions, and this is critical to most any accumulation model. Thus, this test would
be a useful foil against a measure, and we can use it to evaluate an existing measure.
But to create one, we must be accumulating something, and that something is strictly
defined as the object of our MFIT. Perhaps it is best to say we can evaluate the part
of the MFIT that works the way we intended. At least our intentions for MFIT are
clarified in this way.

Assumption 5: In the LCM, the Model Variables All Have
Normal Properties

Another kind of dependency is that due to items that are miscalculated as normal.
That is, we typically assume all variables are normally distributed, even when they
are highly skewed. This is also the case of a variable that can reach an upper or
lower limit and should be considered censored (see Wang et al. 2008). As we do not
illustrate here, but could have, this can pose a major problem for our understanding
of the changes (but for an example, see Hishinuma et al. 2012; McArdle et al. 2014).
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Assumption 6: In the LCM, the Individuals Have All Been
Measured at Exactly the Same Developmental Time Periods

This is also probably never true in epidemiological and psychological studies. The
problem comes only because the model assumes this is true. In fact, the age-at-
measurement is usually not told to the analyst. This means people can be “measured
on their birthdays” or at approximate yearly intervals of time, but we just never
know. The word “approximate” is used here frequently, and many see this as a
natural feature of longitudinal data. But it is not. The big problem that this creates is
that the correlations over time, if they are not in a sequential proper timing, can yield
some haphazard results. The timing is important to future studies and not enough is
done about this issue yet.

The further assumption that we know the true developmental timing is quite
absurd. We do not know this and we do not track it very well either. It could be
age or it could be something else like puberty (see McArdle 2011), but we need to
know it to state how the individuals form groups of people (see Nagin 2005). We
often just use whatever longitudinal data we are given, because we are very happy
to get some, and we assume we can do something with it, as is. But we cannot.

The Studies of the First Section of This Book

The studies of the first section of this book seem to criticize some of the basic
assumptions of the standard LCM. This should be considered fair as a target because
it is loaded with assumptions and the linear LCM was designed to be just a starting
point for future work. The concepts of simultaneous estimation are also critical here
to distinguish what is being done.

The first study by Paolo Ghisletta, Eva Cantoni, and Nadège Jacot as presented
here is an examination of more than linear relationships in psychological research,
which they term an NGCM (for nonlinear growth curve model). That is, they do
not stop at the quadratic form of the prior LCM, and they do not consider the linear
model to capture all the relevant variation in their outcomes (in their example, four
blocks of 20 trials of time on task in a pursuit rotor task). Instead, they consider
other terms (see their Eq. (6)) that are not a usual part of this basic model (our Eq.
(4)).

These author(s) do fit a wide variety of nonlinear models to these data, and this is
notable, and they compare each, and this is also notable. But they do drop linearity
quickly as a possibility and I think this is a mistake. That is, before we deal with
how nonlinear a model can be I think we ought to first see how linearity works, in
terms of explained variance at each time point (˜2[t]) at least.

So I also think these claims can be made from a different perspective. That is,
the LCM with a different curve may capture some of these individual changes. The
curve could obviously be defined using the last 18 measurements, but an exponential
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curve could be fitted with less parameters. Nevertheless, the model with the best fit
for least parameters is an obvious choice. This, at least, is how I could deal with
all the nonlinearity that seems to be present here. I would like to see LCM and the
quadratic model as a comparison in their tables.

The second application titled “Stage-sequential growth mixture modeling with
criminological panel data” is by Jost Reinecke, Maike Meyer, and Klaus Boers
does exactly what this title suggests. However, it uses General Growth Mixture
Modeling (GMM, from Muthén & Sheddon 1999) within a LCM framework to
empirically distinguish between people. Expanding upon the prior work of Kim
and Kim (2012) they consider three distinctive types of stage sequences: (1) stage-
sequential (and linear) growth mixture models, (2) traditional piecewise GMM,
and (3) discontinuous piecewise GMM and sequential process GMM. These three
models are applied to a range of adolescence and young adulthood using data from
the German panel study termed, Crime in the modern City (CrimoC, Boers et al.,
2014). In the case of count variables a Poisson or negative binomial distributions
(following the work of Hilbe, 2011, not Nagin 2005) can be considered which give a
better model representation of the data. With the count data that criminologists seem
to have, the Poisson model for measurement is used because it is more appropriate.
That is, a regular regression model (but not evaluated) may still work, but the
Poisson model that is used here as a measurement device because is sensitive to
the use of a probability of an event. The zero-inflated Poisson (or ZIP; see Nagin
2005) model may even be a better choice because it essentially proposes that the
reason for the zero counts (no criminal acts) is possibly different than the reasons
for the rest of the counts (one, and so on). This can always be compared to the
assumption of a continuous distribution of the LCM. And this all can be combined
sequentially in a program like Mplus (Muthén & Muthén 2012).

This chapter is notable in a number of ways. First the author(s) use a three-
part curve model, with knot points that are notable in terms of substance. This is a
distinction that is worthwhile to make and it could be pursued further. I do not see
this as quite as different as the typical LCM, so I would compare the fit of both of
them. Second, they simultaneously use a measurement model based on a Poisson
distribution for the scores. This is decidedly different and is most appropriate for
data that comes in the form of counts. But their justification for the use in real data
is not presented clearly. Third, they simultaneously use a mixture model to examine
for the German Crime data. This use of multiple groups is based on the trajectory
differences and they assume these cannot be accounted for otherwise. I would very
much like to hear what Nagin (2005, p. 54) says about this part of the analysis. But
in any case, any one of these three concerns would be a challenge to fit but they
proceed as if this is all standard. This is not standard, and what they do here is quite
amazing, partly because it can be done at all.

The differences between the current versions of Mplus (Muthén & Muthén 2012)
and SAS PROC TRAJ (Nagin 2005) are important here. Currently, in Mplus, we
can ask if any parameter is invariant over groups, and we do not need to define the
group membership in advance. This can be in terms of any mean, regression, or
covariance component. But in this same sense the analysis is entirely exploratory.
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If we further assume that the factor loadings �[t], for at least t D 3, T, are different
we can have different curves. This can be written with different means and variance
terms so the entire placement within groups can differ. This is somewhat different
than assuming different linear or polynomial coefficients for the same data. Much
more could be said here (see Nagin 2005, p. 54) but Mplus 7 (now used by almost
everyone here) seems much more flexible to me now. But I fully expect the debate
about “groupings” will go on, and this is productive.

The third application by Mark Stemmler and Fredrich Lösel is titled, “Devel-
opmental pathways of externalizing behavior from preschool age to adolescence,”
and also uses general growth mixture modeling (GMM) with BIC this time to
separate five categories of persons among their total sample size of n D 541. The
goal of this study is to analyze the data of the Erlangen-Nuremberg Development
and Prevention Study (ENDPS; Lösel et al., 2009) for the first time with regard
to different trajectories for externalizing behavior. ENDPS is a normative sample
and is a combined experimental and longitudinal study on antisocial child behavior
covering a time period of nearly ten years. Social behavior was rated by multiple
informants such as self, mothers, kindergarten educators, and school teachers. Using
this longitudinal data, they seem to have found (1) the “high chronics” (2.4 %;
n D 13), who are receiving the highest values for externalizing behavior from
childhood on up to adolescence; (2) the “low-chronics” (58.8 %; n D 317) who are
low on externalizing behavior throughout the years; (3) the “high-reducers” (7.9 %;
n D 43) who start out high in childhood, but who reduce their externalizing behavior
monotonically over time; the (4) “late-starters-medium” (8.7 %; n D 47); and the (5)
“medium-reducers” (22.4 %; n D 121). The results stress the idea of a life course
perspective, which enable the study of the natural history of the development of
externalizing behavior, its onset, and termination.

In all, these authors give an excellent history of the GMM, and demonstrate how
it has been used before in many criminological samples. They seem to show that
most studies report between three and five groups (with a total range of two to seven
groups), and they use the BIC. Most studies show the group of life-course persistent
or chronic offenders, and one group that does not exhibit violent, aggressive, or
delinquent behavior; in addition, there are existing groups of late onset or desisting.
Jennings and Reingle (2012) claim that the number and shape of the groups depend
on the nature of the sample (high risk versus normative sample), the life course
captured, the length of the observation, and the geographical context. Among
the author(s) conclusions, they postulate that further research should be based on
multiple observations and across multi-informants (e.g., child/youth reports, parents
and teacher report) to ensure the best results. Since this result requires expertise in
criminology, we must leave it up to the reader to make sense of these trajectories.

The fourth application by Jang Schiltz is proposal for the potential extension
of “the Nagin model” of multiple groups. This can be a quite useful technology
because in this representation we do not have to think everyone has the same general
nonlinear slope of their trajectory. The problem with Nagin’s original formulation is
that he only determined trajectories for the mean level and a quadratic slope, and less
effort was put into the variance terms or other forms of the slope (see Nagin 2005,
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p. 54). These changes are made and the basic model is extended here to include
group differences in the slopes and the error terms.

Since we all believe that there will be substantial heterogeneity in real data—
different change patterns for different groups—and the LCM will not be capable of
dealing with these based on two means and covariances alone, it is clear that this
model is more correct. This and other examples on the use of the mixture model
is certainly a powerful latent variable modeling approach. But this latent variable
model is not the only way to explore the groups—they can even be formed out of
measured variables too (see Brandmaier et al. 2013).

The exploratory use of measured rather than latent variables is attractive on a
number of counts. First, there are usually many extra ancillary variables that are
measured and used as covariates for no particular reason other than they exist. As
we will demonstrate, this typical usage can tell us something about their impact on
mean differences or between group effects. But what we are interested in is putting
them into the analysis is to see if they impact the variances and covariances also.
Second, there are always extra ancillary variables that are measured and these could
be selected for this exploration. That this is any mixture model is an exploration that
is obvious to anyone who uses them and the selection of a group is complicated. So
we do not try to handle all these assumptions at once but instead we refer to Nagin
(2005) for details on this issue.

Our Cognition in the USA (CogUSA) Study

Our CogUSA study (see McArdle & Fisher 2015) was designed to do something
different than those in this section—that is, the most notable feature of the design
of this particular longitudinal study is the variation of age at the initial time, and
the variation between time intervals for different waves of testing. As stated earlier
in our last Assumption 6, this is a feature of many psychological measurements
although it is hardly ever dealt with on a formal basis.

Our ability to measure similar constructs in an in-person face-to-face (FTF)
interview and over the telephone (TEL) is not the key issue here, but it is important.
In prior surveys (including the HRS; see Juster & Suzman, 1995; Heeringa,
Berglund, & Khan 2011) the only human abilities measured over the phone (say,
using the Telephone Interview of Cognitive Status; TICS; Fisher et al. 2013) were
the very simplest ones (Episodic Memory and Mental Status; see McArdle, Fisher, &
Kadlec 2007). It is not too surprising that these simple variables could be measured
in the same way in either modality (FTF or TEL) and still retain MFIT (see McArdle
2010; McArdle & Nesselroade 2014).

But when we consider measuring something as important in aging research as
fluid intelligence (Gf ) in a survey, we remain perplexed (see Lachman & Spiro
2002). This variable needs to measure “reasoning in novel situations” and this is
fairly hard to do. One of the ways this can be done in surveys is with indices that
supposedly measure numerical reasoning (NR), a decided subset of all reasoning
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and thinking, and the measure of numerosity (NU) from the HRS is a good indicator
of this. Another way to consider NR this is to measure Serial Seven’s (S7) from the
HRS, because this takes some NR as well as holding specific but complex ideas in
memory (see Blair 2006). Still another way to indicate NR is to measure something
like Number Series (NS) because these are intended to be small puzzles in numerical
form.

One adaptation is that we initially reasoned that people, especially older people,
would not take all test items necessary for a reliable score on anything, so the items
administered had to be cut down. In the case of both Immediate Recall (IR) and
Delayed Recall (DR) and Numeracy (NU) and Serial 7’s (S7) the work had already
been done by the HRS staff. These were properly considered as short forms due to
the required telephone constraints on time.

The final telephone definitions follow on Table 1. They were all administered
over the telephone and this is a limitation because we do not really know what the
respondent is doing. These include definitions of IR, and DR to measure a general
memory or general retrieval (Gr) factor, and NU, and NS to measure a general
fluid (Gf ) factor at each time ([1] or [3]). We will see if the fit of this specific two
factor model is different than a one general intelligence (G) factor, but we will
examine the factor loadings. Clearly, McArdle et al., (2007) found the first two
scales (IR and DR) to be highly correlated (r 0.80) and suggested they be added
up and calculated as a single score termed episodic memory (EM) to distinguish it
from another scale of cognitive measurement from the TICS, mental status (MS;
fBC C S7 C NA C DAg / 4), but the second factor here is much different. And we
hope it is clear that several other cognitive measures obtained in CogUSA were not
yet used here (see McArdle & Fisher 2015).

For common factors to retain their meaning over time, we required them to have
“strict” invariance (Meredith 1993). In this case, this implies the factor loadings (ƒ),
unique variable intercepts (I), and unique variable variances (‰2) are all assumed to
be invariant over time (for each measure). We also brought all means differences to
the factor score level. This is typically tested but it is clear that any differences or
changes over time must go through the common factors or they are not worth using
and summarizing at this level. This is basic or, indeed, fundamental to our definition
of the latent variables. This does imply that the way we measure the common factors
can change from time to time, but for now we assume they are identical at both
occasions of measurement.

Many other researchers search for different forms of invariance (e.g., see Byrne,
Shavelson, & Muthén 1989; Reise, Widaman, & Pugh, 1993; McArdle, Petway, &
Hishinuma 2014), and now this is an evaluation of configural, metric, strong, or
strict invariance constraints. We will not partake in this quest again here. This is
primarily because we only want the number of factors (K) to be determined by what
is comparable over time in measurement (as in McArdle & Cattell 1994; McArdle
2007) not by a lack of invariance. There is a prominent thought that the search for
the type of invariance of a measure is crucial (see Byrne et al. 1989), but if this is
not met then the number (or type) of common factors (can be) needs to be altered to
meet this criterion. That is, the criterion of invariance should always be met before
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Table 1 Selected Telephone Measures used in CogUSA (McArdle & Fisher, 2015)

All HRS/AHEAD cognitive measures were selected to satisfy the following considerations: (a)
provide descriptive information on a comprehensive range of cognitive functions; (b) span all
difficulty levels from competent cognitive functioning to cognitive impairment; (c) be sensitive
to change over time; (d) be administrable in a survey environment with lay interviewers, over the
telephone, in a short time; and (e) be valid and reliable (from the HRS documentation Report by
Ofstedal, Fisher and Herzog. 2005; DR-006). As always, the IWER is asked a series of questions
about the incorrect responses. In addition, several other clearly cognitive measures (BC, S7, RF,
CESD) are obtained at both waves were not used in these analyses
IR D or immediate recall (IR)—One set of 20 stimulus word (from four lists) are read aloud, and
the respondent (R) needs to restate these words (no credit is given for errors of any kind). The
observed score is from 0 to 10. At W3 they are administered a different list of ten words (from the
four lists)
DR D or delayed recall (DR)—after about 5 min (depending upon how long it took to do the eight
CESD items), the R is asked if they recall any of the words from the IR. They are then asked to
restate these words (no credit is given for errors of any kind). The observed score is from 0 to 10
NU D “Numeracy”—Since HS 2002, the R is asked to answer up to three numerical questions: (1)
“Next I would like to ask you some questions which assess how people use numbers in everyday
life. If the chance of getting a disease is 10 %, how many people out of 1,000 would be expected
to get the disease?”(2) “If 5 people all have the winning numbers in the lottery and the prize is
two million dollars, how much will each of them get?” (3) “Let’s say you have $200 in a savings
account. The account earns ten percent interest per year. How much would you have in the account
at the end of two years?” The observed score is from 1 to 3
NS D Even though we wanted to, the Woodcock-Johnson “Number Series” items was far too long
to be included in CogUSA so we cut it down from about 42 items to about 6 adaptive items. A
modification of “which six” items was tried in each of the two occasions, Wave 1 (W1) and Wave
3 (W), but both testings supposedly yielded a W-ability estimate of NS. In the W1 testing the plan
was to administer a first item of medium difficulty (for their level) and (0) if they got it incorrect
an easier item about half way down the scale (based on the known difficulty of the WJ item) was
presented, but (1) if the R got the item correct a harder item, about half way up the W-scale,
was presented. All testing ending at six items and a WJ score was estimated from this pattern of
responses. In the W3 testing s similar items were administered in a block adaptive fashion. The
key idea here is to only administer six items, but the same three items are given first, spread out
in difficulty, and the second set of three items are supposedly centered around the persons’ ability
level. In this case a W-score can be formed. Thus we assume, but do not test, MFIT

we evaluate the latent changes (as in McArdle & Cattell 1994). This is only our
belief system, and we use this belief at all occasions, but we should point out that it
is not one used by many others.

Methods

Available Data

The data to be analyzed are a small subset (4) of scales from recent tests of Cognition
in the USA (CogUSA; see McArdle & Fisher 2015). These scales were chosen in


