SECOND EDITION

Edited by C. Neal Stewart, Jr.

1

Principles, Techniques, and Applications

50

9

PLANT BIOTECHNOLOGY AND GENETICS

PLANT BIOTECHNOLOGY AND GENETICS Principles, Techniques, and Applications

Second Edition

Edited by C. Neal Stewart, Jr.

Copyright © 2016 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

```
Stewart, C. Neal, Jr. author.
Plant biotechnology and genetics : principles, techniques, and applications / edited by C. Neal Stewart,
Jr. – Second edition.
p. ; cm.
Includes bibliographical references and index.
ISBN 978-1-118-82012-4 (hardback)
I. Title.
[DNLM: 1. Biotechnology-methods. 2. Plants, Genetically Modified-genetics. 3. Genetic Enhancement-methods. TP 248.27.P55
660.6'5-dc23
2015033118
```

Cover image courtesy of Jennifer Hinds

Set in 10/12pt Times by SPi Global, Pondicherry, India

Printed in the United States of America

 $10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1$

To the next generation of pioneers.

CONTENTS

Foreword	xvi
Contributors	xviii
Preface	XX
1. The Impact of Biotechnology on Plant Agriculture Graham Brookes	1
 1.0 Chapter Summary and Objectives Summary Summary Summary Summary 1.1 Introduction Cultivation of Biotechnology (GM) Crops Why Farmers Use Biotech Crops 1.4 GM's Effects on Crop Production and Farming How the Adoption of Plant Biotechnology has Impacted the Environment Summary How the Adoption of Plant Biotechnology has Impacted the Environment Sumact on GHG Emissions 1.6 Conclusions Infe Box 1.1 Norman E. Borlaug Environment E. Borlaug Environment E. Borlaug Environment T. Fraley References 2. Mendelian Genetics and Plant Reproduction Matthew D. Halfhill and Suzanne I. Warwick 	1 1 1 1 2 4 7 8 8 11 13 14 15 17 19 20
 2.0 Chapter Summary and Objectives 2.0.1 Summary 2.0.2 Discussion Questions 2.1 Overview of Genetics 2.2 Mendelian Genetics 2.2.1 Law of Segregation 2.2.2 Law of Independent Assortment 2.3 Mitosis and Meiosis 2.3.1 Mitosis 2.3.2 Meiosis 2.3.3 Recombination 2.3.4 Cytogenetic Analysis 2.3.5 Mendelian Genetics and Biotechnology Summary 2.4 Plant Reproductive Biology 4.1 History of Research in Plant Reproduction 2.4.3 Hybridization and Polyploidy 2.4.4 Mating Systems and Biotechnology Summary 	20 20 20 23 26 26 26 27 29 29 30 31 32 32 32 32 32 32 38 38

Life	e Box 2.1 Richard A. Dixon	39
Life	e Box 2.2 Michael L. Arnold	40
Ref	erences	42
3. Pla	nt Breeding	43
Nic	holas A. Tinker and Elroy R. Cober	
3.0	Chapter Summary and Objectives	43
5.0	3.0.1 Summary	43
	3.0.2 Discussion Questions	43
3.1	Introduction	44
3.2	Central Concepts in Plant Breeding	45
	3.2.1 Simple vs. Complex Inheritance	45
	3.2.2 Phenotype vs. Genotype	46
	3.2.3 Mating Systems, Varieties, Landraces, and Pure Lines	47
	3.2.4 Other Topics in Population and Quantitative Genetics	49
	3.2.5 The Value of a Plant Variety Depends on Many Traits	51
	3.2.6 A Plant Variety Must Be Environmentally Adapted	51
	3.2.7 Plant Breeding is a Numbers Game	52
	3.2.8 Plant Breeding is an Iterative and Collaborative Process	52
	3.2.9 Diversity, Adaptation, and Ideotypes	53
	3.2.10 Other Considerations	56
3.3	Objectives in Plant Breeding	56
3.4	Methods of Plant Breeding	57
	3.4.1 Methods of Hybridization	58
	3.4.2 Self-Pollinated Species	58
	3.4.3 Outcrossing Species	63
	3.4.4 Clonally Propagated Species	67
3.5	Breeding Enhancements	68
	3.5.1 Doubled Haploidy	68
	3.5.2 Marker-Assisted Selection	68
	3.5.3 Mutation Breeding	70
2.6	3.5.4 Apomixis	/1
3.0 T:f	Conclusions	/1
L110	- Dev 2.2 D Sterker Develop	72
	a Dox 3.2 P. Stephen Daenziger	74
LII Ref	e BOX 5.5 Steven D. Taliksley	13 77
Kei	erences	11
4 DL		70
4. Fla	nt Development and Physiology	/ð
018	nuu E. Oniuspy	
4.0	Chapter Summary and Objectives	78
	4.0.1 Summary	78
	4.0.2 Discussion Questions	78
4.1	Plant Anatomy and Morphology	79
4.2	Embryogenesis and Seed Germination	80
	4.2.1 Gametogenesis	80
	4.2.2 Fertilization	82
	4.2.3 Fruit Development	83
	4.2.4 Embryogenesis	83
	4.2.5 Seed Germination	85
	4.2.6 Photomorphogenesis	85
4.3	Meristems	86
	4.3.1 Shoot Apical Meristem	86

4.3.1 Shoot Apical Meristem

		4.3.2 Root Apical Meristem and Root Development	88
	4.4	Leaf Development	89
		4.4.1 Leaf Structure	89
		4.4.2 Leaf Development Patterns	91
	4.5	Flower Development	92
		4.5.1 Floral Evocation	92
		4.5.2 Floral Organ Identity and the ABC Model	93
	4.6	Hormone Physiology and Signal Transduction	94
		4.6.1 Seven Plant Hormones and Their Actions	94
		4.6.2 Plant Hormone Signal Transduction	96
	4.7	Conclusions	100
	Life	Box 4.1 Deborah Delmer	100
	Life	Box 4.2 Natasha Raikhel	102
	Life	Box 4.3 Brenda S.J. Winkel	103
	Refe	rences	105
5.	Tiss	ue Culture: The Manipulation of Plant Development	107
	5.0	Chapter Summers and Objectives	107
	5.0	5.0.1 Summary	107
		5.0.1 Summary	107
	5 1	J.0.2 Discussion Questions	107
	5.1	History of Tissue Culture	107
	53	Media and Culture Conditions	108
	5.5	5.3.1 Basal Media	109
		5.3.2 Growth Regulators	110
	54	Sterile Technique	110
	5.1	5.4.1 Clean Equipment	111
		5.4.2 Surface Sterilization of Explants	112
	5.5	Culture Conditions and Vessels	113
	5.6	Culture Types and Their Uses	113
		5.6.1 Callus and Somatic Embryo Culture	113
		5.6.2 Cell Suspension Cultures	117
		5.6.3 Anther/Microspore Culture	119
		5.6.4 Protoplast Culture	119
		5.6.5 Somatic Hybridization	120
		5.6.6 Embryo Culture	120
		5.6.7 Meristem Culture	121
	5.7	Regeneration Methods of Plants in Culture	121
		5.7.1 Organogenesis	121
		5.7.2 Somatic Embryogenesis	123
		5.7.3 Synthetic Seeds	123
	5.8	Rooting of Shoots	123
	5.9	Acclimation	124
	5.10	Problems that can Occur in Tissue Culture	124
		5.10.1 Culture Contamination	124
		5.10.2 Hyperhydricity	124
		5.10.3 Browning of Explants	124
	5.11	Conclusions	125
	Ackı	nowledgments	125
	Life	Box 5.1 Glenn Burton Collins	125
	Life	Box 5.2 Martha S. Wright	127
	Life	Box 5.3 Vinitha Cardoza	128
	Refe	rences	129

6.	Mol Mar	ecular Genetics of Gene Expression ia Gallo and Alison K. Flynn	133
	6.0	Chapter Summary and Objectives	133
		6.0.1 Summary	133
		6.0.2 Discussion Questions	133
	6.1	The Gene	133
		6.1.1 DNA Coding for a Protein via the Gene	133
		6.1.2 DNA as a Polynucleotide	134
	6.2	DNA Packaging into Eukaryotic Chromosomes	134
	6.3	Transcription	135
		6.3.1 Transcription of DNA to Produce Messenger Ribonucleic Acid	135
		6.3.2 Transcription Factors	140
		6.3.3 Coordinated Regulation of Gene Expression	140
		6.3.4 Chromatin as an important Regulator of Transcription	141
		6.3.6 RNA-Directed Gene Silencing by Small RNAs	142
		6.3.7 Processing to Produce Mature mRNA	143
	64	Translation	143
	0.1	6.4.1 Initiation of Translation	147
		6.4.2 Elongation Phase of Translation	147
		6.4.3 Translation Termination	147
	6.5	Protein Postranslational Modification	147
	Life	Box 6.1 Maarten Chrispeels	150
	Life	Box 6.2 David W. Ow	152
	Refe	rences	154
7.	Plan Wus	tt Systems Biology	155
	vv usi	ieng Liu una C. Neui Siewari, Jr.	
	7.0	Chapter Summary and Objectives	155
		7.0.1 Summary	155
		7.0.2 Discussion Questions	155
	7.1		155
	7.0	Introduction	155
	7.2	Introduction Defining Plant Systems Biology	155 155 157
	7.2 7.3	Introduction Defining Plant Systems Biology Properties of Plant Systems A Example of Plant Systems Piology	155 155 157 158
	7.2 7.3 7.4	Introduction Defining Plant Systems Biology Properties of Plant Systems A Framework of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets	155 155 157 158 159
	7.2 7.3 7.4	Introduction Defining Plant Systems Biology Properties of Plant Systems A Framework of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets 7.4.2 Network Analysis	155 155 157 158 159 160
	7.2 7.3 7.4	Introduction Defining Plant Systems Biology Properties of Plant Systems A Framework of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets 7.4.2 Network Analysis 7.4.3 Dynamic Modeling	155 155 157 158 159 160 161
	7.2 7.3 7.4	Introduction Defining Plant Systems Biology Properties of Plant Systems A Framework of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets 7.4.2 Network Analysis 7.4.3 Dynamic Modeling 7.4.4 Exploring Systems and Models Toward Refinement	155 155 157 158 159 160 161 161
	7.2 7.3 7.4	Introduction Defining Plant Systems Biology Properties of Plant Systems A Framework of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets 7.4.2 Network Analysis 7.4.3 Dynamic Modeling 7.4.4 Exploring Systems and Models Toward Refinement Disciplines and Enabling Tools of Plant Systems Biology	155 155 157 158 159 160 161 161 161
	7.27.37.47.5	Introduction Defining Plant Systems Biology Properties of Plant Systems A Framework of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets 7.4.2 Network Analysis 7.4.3 Dynamic Modeling 7.4.4 Exploring Systems and Models Toward Refinement Disciplines and Enabling Tools of Plant Systems Biology 7.5.1 Plant Genomics	155 155 157 158 159 160 161 161 161 162 162
	7.27.37.47.5	Introduction Defining Plant Systems Biology Properties of Plant Systems Biology A Framework of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets 7.4.2 Network Analysis 7.4.3 Dynamic Modeling 7.4.4 Exploring Systems and Models Toward Refinement Disciplines and Enabling Tools of Plant Systems Biology 7.5.1 Plant Genomics 7.5.2 Plant Transcriptomics	155 157 158 159 160 161 161 161 162 162 162
	7.27.37.47.5	Introduction Defining Plant Systems Biology Properties of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets 7.4.2 Network Analysis 7.4.3 Dynamic Modeling 7.4.4 Exploring Systems and Models Toward Refinement Disciplines and Enabling Tools of Plant Systems Biology 7.5.1 Plant Genomics 7.5.2 Plant Transcriptomics 7.5.3 Plant Proteomics	155 155 157 158 159 160 161 161 162 162 166 168
	7.27.37.47.5	Introduction Defining Plant Systems Biology Properties of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets 7.4.2 Network Analysis 7.4.3 Dynamic Modeling 7.4.4 Exploring Systems and Models Toward Refinement Disciplines and Enabling Tools of Plant Systems Biology 7.5.1 Plant Genomics 7.5.2 Plant Transcriptomics 7.5.3 Plant Proteomics 7.5.4 Plant Metabolomics	155 157 158 159 160 161 161 162 162 162 166 168 170
	7.27.37.47.5	Introduction Defining Plant Systems Biology Properties of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets 7.4.2 Network Analysis 7.4.3 Dynamic Modeling 7.4.4 Exploring Systems and Models Toward Refinement Disciplines and Enabling Tools of Plant Systems Biology 7.5.1 Plant Genomics 7.5.2 Plant Transcriptomics 7.5.3 Plant Proteomics 7.5.4 Plant Metabolomics 7.5.5 Bioinformatics	155 157 158 159 160 161 161 161 162 162 166 168 170 172
	 7.2 7.3 7.4 7.5 7.6 	Introduction Defining Plant Systems Biology Properties of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets 7.4.2 Network Analysis 7.4.3 Dynamic Modeling 7.4.4 Exploring Systems and Models Toward Refinement Disciplines and Enabling Tools of Plant Systems Biology 7.5.1 Plant Genomics 7.5.2 Plant Transcriptomics 7.5.3 Plant Proteomics 7.5.4 Plant Metabolomics 7.5.5 Bioinformatics Conclusions	155 157 158 159 160 161 161 161 162 162 166 168 170 172 176
	 7.2 7.3 7.4 7.5 7.6 Life 	Introduction Defining Plant Systems Biology Properties of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets 7.4.2 Network Analysis 7.4.3 Dynamic Modeling 7.4.4 Exploring Systems and Models Toward Refinement Disciplines and Enabling Tools of Plant Systems Biology 7.5.1 Plant Genomics 7.5.2 Plant Transcriptomics 7.5.3 Plant Proteomics 7.5.4 Plant Metabolomics 7.5.5 Bioinformatics Conclusions Box 7.1 C. Robin Buell	155 155 157 158 159 160 161 161 161 162 162 166 168 170 172 176 177
	 7.2 7.3 7.4 7.5 7.6 Life Life 	Introduction Defining Plant Systems Biology Properties of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets 7.4.2 Network Analysis 7.4.3 Dynamic Modeling 7.4.4 Exploring Systems and Models Toward Refinement Disciplines and Enabling Tools of Plant Systems Biology 7.5.1 Plant Genomics 7.5.2 Plant Transcriptomics 7.5.3 Plant Proteomics 7.5.4 Plant Metabolomics 7.5.5 Bioinformatics Conclusions Box 7.1 C. Robin Buell Box 7.2 Zhenbiao Yang	155 155 157 158 159 160 161 161 161 162 162 166 168 170 172 176 177
	7.2 7.3 7.4 7.5 7.6 Life Refe	Introduction Defining Plant Systems Biology Properties of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets 7.4.2 Network Analysis 7.4.3 Dynamic Modeling 7.4.4 Exploring Systems and Models Toward Refinement Disciplines and Enabling Tools of Plant Systems Biology 7.5.1 Plant Genomics 7.5.2 Plant Transcriptomics 7.5.3 Plant Proteomics 7.5.4 Plant Metabolomics 7.5.5 Bioinformatics Conclusions Box 7.1 C. Robin Buell Box 7.2 Zhenbiao Yang rences	155 157 158 159 160 161 161 161 162 162 166 168 170 172 176 177 178 179
8.	 7.2 7.3 7.4 7.5 7.6 Life Life Refe 	Introduction Defining Plant Systems Biology Properties of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets 7.4.2 Network Analysis 7.4.3 Dynamic Modeling 7.4.4 Exploring Systems and Models Toward Refinement Disciplines and Enabling Tools of Plant Systems Biology 7.5.1 Plant Genomics 7.5.2 Plant Transcriptomics 7.5.3 Plant Proteomics 7.5.4 Plant Metabolomics 7.5.5 Bioinformatics Conclusions Box 7.1 C. Robin Buell Box 7.2 Zhenbiao Yang rences	155 157 158 159 160 161 161 161 162 162 162 166 168 170 172 176 177 178 179 181
8.	 7.2 7.3 7.4 7.5 7.6 Life Life Refe Reco Marin 	Introduction Defining Plant Systems Biology Properties of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets 7.4.2 Network Analysis 7.4.3 Dynamic Modeling 7.4.4 Exploring Systems and Models Toward Refinement Disciplines and Enabling Tools of Plant Systems Biology 7.5.1 Plant Genomics 7.5.2 Plant Transcriptomics 7.5.3 Plant Proteomics 7.5.4 Plant Metabolomics 7.5.5 Bioinformatics Conclusions Box 7.1 C. Robin Buell Box 7.2 Zhenbiao Yang rences	155 157 158 159 160 161 161 161 162 162 166 168 170 172 176 177 178 179 181
8.	 7.2 7.3 7.4 7.5 7.6 Life Life Refe Rece Marin 8.0 	Introduction Defining Plant Systems Biology Properties of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets 7.4.2 Network Analysis 7.4.3 Dynamic Modeling 7.4.4 Exploring Systems and Models Toward Refinement Disciplines and Enabling Tools of Plant Systems Biology 7.5.1 Plant Genomics 7.5.2 Plant Transcriptomics 7.5.3 Plant Proteomics 7.5.4 Plant Metabolomics 7.5.5 Bioinformatics Conclusions Box 7.1 C. Robin Buell Box 7.2 Zhenbiao Yang rences ombinant DNA, Vector Design, and Construction <i>k D. Curtis and David G.J. Mann</i> Chapter Summary and Objectives	155 155 157 158 159 160 161 161 161 162 162 162 166 168 170 172 176 177 178 179 181
8.	 7.2 7.3 7.4 7.5 7.6 Life Life Refe Reco Mari 8.0 	Introduction Defining Plant Systems Biology Properties of Plant Systems Biology 7.4.1 Comprehensive Quantitative Data Sets 7.4.2 Network Analysis 7.4.3 Dynamic Modeling 7.4.4 Exploring Systems and Models Toward Refinement Disciplines and Enabling Tools of Plant Systems Biology 7.5.1 Plant Genomics 7.5.2 Plant Transcriptomics 7.5.3 Plant Proteomics 7.5.4 Plant Metabolomics 7.5.5 Bioinformatics Conclusions Box 7.1 C. Robin Buell Box 7.2 Zhenbiao Yang rences ombinant DNA, Vector Design, and Construction <i>k D. Curtis and David G.J. Mann</i> Chapter Summary and Objectives 8.0.1 Summary	155 155 157 158 159 160 161 161 161 162 162 166 168 170 172 176 177 178 179 181 181

8.	.1 DNA Modification	181
8.	.2 DNA Vectors	186
	8.2.1 DNA Vectors for Plant Transformation	188
	8.2.2 Components for Efficient Gene Expression in Plants	190
8.	.3 Greater Demands Lead to Innovation	192
0	8.3.1 "Modern" Cloning Strategies	192
8.	.4 Vector Design	197
	8.4.1 Vectors for High-Infougnput Functional Analysis 8.4.2 Vectors for Cone Down Deculation Using DNA Interference (DNAi)	197
	8.4.2 Vectors for Gene Down-Regulation Using KIVA Interference (KIVAI) 8.4.3 Expression Vectors	199
	8 4 4 Vectors for Promoter Analysis	200
	8.4.5 Vectors Derived from Plant Sequences	200
	8.4.6 Vectors for Multigenic Traits	203
8.	.5 Targeted Transgene Insertions	204
8.	.6 Prospects	205
L	ife Box 8.1 Wayne Parrott	206
L	ife Box 8.2 David Mann	207
R	eferences	208
9. G	Genes and Traits of Interest	211
K	enneth L. Korth	
9.	.0 Chapter Summary and Objectives	211
	9.0.1 Summary	211
	9.0.2 Discussion Questions	211
9.	.1 Introduction	212
9.	.2 Identifying Genes of Interest via Genomics and other Omics Technologies	212
9.	.3 Traits for Improved Crop Production Using Transgenics	214
	9.3.1 Herbicide Resistance	215
	9.3.2 Insect Resistance	218
	9.3.3 Pathogen Resistance	220
0	9.3.4 Traits for Improved Products and Food Quality	222
9.	4 Conclusion	227
L	ine Box 9.1 Dennis Gonsaives	227
L D	lie DOX 9.2 lligo Poli ykus	229
К	lefences	231
10. P	romoters and Marker Genes	233
W	/usheng Liu, Brian Miki and C. Neal Stewart, Jr.	
10	0.0 Chapter Summary and Objectives	233
	10.0.1 Summary	233
	10.0.2 Discussion Questions	233
10	0.1 Introduction	234
10	0.2 Promoters	234
	10.2.1 Constitutive Promoters	235
	10.2.2 Tissue-Specific Promoters	236
	10.2.3 Inducible Promoters	237
	10.2.4 Synthetic Promoters	239
10	U.5 Marker Genes	239
	10.3.1 Selectable Marker Genes	242
17	10.5.2 Keporter Genes	246
10	0.4 Iviarkei-Free Strategies	250
10 T	U.J CONCIUSIONS ife Dev 10.1 Fredy Altrator	254
L	ife Box 10.2 Taniya Dhillon	200
R	eferences	257
11		257

11.	Transgenic Plant Production John J. Finer	262
	11.0 Chapter Summary and Objectives	262
	11.0.1 Summary	262
	11.0.2 Discussion Questions	262
	11.1 Overview of Plant Transformation	263
	11.1.1 Introduction	263
	11.1.2 Basic Components for Successful Gene Transfer to Plant Cells	263
	11.2 Agrobacterium Tumefaciens	265
	11.2.1 History of <i>Agrobacterium</i> Research	266
	11.2.2 Use of the T-DNA Transfer Process for Transformation	268
	11.2.5 Optimizing Delivery and Broadening the Taxonomical Banga of Targets	260
	Kallge of Targets	209
	11.2.4 Suam and Curryan Companying	270
	11.2.5 Aground atom	271
	11.3 Particle Bombardment	272
	11.3.1 History of Particle Bombardment	272
	11.3.2 The Fate of the Introduced DNA into Plant Cells	274
	11.3.3 The Power and Problems of Direct DNA Introduction	275
	11.3.4 Improvements in the Control of Transgene Expression	276
	11.4 Other Methods of Transformation	276
	11.4.1 The Need for Additional Technologies	276
	11.4.2 Protoplasts	277
	11.4.3 Whole Tissue Electroporation	278
	11.4.4 Silicon Carbide Whiskers	278
	11.4.5 Viral Vectors	278
	11.4.5 Laser Micropuncture	279
	11.4./ Nanoilber Arrays	279
	11.5 The Rush to Publish 11.5.1 Controversial Reports of Plant Transformation	280
	11.5.1 Controversian Reports of Frank Transformation	280
	11.6 A Look to the Future	286
	Life Box 11.1 Ted Klein	286
	Life Box 11.2 John Finer	287
	Life Box 11.3 Kan Wang	289
	References	291
12.	Analysis of Transgenic Plants C. Neal Stewart, Jr.	293
	12.0 Chapter Summary and Objectives	293
	12.0 Enapter Summary	293
	12.0.2 Discussion Questions	293
	12.1 Essential Elements of Transgenic Plant Analysis	293
	12.2 Assays for Transgenicity, Insert Copy Number, and Segregation	295
	12.2.1 Polymerase Chain Reaction	295
	12.2.2 Quantitative PCR	295
	12.2.3 Southern (DNA) Blot Analysis	296
	12.2.4 Segregation Analysis of Progeny	300
	12.3 Transgene Expression	301
	12.3.1 Transcript Abundance	301
	12.3.2 Protein Abundance	302
	12.4 Knockdown or Knockout Analysis Rather than Overexpression Analysis	304
	12.5 The Relationship Between Molecular Analyses and Phenotype	305

Life Box 12.1 Hong S. Moon	305
Life Box 12.2 Neal Stewart	306
Life Box 12.3 Nancy A. Reichert	308
References	310
13. Regulations and Biosafety	311
Aun menugnen	
13.0 Chapter Summary and Objectives	311
13.0.1 Summary	311
13.0.2 Discussion Questions	311
13.1 Introduction	311
13.3 Regulation of GM Plants	315
13.3.1 New Technologies	316
13.3.2 US Regulatory Agencies and Regulations	317
13.3.3 European Union	319
13.3.4 Canada	321
13.3.5 International Perspectives	321
13.4 Regulatory Flaws and Invalid Assumptions	323
13.4.1 Conventional Plant Breeding has Higher Safety than Biotechnology-Derived GM	324
13.4.2 GMOs Should Be Regulated Because They're GMOs and Un-natural	324
13.4.3 Even though Product Risk is Important, It is Reasonable that Process (GMO)	
Should Trigger Regulation	324
13.4.4 Since GM Technology is New, It Might Be Hazardous and Should Be Regulated	325
13.4.5 If We Have a Valid Scientific Test, Then It Should Be Used in Regulations	326
13.4.6 Better Safe than Sorry: Overregulation is Better than Underregulation	326
15.5 Conclusion	327
Life Box 13.1 Alan McHughen Life Box 13.2 Raymond D Shillito	320
References	331
14. Field Testing of Transgenic Plants Detlof Bautoch, Ashim Cathurgun, Christiana Sasalitz and Anti Sinha	333
Dettef Bartsch, Achim Gathmann, Christiane Saegiitz and Arti Sinna	
14.0 Chapter Summary and Objectives	333
14.0.1 Summary	333
14.0.2 Discussion Questions	333
14.1 Introduction	334
14.2 Environmental Risk Assessment Process	334
14.2.1 Initial Evaluation (Era Step 1)	334
14.2.2 Problem Formulation (ERA Step 2)	225
14.2.5 Controlled Experiments and Gamering of Information (EKA Step 5) 14.2.4 Risk Evaluation (ERA Step 4)	335
14.2.5 Progression through a Tiered Risk Assessment	335
14.3 An Example Risk Assessment: The Case of Bt Maize	336
14.3.1 Effect of Bt Maize Pollen on Nontarget Caterpillars	337
14.3.2 Statistical Analysis and Relevance for Predicting Potential Adverse	
Effects on Butterflies	339
14.4 Proof of Safety Versus Proof of Hazard	340
14.5 Modeling the Risk Effects on a Greater Scale	340
14.6 Proof of Benefits: Agronomic Performance	341
14.7 Conclusions	342
Life Box 14.1 Tony Shelton	343
Lite Box 14.2 Detlet Bartsch	344
Keterences	346

15.	Intellectual Property in Agricultural Biotechnology: Strategies for Open Access	347
	Monica Alandete-Saez, Cecilia Chi-Ham, Gregory Graff, Sara Boettiger and	
	Alan B. Bennett	
	15.0 Chapter Summary and Objectives	347
	15.0.1 Summary	347
	15.0.2 Discussion Questions	347
	15.1 Intellectual Property and Agricultural Biotechnology	348
	15.1.1 What is Intellectual Property?	349
	15.1.2 What is a Patent?	349
	15.2 The Relationship Between Intellectual Property and Agricultural Research	351
	15.3 Patenting Plant Biotechnology: Has an Anti-Commons Developed?	352
	15.3.1 Transformation Methods	352
	15.3.2 Selectable Markers	353
	15.3.3 Promoters	354
	15.3.4 Subcellular Localization	354
	15.3.5 The Importance of Combining IP-Protected Components in Transgenic Crops	355
	15.4 What is Freedom to Operate (FTO)?	355
	15.4.1 The Importance of FTO	355
	15.4.2 FTO Case Study: the Tomato E8 Promoter	356
	15.5 Strategies for Open Access	358
	15.6 Conclusions	359
	Life Box 15.1 Alan Bennett	360
	Life Box 15.2 Maud Hinchee	361
	References	363
16	Why Transganic Plants Ara So Controversial	366
10.	Jannifer Trumbo and Douglas Powell	500
	Jennijer Tranbo una Dougias Fowen	
	16.0 Chapter Summary and Objectives	366
	16.0.1 Summary	366
	16.0.2 Discussion Questions	366
	16.1 Introduction	367
	16.1.1 The Frankenstein Backdrop	367
	16.1.2 Agricultural Innovations and Questions	367
	16.2 Perceptions of Risk	368
	16.3 Responses of Fear	370
	16.4 Feeding Fear: Case Studies	372
	16.4.1 Pusztai's Potatoes	372
	16.4.2 Monarch Butterfly Flap	373
	16.5 How Many Benefits are Enough?	373
	16.6 Continuing Debates	375
	16.6.1 Process vs. Product	375
	16.6.2 Health Concerns	375
	16.6.3 Environmental Concerns	376
	16.6.4 Consumer Choice	376
	16.7 Business and Control	376
	16.8 Conclusions	377
	Life Box 16.1 Tony Conner	378
	Life Box 16.2 Channapatna S. Prakash	379
	References	381
17.	The Future: Advanced Plant Biotechnology, Genome Editing, and Synthetic Biology	383
	Wusheng Liu and C. Neal Stewart, Jr.	
	17.0 Chapter Summary and Objectives	383
	17.0.1 Summary	383
	17.0.2 Discussion Questions	383

17.1 Introduction: The Birth of Synthetic Biology	384
17.2 Defining Synthetic Biology for Plants	385
17.2.1 Design Cycles of Synthetic Biology	385
17.2.2 Foundations of Synthetic Biology	387
17.2.3 Components of Plant Synthetic Biology	388
17.3 Enabling Tools for Plant Synthetic Biology	389
17.3.1 Computer-Aided Design	389
17.3.2 Synthetic Promoters	389
17.3.3 Precise Genome Editing	389
17.4 Synthetic Biology Applications in Plants	393
17.4.1 Synthetic Inducible Promoters	394
17.4.2 A Device for Monitoring Auxin-Induced Plant IAA Degradation in Yeast	395
17.4.3 Circuits for Phytosensing of Explosives or Bacterial Pathogens in Transgenic Plants	395
17.5 Conclusions	397
Life Box 17.1 Joshua Yuan	397
Life Box 17.2 Wusheng Liu	398
References	399
Index	402

An international (but widely unnoticed) race took place in the mid-1970s to understand how *Agrobacterium tumefaciens* caused plant cells to grow rapidly into a gall that produced its favorite substrates—called "opines." Belgian, German, Australian, French, and US groups were at the fore-front of different aspects of the puzzle. By 1977, it was clear that gene transfer from the bacterium to its plant host was the secret, and that the genes from the bacterium were functioning to alter characteristics of the plant cells. Participants in the race as well as observers began to speculate that we might exploit the capability of this cunning bacterium in order to get plants to produce our favorite substrates. Small startup companies and multinational corporations took notice and began to work with *Agrobacterium* and other means of gene transfer to plants. One by one the problems were dealt with, and each step in the use of *Agrobacterium* for the genetic engineering of a tobacco plant was demonstrated.

As I look back to those early experiments, I see that we have come a long way since the birth of plant biotechnology, which most of us who served as midwives would date from the Miami Winter Symposium of January 1983. The infant technology was weak and wobbly, but its viability and vitality were already clear. Its growth and development were foreseeable although not predictable in detail. I thought that the difficult part was behind us, and now (as I used to predict at the end of my lectures) the main challenge would be thinking of what genes we might use to bring about desired changes in crop plants. Unseen at that early date were the interesting problems, some technical and some of other kinds, to be encountered and overcome.

To my surprise, one of the biggest challenges turned out to be tobacco, which worked so well that it made us cocky. Tobacco was the guinea pig of the plant kingdom in 1983. This plant has an uncanny ability to reproduce a new plant from (almost) any of its cells. We practiced our gene transfer experiments on tobacco cells with impunity, and we could coax transgenic plants to develop from almost any cell into which *Agrobacterium* had transferred our experimental gene. This ease of regeneration of tobacco did not prepare us for the real world, whose principal food crops (unlike tobacco) were monocots—corn, wheat, rice, sorghum, and millet—to which the technology would ultimately need to be applied. Regeneration of these monocot plants from certain rare cells would be needed, and gene transfer to those very cells must be achieved. This process took years of research, and solutions were unique for each plant. In addition, much of the work was performed in small or large biotech companies, which sought to block competitors by applying for patent protection on methods they developed. Thus, still other methods had to be developed if licensing was not an option.

Another challenge we faced was bringing about expression of the "transgenes" we introduced into the plant cell. We optimistically supposed that any transgene, if given a plant gene promoter, would function in plants. After all, in 1983 the first gene everyone tried, the one coding for neomycin phosphotransferase II, had worked beautifully! The gene encoding a *Bacillus thuringiensis* insecticidal protein (nicknamed Bt, among other things, in the lab) was to teach us humility. Considerable ingenuity was needed to figure out why the Bt gene refused to express properly in the plant, and what to do about it. In the end, we learned to avoid many problems by using an artificial copy of this Bt gene constructed from plant-preferred codons. Although we thought of the genetic code as universal, as a practical matter, correct and fluent gene translation turned out to require, where a choice of codons was provided, that we use the plant's favorites. An entirely new problem was how to determine product safety. Once the transgenic plant was performing properly, how should it be tested for any unforeseen properties that might conceivably make it harmful, toxic, allergenic, weedy (i.e., a pest in subsequent crops grown in the field), or disagreeable in any other way one could imagine? Ultimately, as they gained experience with these new products, regulatory agencies developed protocols for testing transgenic plants. The transgene must be stable, the plant must produce no new material that looks like an allergen, and the plant must have (at least) the original nutritional value expected of that food. In essence, it must be the same familiar plant you start with except for the (predicted) new trait encoded by the transgene. And of course the protein encoded by the transgene must be safe—for consumption by humans or animals if it is food or feed, and by nontarget organisms in the environment likely to encounter it. Plants made by traditional plant breeding using "wide crossing" to bring in a desired gene from a distant (weedy or progenitor) relative are more likely to have unexpected properties than are transgenic plants. That is because unwanted and unknown genes will always be linked to the desirable trait sought in the wide cross.

The final problem—one still unsolved in many parts of the world—is that the transgenic plant, once certified safe and functional, must be accepted by consumers. Here, I speak as an aging but fond midwife looking at this adolescent technology that I helped to birth. I find that we are now facing a new kind of challenge, one on which all of the science discussed here seems to have surprisingly little impact.

Many consumers oppose transgenic plants as something either dangerous or unethical, possibly both. These opponents are not likely to inform themselves about plant biotechnology by reading materials such as you will find assembled between the covers of this book. But many are at least curious about this unknown thing that they oppose. I hope that many of you who read this book will become informed advocates of plant biotechnology. Talk to the curious. Replace suspicion, where you can, with information. Replace doubt with evidence. I do not think, however, that in order to spread trust, it is necessary to teach everyone about this technology. People are busy. They will not expend the time and energy to inform themselves in depth. I think that you only need to convince people that *you* have studied this subject in detail, that you have read this book, that you harbor no bias, and that you think that it is safe and natural, as I believe you will.

I have invested most of my career in developing and exploiting the technology for putting new genes into plants. My greatest hope is to see wide—at least wider—acceptance of transgenic plants by consumers during my lifetime. Transgene integration by plants is a natural phenomenon, so much so that we are still trying to figure out exactly how Mother Nature does it. *Agrobacterium* was a microbial genetic engineer long before I began studying DNA. Plant biotechnology has already made significant and positive environmental contributions, as you will discover in the very first chapter of this book. It has the potential to be a powerful new tool for plant breeders, one that they will surely need in facing the challenges of rapid climate change, flood and drought, global warming, as well as the new pests and diseases that these changes may bring. The years ahead promise to be very challenging and interesting. I think that this book will serve you readers well as you prepare for your various roles in meeting those challenges. Enjoy your travels through these chapters and beyond, and I sincerely hope that your journey may turn out to be as interesting and rewarding as mine has been.

Mary-Dell Chilton Syngenta Biotechnology Research Triangle Park, North Carolina

- Monica Alandete-Saez, Public Intellectual Property Resource for Agriculture, Department of Plant Sciences, University of California, Davis, California
- Detlef Bartsch, Federal Office of Consumer Protection and Food Safety, Berlin, Germany
- Alan B. Bennett, Public Intellectual Property Resource for Agriculture, Department of Plant Sciences, University of California, Davis, California
- Sara Boettiger, Public Intellectual Property Resource for Agriculture, Department of Plant Sciences, University of California, Davis, California
- Graham Brookes, PG Economics Ltd, Frampton, Dorchester, UK
- Vinitha Cardoza, BASF Plant Science LP, Research Triangle Park, North Carolina
- **Cecilia Chi-Ham,** Public Intellectual Property Resource for Agriculture, Department of Plant Sciences, University of California, Davis, California; HM Clause, Inc., Davis, California
- Elroy R. Cober, Agriculture and Agri-Food Canada, Ottawa, Canada
- Mark D. Curtis, Institute of Plant Biology, University of Zurich, Zurich, Switzerland
- John J. Finer, Department of Horticulture and Crop Science, OARDC/The Ohio State University, Wooster, Ohio
- Alison K. Flynn, Veterinary Medical Center, University of Florida, Gainesville, Florida
- Maria Gallo, Molecular Biosciences and Bioengineering Department, University of Hawaii at Mānoa, Honolulu, Hawaii
- Achim Gathmann, Federal Office of Consumer Protection and Food Safety, Berlin, Germany
- Glenda E. Gillaspy, Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
- **Gregory Graff,** Department of Agricultural & Resource Economics, Colorado State University, Fort Collins, Colorado
- Matthew D. Halfhill, Department of Biology, Saint Ambrose University, Davenport, Iowa
- Kenneth L. Korth, Department of Plant Pathology, University of Arkansas, Fayetteville, Arkansas
- Wusheng Liu, Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee
- David G.J. Mann, Dow AgroSciences, Indianapolis, Indiana
- Alan McHughen, Department of Botany and Plant Sciences, University of California, Riverside, California
- Brian Miki, Agriculture and Agri-Food Canada, Ottawa, Canada
- Douglas Powell, Brisbane, Australia

- Christiane Saeglitz, Biotechnology, Bioeconomy, Health Research, Project Management, Forschungszentrum Jülich GmbH, Jülich, Germany
- Arti Sinha, Wayu Health, Gurgaon, India
- C. Neal Stewart, Jr., Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee
- Nicholas A. Tinker, Agriculture and Agri-Food Canada, Ottawa, Canada
- Jennifer Trumbo, Department of Nutrition, University of Tennessee, Knoxville, Tennessee
- Suzanne I. Warwick, Agriculture and Agri-Food Canada, Eastern Cereal and Oilseeds Research Centre, Ottawa, Canada

I vividly recall having a series of conversations back in the mid-1990s with "older" plant biotechnologists. These were the seasoned veterans who'd been on the cutting edge of figuring out how to make transgenic plants and how they might partially solve some critical problems in agriculture. They had been through the long days, weeks, months, and years of making genetically engineered commercial crops a reality as the middle of that decade saw the first commercial products hit the market. These scientists had worked out the basic science on how to produce recombinant DNA; genetically engineer the novel DNA sequences into plant cells; and then recover, for the first time, genetically engineered crops. They had witnessed challenge after challenge in the lab. They'd plodded through failures—many failures—and then, finally, success! After the promising transgenic crop lines had been produced, then came the arduous process of plant breeding, which was needed to move the useful traits into agronomic varieties that farmers would want to grow. Then came the field testing, seed production, and then...let's not forget about all the regulatory approvals. Each step was like those taken by a toddler. It was all new ground. The difference between walking and falling down was measured in millimeters. And the baby put one foot in front of the other, often with great pauses to regain balance. Finally, the faithful day would arrive when the genetically engineered seed would be planted and bear fruit in farmers' fields. And there we were.

It wasn't a shock in the mid-1990s when these scientists expressed to me their feelings that went something like, "all the really fun stuff has already been done." I was still a pretty young scientist at the time, and so who was I to question their insights? These insights from giants who stood on the shoulders of giants? So, in these awestruck moments, I asked polite questions, listened to their stories, and like a fawning fan I would muster an occasional "cool!" To be honest, their words and attitudes took a little wind out of my sails after I went back to my own little lab and office. From their perspective, indeed, the big challenges of moving those first molecules from idea to seed could never be matched again. But still, I thought about the future of the field and plodded along with my own ideas and research. I wanted to make the world a better place and believed that we could innovate with plant biotechnology—even, maybe, despite the assertion that all the coolest and most fun stuff had already been done. So I thought.

When we fast-forward about 10 years later, I thought it would be a fun project to put together a plant biotech textbook to support the course I'd offered to teach. The product of all the fun would be what became the first edition of the title in your hands. As that book came together, I sometimes thought about what I'd been told by these sages. The content of the text in the book, it seemed, mostly consisted of the tried and true technologies that were used in making those first engineered plants. There were also stories told of the glory days by scientists who penned their "Life boxes" in the book. After a while, however, I noticed that the first edition was starting to be somewhat dated itself. There were now new DNA sequencing technologies. There were new analytical techniques. New genome editing tools and synthetic biology tools had been invented and it was clear they would have an impact on plants. Computers had also changed what could be done and the speed tasks could be performed. So I embarked on updating the book and the second edition took shape.

Sometime in the last year or so, while working on the book, it really started to hit me, and has since pounded me like a John Henry sledgehammer on railroad spikes: those good old days were not the best days of plant biotechnology after all. The best and most fun stuff has not been done yet.

Yes, of course, a baby only learns to walk once, but now plant biotechnologists could sprint. It became clear that genome editing tools could allow biotechnologists to reconfigure existing genes in plants in ways never imagined by the early pioneers of biotechnology. Recently, a chromosome has been totally synthesized and installed into yeast—how long would it be before whole new entire pathways could be installed into plants to enable them to do things not even thought possible in the good old days? I have become convinced that the most intriguing and exciting days in plant biology and biotechnology are to be ushered in as computationally enabled genetics matures and becomes widely utilized. Crop productivity will continue to be improved using new innovations. Increased yield will feed more people with more nutritious food. And the readers of this book will be the ones to usher in the next wave of innovation. That is best and most fun part for me right now—making the future reality.

The second edition contains all updated chapters and new chapters in systems and synthetic biology. The "Life box" profiles of the plant biologists and biotechnologists who have made a difference in the field have been updated and the number of scientists who are profiled has been expanded. The lecture slides for open access to instructors and students remain at http://plantsciences. utk.edu/pbg/, and these are updated each time I teach the class. Feel free to offer any suggestions or slides of your own that I could use to update this resource.

I'm very grateful to the chapter authors and Life Box authors—both carried over from the first edition of the book—and the new ones. Thanks to my lab crew for their patience during the preparation of the book. I'm particularly indebted to Jennifer Hinds at the University of Tennessee. Jennifer did so much work on the book, I can't begin make a list of her contributions. This much is certain: without Jennifer, there would be no second edition of the book. Thanks, Jennifer! You're awesome!!

C. NEAL STEWART Knoxville, Tennessee June 21, 2015

CHAPTER 1

The Impact of Biotechnology on Plant Agriculture

GRAHAM BROOKES

PG Economics Ltd, Frampton, Dorchester, UK

1.0. CHAPTER SUMMARY AND OBJECTIVES

1.0.1. Summary

Since the first stably transgenic plant produced in the early 1980s and the first commercialized transgenic plant in 1994, biotechnology has revolutionized plant agriculture. In the United States, between 80 and 90% of the maize (corn), soybean, cotton, and canola crops are transgenic for insect resistance, herbicide resistance, or both. Biotechnology has been the most rapidly adopted technology in the history of agriculture and continues to expand in much of the developed and developing world.

1.0.2. Discussion Questions

- 1. What biotechnology crops are grown and where?
- 2. Why do farmers use biotech crops?
- 3. How has the adoption of plant biotechnology impacted the environment?

1.1. INTRODUCTION

The technology of genetic modification (GM, also stands for "genetically modified"), which consists of genetic engineering and also known as genetic transformation, has now been utilized globally on a widespread commercial basis for 18 years; and by 2012, 17.3 million farmers in 28 countries had planted 160 million hectares of crops using this technology. These milestones provide an opportunity to critically assess the impact of this technology on global agriculture. This chapter therefore examines specific global socioeconomic impacts on farm income and environmental impacts with respect to pesticide usage and greenhouse gas (GHG) emissions of the technology. Further details can be found in Brookes and Barfoot (2014a, b).

Plant Biotechnology and Genetics: Principles, Techniques, and Applications, Second Edition. Edited by C. Neal Stewart, Jr. © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

1.2. CULTIVATION OF BIOTECHNOLOGY (GM) CROPS

Although the first commercial GM crops were planted in 1994 (tomatoes), 1996 was the first year in which a significant area of crops containing GM traits were planted (1.66 million hectares). Since then, there has been a dramatic increase in plantings, and by 2012 the global planted area reached over 160.4 million hectares.

Almost all of the global GM crop area derives from soybean, maize (corn), cotton, and canola (Fig. 1.1). In 2012, GM soybean accounted for the largest share (49%) of total GM crop cultivation, followed by maize (32%), cotton (14%), and canola (5%). In terms of the share of total global plantings to these four crops accounted for by GM crops, GM traits accounted for a majority of soybean grown (73%) in 2012 (i.e., non-GM soybean accounted for 27% of global soybean acreage in 2012). For the other three main crops, the GM shares in 2012 of total crop production were 29% for maize, 59% for cotton, and 26% for canola (i.e., the majority of global plantings of maize and canola continued to be non-GM in 2012). The trend in plantings of GM crops (by crop) from 1996 to 2012 is shown in Figure 1.2. In terms of the type of biotechnology trait planted, Figure 1.3 shows that GM herbicide-tolerant soybeans dominate, accounting for 38% of the total, followed by insect-resistant (largely Bt) maize, herbicide-tolerant maize, and insect-resistant cotton with respective shares of 26, 19, and 11%. It is worth noting that the total number of plantings by trait produces a higher global planted area (209.2 million hectares) than the global area by crop (160.4 million hectares) because of the planting of some crops containing the stacked traits of herbicide tolerance and insect resistance (e.g., a single plant with two biotech traits).

In total, GM herbicide-tolerant (GM HT) crops account for 63%, and GM insect-resistant (GM IR) crops account for 37% of global plantings. Finally, looking at where biotech crops have been grown, the United States had the largest share of global GM crop plantings in 2012

Figure 1.1. Global GM crop plantings in 2012 by crop (base area: 160.4 million hectare). (*Sources*: ISAAA, Canola Council of Canada, CropLife Canada, USDA, CSIRO, ArgenBio.)

Figure 1.2. Global GM crop plantings by crop 1996–2012. (*Sources*: ISAAA, Canola Council of Canada, CropLife Canada, USDA, CSIRO, ArgenBio.)

Figure 1.3. Global GM crop plantings by main trait and crop: 2012. (*Sources*: Various, including ISAAA, Canola Council of Canada, CropLife Canada, USDA, CSIRO, ArgenBio.)

(40%: 64.1 million hectares), followed by Brazil (37.2 million hectares: 23% of the global total) and Argentina (14%: 23.1 million hectares). The other main countries planting GM crops in 2012 were India, Canada, and China (Fig. 1.4). In 2012, there were also additional GM crop plantings of papaya (395 hectares), squash (2000 hectares), alfalfa (425,000 hectares), and sugar

Figure 1.4. Global GM crop plantings 2012 by country. (*Sources*: ISAAA, Canola Council of Canada, CropLife Canada, USDA, CSIRO, ArgenBio.)

beet (490,000 hectares) in the United States, of papaya (5000 hectares) in China and of sugar beet (13,500 hectares) in Canada.

1.3. WHY FARMERS USE BIOTECH CROPS

The primary driver of adoption among farmers (both large commercial and small-scale subsistence) has been the positive impact on farm income. The adoption of biotechnology has had a very positive impact on farm income derived mainly from a combination of enhanced productivity and efficiency gains (Table 1.1). In 2012, the direct global farm income benefit from GM crops was \$18.8 billion. This is equivalent to having added 5.6% to the value of global production of the four main crops of soybean, maize, canola, and cotton, a substantial impact. Since 1996, worldwide farm incomes have increased by \$116.6 billion, directly because of the adoption of GM crop technology.

The largest gains in farm income in 2012 have arisen in the maize sector, largely from yield gains. The \$6.7 billion additional income generated by GM IR maize in 2012 has been equivalent to adding 6.6% to the value of the crop in the GM crop-growing countries, or adding the equivalent of 3% to the \$226 billion value of the global maize crop in 2012. Cumulatively since 1996, GM IR technology has added \$32.3 billion to the income of global maize farmers.

Substantial gains have also arisen in the cotton sector through a combination of higher yields and lower costs. In 2012, cotton farm income levels in the GM-adopting countries increased by

Trait	Increase in farm income 2012	Increase in farm income 1996–2012	Farm income benefit in 2012 as percentage of total value of production of these crops in GM adopting countries	Farm income benefit in 2012 as percentage of total value of global production of crop
GM herbicide-tolerant soybeans	4,797.9	37,008.6	4.4	4.0
GM herbicide-tolerant maize	1,197.9	5,414.7	1.2	0.5
GM herbicide-tolerant cotton	147.2	1,371.6	0.4	0.3
GM herbicide-tolerant canola	481.0	3,664.4	4.9	1.3
GM insect-resistant maize	6,727.8	32,317.2	6.6	3.0
GM insect-resistant cotton	5,331.3	36,317.2	13.1	11.2
Others	86.3	496.7	N/A	N/A
Total	18,769.4	116,590.4	6.8	5.6

TABLE 1.1. Global Farm Income Benefits from Growing GM Crops 1996–2012 (Million US \$)

Notes: All values are nominal. Others=Virus resistant papaya and squash and herbicide-tolerant sugar beet. Totals for the value shares exclude "other crops" (i.e., relate to the four main crops of soybeans, maize, canola, and cotton). Farm income calculations are net farm income changes after inclusion of impacts on yield, crop quality, and key variable costs of production (e.g., payment of seed premia, impact on crop protection expenditure). N/A=not applicable.

\$5.5 billion; and since 1996, the sector has benefited from an additional \$37.7 billion. The 2012 income gains are equivalent to adding 13.5% to the value of the cotton crop in these countries, or 11.5% to the \$47 billion value of total global cotton production. This is a substantial increase in value-added terms for two new cotton seed technologies.

Significant increases to farm incomes have also resulted in the soybean and canola sectors. The GM HT technology in soybeans has boosted farm incomes by \$4.8 billion in 2012, and since 1996 has delivered over \$37 billion of extra farm income. In the canola sector (largely North American) an additional \$3.66 billion has been generated (1996–2012).

Overall, the economic gains derived from planting GM crops have been of two main types: (a) increased yields (associated mostly with GM IR technology) and (b) reduced costs of production derived from less expenditure on crop protection (insecticides and herbicides) products and fuel.

Table 1.2 summarizes farm income impacts in key GM-adopting countries highlighting the important farm income benefit arising from GM HT soybeans in South America (Argentina, Bolivia, Brazil, Paraguay, and Uruguay), GM IR cotton in China and India, and a range of GM cultivars in the United States. It also illustrates the growing level of farm income benefits being obtained in South Africa, the Philippines, Mexico, and Colombia from planting GM crops.

In terms of the division of the economic benefits, it is interesting to note that farmers in developing countries derived in 2012 (46.2%) relative to farmers in developed countries (Table 1.3). The vast majority of these income gains for developing country farmers have been from GM IR cotton and GM HT soybean.¹

¹The author acknowledges that the classification of different countries into "developing" or "developed" status affects the distribution of benefits between these two categories of country. The definition used here is consistent with the definition used by others, including the International Service for the Acquisition of Agri-Biotech Applications (ISAAA) (see the review by James (2012)].

	GM HT soybeans	GM HT maize	GM HT cotton	GM HT canola	GM IR maize	GM IR cotton	Total
United States	16.668.7	3752.3	975.8	268.3	26.375.9	4.046.7	52.087.7
Argentina	13.738.5	766.7	107.0	N/A	495.2	456.4	15.563.8
Brazil	4,825.6	703.4	92.5	N/A	2,761.7	13.3	8,396.5
Paraguay	828	N/A	N/A	N/A	N/A	N/A	828.0
Canada	358	81.3	N/A	3368.8	1,042.9	N/A	4,851.0
South Africa	9.1	4.1	3.2	N/A	1,100.6	34.2	1,151.2
China	N/A	N/A	N/A	N/A	N/A	15,270.4	15,270.4
India	N/A	N/A	N/A	N/A	N/A	14,557.1	14,557.1
Australia	N/A	N/A	78.6	27.3	N/A	659.6	765.5
Mexico	5.0	N/A	96.4	N/A	N/A	136.6	238.0
Philippines	N/A	104.7	N/A	N/A	273.6	N/A	378.3
Romania	44.6	N/A	N/A	N/A	N/A	N/A	44.6
Uruguay	103.8	N/A	N/A	N/A	17.6	N/A	121.4
Spain	N/A	N/A	N/A	N/A	176.3	N/A	176.3
Other EU	N/A	N/A	N/A	N/A	18.8	N/A	18.8
Colombia	N/A	1.7	18.1	N/A	47.4	15.4	826.6
Bolivia	432.2	N/A	N/A	N/A	N/A	N/A	432.2
Burma	N/A	N/A	N/A	N/A	N/A	215.4	215.4
Pakistan	N/A	N/A	N/A	N/A	N/A	725.1	725.1
Burkina Faso	N/A	N/A	N/A	N/A	N/A	186.9	186.9
Honduras	N/A	N/A	N/A	N/A	6.9	N/A	6.9

TABLE 1.2. GM Crop Farm Income Benefits During 1996–2012 in Selected Countries (Million US \$)

Notes: All values are nominal. Farm income calculations are net farm income changes after inclusion of impacts on yield, crop quality, and key variable costs of production (e.g., payment of seed premia, impact on crop protection expenditure). N/A = not applicable. US total figure also includes \$491 million for other crops/traits (not included in the table). Also not included in the table is \$5.5 million extra farm income from GM HT sugar beet in Canada.

TABLE 1.3. GM Crop Farm Income Benefits, 2012: Developing Versus Developed Countries (Million US \$)

	Developed	Developing
GM HT soybeans	2,955.4	1842.5
GM HT maize	654.0	543.9
GM HT cotton	71.4	75.8
GM HT canola	481.0	0
GM IR maize	5,327.5	1400.3
GM IR cotton	530.7	4800.7
GM virus-resistant papaya and squash and GM HT sugar beet	86.3	0
Total	10,106.3	8663.2

Note: Developing countries=All countries in South America, Mexico, Honduras, Burkina Faso, India, China, the Philippines, and South Africa.

Examination of the cost farmers pay for accessing GM technology relative to the total gains derived shows that across the four main GM crops, the total cost was equal to about 23% of the total farm income gains (Table 1.4). For farmers in developing countries, the total cost is equal to about 21% of total farm income gains, while for farmers in developed countries the cost is about 25% of the total farm income gain. Although circumstances vary between countries, the higher share of total technology gains accounted for by farm income gains in developing countries, relative to the farm income share in developed countries, reflects factors such as weaker provision and enforcement of intellectual property rights in developing countries and the higher average