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  1      Introduction: The Holobiont Imperative                     

            This book is being written at a time when fundamental shifts in thinking are 
 occurring in the life sciences, but when the metaphorical ground has not yet settled 
under our feet. There are no germ-free animals in nature. Epithelia in contact with 
the environment are colonized by microbial communities, and all multicellular 
organisms must be considered an association of the macroscopic host in synergistic 
interdependence with bacteria, archaea, fungi, and numerous other microbial and 
eukaryotic species. We refer to these associations that can be analyzed, measured, 
and sequenced, as “holobionts” or “metaorganisms” (Fig.  1.1 ).

   Half a century ago, Lynn Margulis ( 1993 ) popularized the idea that symbiosis 
has been an important factor in evolution, but much of the immediate interest was 
on the most obvious and signifi cant eukaryote–eukaryote symbioses such as corals 
and giant clams, the only symbioses involving prokaryotes to receive signifi cant 
attention being lichens and rhizobia. By contrast, there is now a growing realization 
of the importance and ubiquity of associations involving prokaryotes and archaea to 
every aspect of animal life—bacteria not only enable animals to metabolize other-
wise indigestible polysaccharides such as lignin and cellulose, but also shape ani-
mal development and behavior. 

 This scenario is also playing out within the fi eld of “traditional” symbioses, so 
that whereas 20 years ago, the coral symbiosis was viewed simply as a cnidarian–
dinofl agellate association, current thinking has the coral “holobiont” beside the 
photosynthetic algae  Symbiodinium  also including bacteria and also viruses. 

 Interactions between the members of the holobiont, i.e., bacteria, eukaryotic 
symbionts, and host cells, have probably been critical to enabling the key transitions 
in animal evolution. However, the reciprocal is also true—animals have dramati-
cally transformed the physical environment that is available for bacterial coloniza-
tion. Animals also provide niches that simply do not exist elsewhere—for example, 
the rumen and the vertebrate gut, the light organ of the bobtail squid, or the intracel-
lular environment of an ascidian. Animals also exercise enormous selective forces 
on bacterial populations—think only of the spread of multidrug-resistant (MDR) 
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strains of  Staphylococcus aureus , or the evolution of bacteria capable of degrading 
completely novel chlorinated hydrocarbons. 

 Since their Precambrian origins, the Metazoa have transformed the physical 
environment, but always in collaboration with bacteria. Along the way, some ani-
mals have also formed close relationships with other eukaryotes, but these macro-
symbiotic bonds have been forged in the context of preexisting host–bacteria 
interactions. As discussed in Chap.   5    , the partnerships that animals have forged with 
bacteria have been powerful agents of change. This becomes particularly apparent 
by the transformation of vegetation as a consequence of the evolution of the 
ruminants. 

 The increasing realization that animals cannot be considered in isolation but only 
as a partnership of animals and symbionts has lead to two important realizations. 
First, it is becoming increasingly clear that to understand the evolution and biology 
of a given species, we cannot study the species in isolation. Second, the health of 
animals, including humans, appears to be fundamentally multiorganismal. Any dis-
turbance within the complex community has drastic consequences for the well- 
being of the members. 

1.1     Of Complex Diseases and Animals as Complex Systems: 
Why Bacteria Matter 

 The last 50 years have seen fantastic progress in combating and eradicating terrible 
diseases. Deaths from infectious diseases have declined markedly in the last 
50 years. In 2002, Jean-Francois Bach published a study in the New England Journal 
of Medicine showing an inverse relationship between the prevalence of infectious 
diseases (decreasing) and the prevalence of immune disorders (increasing) 
(Fig.  1.2a ). The development of antibiotics and other antimicrobial medicines 
together with strategic vaccination campaigns has virtually eliminated diseases that 
previously were common in the United States and Europe, including diphtheria, 
tetanus, poliomyelitis, smallpox, measles, mumps, rubella, and  Haemophilus 

  Fig. 1.1    Any multicellular 
organism must be 
considered a holobiont or 
metaorganism, a complex 
community of many 
species which have been, 
and are being, evolved       
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infl uenzae  type b meningitis. As reported by the National Center for Infectious 
Diseases, CDC, of the United States in 1999, this decline contributed to a sharp drop 
in infant and child mortality and also to a signifi cant increase in life expectancy.

   However, this success story has a second face (Fig.  1.2b ). As pointed out fi rst by 
Jean-François Bach ( 2002 ) from the INSERM Research Institute and Hôpital Necker 
in Paris, epidemiologic data provide strong evidence of a steady rise in the incidence 
of allergic and autoimmune diseases in developed countries over the last 50 years. 
The incidence of many diseases of these two general types has increased: asthma, 
rhinitis, and atopic dermatitis, representing allergic diseases, multiple sclerosis, and 
insulin-dependent diabetes mellitus (type 1 diabetes)—particularly in young chil-
dren—and Crohn’s disease, representing autoimmune diseases. The prevalence of 
asthma, hay fever, and atopic dermatitis doubled in Swedish schoolchildren between 
1979 and 1991, and in Lower Saxony, Germany, the incidence of multiple sclerosis 
also doubled from 1969 to 1986. The incidence of Crohn’s disease more than tripled 
in northern Europe from the 1950s to the 1990s. The incidence of these disorders 
apparently began to increase in the 1950s and continues to do so today, although the 
incidence of some of these diseases may have plateaued. 

 Thus, success in reducing morbidity and mortality from infectious diseases 
 during the fi rst three quarters of the twentieth century, however, came at a cost and 
was accompanied by the appearance of diseases which were unknown before in 
humans and animals. Allergies used to be rare condition, but now as many as 1 in 
50 persons has the condition. Although most cases are mild, and overdiagnosis is 
likely, allergic reactions can be severe, sometimes leading to sudden death. The 
prevalence of both hay fever and eczema has been rising dramatically in recent 
years, paralleling the increase in asthma and type 1 diabetes. Another condition to 
consider is what is called infl ammatory bowel disease (IBD), a group of chronic, 
relapsing disorders of the intestine. IBD manifests in two main types, ulcerative 
colitis and Crohn’s disease, which partially overlap but have different pathology. 
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  Fig. 1.2    Inverse relationship between the incidence of infectious disease ( left ) and immune 
 disease ( right ) from 1950 to 2000 (Bach  2002 )       
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The etiology of IBD is complex, multifactorial, and incompletely understood. 
Throughout the past century, many theories have proposed and/or implicated the 
role of different bacteria. In particular, microbial dysbiosis has been hypothesized 
as a key player in disease development (Dasgupta and Kasper  2013 ). 

 Studies that have examined the role of altered microbiota in IBD demonstrate 
reduced gut microbiome richness and biodiversity, such as a decrease in 
 Faecalibacteria  with  Faecalibacterium prausnitzii  in mucosa-associated microbiota 
or feces. A defi nite causal relationship between bacteria and the pathogenesis of IBD 
has not yet been identifi ed. Two recent observations and developments point to 
causal relationships rather than simple associations between the microbiome and 
IBD. First, nearly every mouse model of the disease requires the presence of microbes 
for colitis to develop. And second, in humans, fecal microbiota transplantation 
(FMT) turns out as a safe, but variably effi cacious novel treatment option for infl am-
matory bowel diseases (IBD) (Colman and Rubin  2014 ). Although we may not know 
yet which is cause and which is effect—are the microbes causing the disease or not 
and is there a proof of Koch’s postulates for IBD or is it elusive—these studies show 
that microbes are somehow involved. And then there is autism. When the disorder 
was fi rst described in 1943 by Dr. Kanner, it was uncommon. Today, about one in 88 
children has autism or autism spectrum disorder (ASD). Although overdiagnosis cer-
tainly contributes to the rise in cases, it is not enough to explain the enormous 
increase. Multiple theories try to explain the increase in autism cases, including tox-
ins in water, food, and air and exposures to chemicals and pesticides during preg-
nancy. But no one knows for sure. Correlation does not equal causation. Evidence, 
however, is mounting that intestinal microbes exacerbate or perhaps even cause some 
of autism’s symptoms. Recent observations in animal models show not only that gut 
microbes are involved in brain development but also that autism-like syndromes are 
not developing in germ-free animals, and that syndromes can be cured by addition of 
certain bacterial compounds. Again, it is not clear whether these microbial differ-
ences drive the development of the condition or are instead a consequence of it. A 
study published in December 2013 in cell (Hsiao et al.  2013 ) supports the former 
idea. When researchers at the California Institute of Technology incited autism-like 
symptoms in mice using an established paradigm that involved infecting their moth-
ers with a viruslike molecule during pregnancy, they found that after birth, the mice 
had altered gut bacteria compared with healthy mice. By treating the sick rodents 
with a health-promoting bacterium called  Bacteroides fragilis , the researchers were 
able to attenuate some, but not all, of their behavioral symptoms. The treated mice 
had less anxious and stereotyped behaviors and became more vocally communica-
tive. Taken together, the composition of the gut microbes and their metabolic activity 
seems to be an important factor to keep in mind when attempting to understand why 
the incidence of autism is increasing so dramatically in the last few years. 

 It seems, therefore, that we have traded the eradication of infectious diseases 
with the appearances of immune defi ciencies, allergies, asthma, and infl ammatory 
bowel disease (Fig.  1.2 ). The reason for that is not fully understood. However, since 
any animal and any human individual appears to be in very close interaction with a 
stable microbiota, there must be an enormous crosstalk going on between the 
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symbionts and the host cells. Any disturbance of this crosstalk may result in severe 
disturbances. This phenomenon is not limited to the human population, but a 
 worldwide phenomenon and a characteristic feature which can be traced back even 
to one of the most simple forms of multicellular animal life, the coral polyps. 

 Susanne Sokolow, a researcher working at the University of California, Santa Barbara, 
with interest in infectious disease ecology in marine and aquatic ecosystems, compiled a 
list of all articles about coral disease, published up to December 2008, since the fi rst 
coral disease report in 1965 (excluding those pertaining only to stress-induced bleach-
ing) (Sokolov  2009 ). This list was compared to all reports from the same time period 
retrieved in the ISI Web of Science using the search word “coral.” Both disease and non-
disease reports exponentially increased over the observation period. As shown in Fig.  1.3 , 
Sokolow’s fi ndings indicate that coral diseases (not just bleaching) are emerging and 
also that coral disease research is rapidly expanding. Thus, these simple creatures also 
suffer from complex diseases that have increased in the last 50 years (Fig.  1.3 ).

   Most dramatically and visible to any tourist snorkeling in a reef is a disease 
termed “coral bleaching” (Fig.  1.4 ). Coral bleaching is the loss of intracellular 
endosymbionts ( Symbiodinium , also known as zooxanthellae) through either 
 expulsion or loss of algal pigmentation. Bleaching occurs when the crosstalk 
between the symbionts and the coral cells is disturbed and the conditions necessary 
to sustain the coral’s zooxanthellae cannot be maintained.

   The fact that we and obviously all multicellular organisms coexist with bacteria 
(for reference see, e.g. Knowlton and Rohwer ( 2003 )) tells us that our microbial 
“companions” may be there for a reason. Everything that changes the symbiotic 
partners appears to have a potential cost to us. That is  obviously how we have 
evolved. This raises a profound set of questions. Why do we tolerate them? How do 
we achieve a stable partnership with our microbes? And how do the microbes man-
age to live with us for such a long time? 
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  Fig. 1.3    Number of coral disease reports (excluding noninfectious bleaching) compared with all 
other coral reports over time (Source: Sokolov ( 2009 ))       

 

1.1 Of Complex Diseases and Animals as Complex Systems: Why Bacteria Matter


