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Preface

As its title indicates, this book aims to be a comprehensive, self-contained compendium
of results on continuous nowhere differentiable functions, collecting many results hitherto
accessible only in the scattered literature.

Motivation for Writing This Book

Why did the authors, both specialists in several complex variables, decide to write a book on
continuous nowhere differentiable functions? Let us try to answer this question:

(a) Whenever we would give a lecture on real analysis, we felt unsatisfied, since there was
almost no time to discuss continuous nowhere differentiable functions in detail. Therefore,
we could only mention the existence of such functions in most of our lectures. Moreover,
whenever we wanted to deal with such functions in a proseminar, it was difficult to find
a source book. Some information could be found in a master’s thesis by J. Thim (see
[Thi03]), which presented a more detailed description of these functions. Later, during
the writing of this book, we found another survey article by A.N. Singh (see [Sin35]).
With few sources available, we thought that a modern and complete description of how
these functions appeared would be of great use, both for students and for colleagues
creating their lectures and preparing proseminars.

(b) Looking back to the middle of the nineteenth century, we see that that was an important
time in the history of mathematics, when many arguments turned from being based more
or less on heuristics into being grounded in precise definitions and proofs. We are still
experiencing the consequences of this birth of mathematical precision. It is interesting
to see how the methods used to discuss continuous nowhere differentiable functions has
changed over time and to observe that there are still problems that have not been solved.

We hope that the reader will accept our motivation and that our book can be used for
learning some very nice mathematics or for preparing proseminars or lectures on analysis.

v
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Remarks for the Reader

To make a big part of the material accessible even to high-school graduates, we ordered the
content into four main parts:

• Part I: Classical results.
In this part are collected all results from the middle of the nineteenth century up to about
1950. The proofs are based on complicated arguments, but to understand them requires
only some basic facts from analysis.

• Part II: Topological methods.
This part is based on standard techniques from functional analysis that are certainly taught
in any beginning course.

• Part III: Modern approach.
This part requires some more highly developed ideas from analysis, such as measure theory
and Fourier transforms.

• Part IV: The Riemann function.
This part is in some sense unusual. On the one hand, it does not directly follow the theme of
the book, since the Riemann function discussed here does not belong to the class of nowhere
differentiable functions. On the other hand, it is more difficult and requires knowledge from
several different fields of mathematics. To help the reader, we have placed such information
in an appendix.

Nevertheless, we are convinced that at least 10% of the book may be understood by high-
school graduates, 40% by students of mathematics who have completed a first analysis course,
and the remainder by master’s-level students.

We did not include any exercises, as they can be found in many textbooks. But the reader
will find the word Exercise at different places in the text. It is at such points that the reader
is asked to stop reading and to extend our arguments into greater detail.

Moreover, whenever some function is discussed in the book, the reader is asked to continue
its study. For example, if f is claimed to be nowhere differentiable on the interval [0, 1] and
nothing, even later in the text, is said about infinite derivatives, then the reader should try
to discuss this question on his own. In any case, any additional information in such directions
that we have found in the literature has been added to the text.

Each chapter begins with a brief summary of its content. Moreover, the reader will find

open problems in some chapters. They are indicated by the sign ? . . . ? . All these problems
are collected at the end of the book, see List of Problems section in Appendix C. The reader
is asked to work on these questions, although they do not seem to be simple to solve. For
notation that may appear in the text without explanation, the reader is asked to consult
Sect. B.1.

We wish to thank all our colleagues who told us about gaps in this book during its writing.
In particular, we thank Dr. P. Zapa�lowski for all the corrections he made. It would not
have been possible to reach the current level of presentation without his precise and detailed
observations. Nevertheless, according to our experiences with our former books, we are sure
that many errors have remained, and we are responsible for not detecting them.

We will be pleased if readers inform us about any observations they may have while study-
ing the text. Please use the following e-mail addresses:

• Marek.Jarnicki@im.uj.edu.pl

• Peter.Pflug@uni-oldenburg.de
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Polish National Science Center (NCN)—grant UMO-2011/03/B/ST1/04758.
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Chapter 1

RETRACTED CHAPTER: Introduction:
A Historical Journey

Isaac Newton (1643–1727) first developed calculus having been inspired by the physical world:
the orbit of a planet, the swing of a pendulum, perhaps even, as legend has it, the motion
of falling fruit. His thinking led to a geometric intuition about mathematical structures.
They should make sense in the same way that a physical object would. As a result, many
mathematicians concentrated on “continuous” functions. Conceptually, these are the functions
that can be drawn without taking pen away from paper. There will be no gaps or sudden
jumps.

A first “definition” of a function was given by Leonhard Euler (1707–1783) in [Eul48],
page 4: “A function of a real variable is an analytic expression that is built from the variable,
numbers, and constants.”1 Functions in that sense are automatically everywhere continuous
(in the modern sense) up to possibly a discrete set of discontinuities.

Nevertheless, the notion of a function remained a vague one for a long time. It seems that in
1873, Lejeune Dirichlet (1805–1859) became the first to give a precise definition (see [DS00],
§1): “Fix two values a and b. Then x may be thought as a quantity that may take all values
between a and b. Assume that to every x a value y = f(x) is associated such that if x runs
continuously through the interval from a to b, then y = f(x) changes also in a continuous
way. Then y is called a continuous function of x on the interval. It is not necessary that y be
built according to one law for each x; even more, there is no need to think of this relation in
the form of a mathematical operation.”2

Even more, Dirichlet pointed out that his definition does not require a common rule regard-
ing how such a function should be built. It is allowed that the function may be constructed
from different pieces or even more, it may be given without a common rule for its pieces.3

Note that Dirichlet defines a “continuous function,” but it is clear how the term function
has to be understood out of his definition. It is important and new that a function is no

The chapter “Introduction: A Historical Journey” published in the book “Continuous Nowhere Differentiable
Functions”, pages 1–6, DOI 10.1007/978-3-319-12670-8_1, has been retracted by the request of the Editor,
because portions of the text are duplicated without permission from a previously published article by Adam
Kucharski.
1 “Functio quantitatis variabilis est expressio analytica quomodocunque composita ex illa quantita variabili
et numeris seu quantitatibus constantibus.”
2 “Man denke sich unter a und b zwei feste Werthe und unter x eine veränderliche Grösse, welche nach und
nach alle zwischen a und b liegenden Werthe annehmen soll. Entspricht nun jedem x ein einziges endliches y
und zwar so, dass, während x das Intervall von a bis b stetig durchläuft, y = f(x) sich ebenfalls allmählich

verändert, so heisst y eine stetige oder continuirliche Function von x für dieses Intervall. Es ist dabei gar nicht
nöthig, dass y in diesem ganzen Intervalle nach demselben Gesetze von x abhängig sei, ja man braucht nicht
einmal an eine durch mathematische Operationen ausdrückbare Abhängigkeit zu denken.”
3 “Diese Definition schreibt den einzelnen Theilen der Curve kein gemeinsames Gesetz vor; man kann sich
dieselbe aus den verschiedenartigsten Theilen zusammengesetzt oder ganz gesetzlos gezeichnet denken.” See
[DS00], § 153.

© Springer International Publishing Switzerland 2015
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longer something that is given by a closed analytic expression. It is the above definition that
is familiar to today’s mathematicians: to any point x of a certain set X one and only one
value f(x) is given, and the whole association is called the function f .

Nevertheless, the experiences at that time made people believe that for every continuous
curve, it was possible to find the slope at all but a finite number of points. This seemed to
match intuition: a line might have a few jagged bits, but there would always be a few sections
that were “smooth.” The French physicist and mathematician André-Marie Ampère (1775–
1836) even published a proof of this claim (see [Amp06]). His argument was built on the
“intuitively evident” fact that a continuous curve must have sections that increase, decrease,
or remain flat. This meant that it must be possible to calculate the slope in those regions.
Ampère did not think about what happened when the sections became infinitely small, but he
claimed that he did not need to. His approach was general enough to avoid having to consider
things that were “infiniment petits.” Most mathematicians were happy with his reasoning.
By the middle of the nineteenth century, almost every calculus textbook quoted Ampère’s
proof.

But during the 1860s, rumors began circulating about a strange function that contradicted
Ampère’s theorem. In Germany, the great Bernhard Riemann (1826–1866) told his students
that he knew of a continuous function that had no smooth sections, and for which it was
impossible to calculate the derivative of the function at any point. Riemann did not publish
a proof, and neither did Charles Cellérier (1818–1889), at the University of Geneva, who—
despite writing that he had discovered something “very important and I think new”—stuffed
the work into a folder that would become public only after his death decades later (see [Cel90]).
Over the years, it was found that the function Riemann proposed does not fulfill the property
of being nowhere differentiable. Although his function is, in fact, somewhere differentiable,
we decided to put an extensive discussion of this function into our book, showing the current
state of knowledge (see Chap. 13).

Such a monster of a function was finally publicly accessible in 1872, when Karl Weierstrass
(1815–1897) announced in a lecture in front of the Königliche Akademie der Wissenschaften,
Berlin, that he had found a function that was continuous everywhere and yet not smooth
at any point. He had constructed it by adding together an infinitely long sequence of cosine
functions. To be more precise, it is given by the following formula:

f(x) =

∞∑

n=1

an cos(bnπx), x ∈ R,

where a ∈ (0, 1), b is an odd integer, and ab > 1 + 3
2π.

As a function, it was ugly and awkward. It was not even clear what it would look like
when plotted on a graph. But that did not matter to Weierstrass. His proof consisted of
equations rather than shapes, and that is what made his announcement so powerful. Not only
has he created a monster, he has built it from concrete logic. He had taken his new, rigorous
definition of a derivative and shown that it was impossible to calculate one anywhere for this
new function.

The lecture by Weierstrass was not immediately published, but it seems that his example
reached many mathematicians at that time. Thus Paul du Bois-Reymond (1831–1889) wrote
to Weierstrass asking for details. After Weierstrass had sent him his notes, Bois-Reymond
published the example (see [BR74]). Bois-Reymond added the following comment, showing
the influence that this example had had on him: “There is not only no implication between
continuity and differentiability at one point, but it is an exciting result that there exists a
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continuous function in an interval having no differential quotient at any point of it.”4 This is
the first example of a continuous nowhere differentiable function published in a mathematical
journal.

After the Weierstrass lecture and before its publication by Bois-Reymond, Gaston Darboux
(1842–1917) also observed another similar monster. He showed that the function

f(x) =
∞∑

n=1

sin((n+ 1)!x)

n!
, x ∈ R,

is continuous but nowhere differentiable (see [Dar75, Dar79]). His proof in the first cited paper
is very sketchy, while the second paper contains more details of the proof. It is interesting
to observe that in his preface to the first paper, he mentioned names like Riemann, Hankel,
Schwarz, and Klein, but omitted to cite Weierstrass. This was also the case in the second
paper, even though Weierstrass had protested in a letter to Bois-Reymond, claiming that the
first examples were due to him (see [Wei23], page 211).

Also Ulisse Dini (1845–1918) published in 1877 a paper (see [Din77]) in which he presented
another example, namely

F (x) =

∞∑

n=1

an

1 · 3 · 5 · · · (2n− 1)
cos(1 · 3 · 5 · · · (2n− 1)x), x ∈ R,

which is continuous but nowhere differentiable if a > 1 + 3
2π. He referred to the example of

Weierstrass, but his aim was to find other such strange functions.
This result5 threw the mathematics community into a state of shock. The French mathe-

matician Émile Picard (1856–1941) pointed out that if Newton had known about such func-
tions, he would have never created calculus. Rather than harnessing ideas about the physics
of nature, he would have been stuck trying to clamber over rigid mathematical obstacles. The
monster also began to trample over previous research. Results that had been “proven” began
to buckle. Ampère had used the vague definitions favored by Cauchy to prove his smoothness
theorem. Now his arguments began to collapse. The vague notions of the past were hopeless
against the monster. Worse, it was no longer clear what constituted a mathematical proof.
The intuitive geometry-based arguments of the previous two centuries seemed to be of little
use. If mathematics tried to wave the monster away, it would stand firm. With one bizarre
equation, Weierstrass had demonstrated that physical intuition was not a reliable foundation
on which to build mathematical theories. So this new mathematics (arithmetic analysis) led
to a breaking away from trusting one’s intuition, geometric or otherwise.

Established mathematicians tried to brush the result aside, arguing that it was awkward
and unnecessary. They feared that pedants and troublemakers were hijacking their beloved
subject. At the Sorbonne, Charles Hermite (1822–1901) wrote to Stieltjes (see [BB05], page
318): “I turn with terror and horror from this lamentable scourge of functions with no deriva-
tives.”6 Henri Poincaré (1854–1912)—who was the first to call such functions monsters—

4 “Mit der Existenz eines Differentialquotienten hat die Bedingung der Stetigkeit nicht allein für einen einzel-
nen Punkt nichts zu schaffen, sondern es ist eines der ergreifendsten Ergebnisse der neueren Mathematik, dass
eine Funktion in allen Punkten eines Intervalles stetig sein kann, ohne für einen Punkt dieses Intervalles einen
bestimmten Differentialquotienten zu ergeben.”
5 The present paragraph and others as well are taken from the lovely article [Kuc14], sometimes word for
word (see also [Vol1987, Vol1989]).
6 “Je me détourne avec effroi et horreur de cette plaie lamentable des fonctions continues qui n’ont point de
dérivées.”
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denounced Weierstrass’s work as “an outrage against common sense.” He claimed that the
functions were an arrogant distraction, and of little use to the subject. “They are invented
on purpose to show that our ancestors’ reasoning was at fault,” he said, “and we shall never
get anything more out of them.” See [Poi99], page 159.

Many of the old guard wanted to leave Weierstrass’s monster in the wilderness of math-
ematics. It did not help that nobody could visualize the shape of this strange function they
were dealing with—only with the advent of computers did it become possible to plot it. Its
hidden form made it hard for the mathematics community to grasp how such a function could
exist. Weierstrass’s style of proof was also unfamiliar to many mathematicians. His argument
involved dozens of logical steps and ran to several pages. The trail of ideas was subtle and
technically demanding, with no real-life analogies to guide the way. The general instinct was
to avoid it.

But with the dawn of the twentieth century, situation changed. Even physicists began
to discuss strange curves like the Ludwig Boltzmann (1844–1906) nonrectifiable H-curve,
which was used to describe the movement of particles in statistical mechanics. In fact, much
later, Norbert Wiener (1894–1964) was able to prove that the trajectory of a particle, in
view of Brownian motion, is not rectifiable. The twentieth century has forced upon us the
inadequacy of so-called ordinary curves to represent the facts of nature. Let us quote the
French physicist Jean Baptiste Perrin (1870–1942), who helped to prove that atoms and
molecules exist, an achievement that earned him the 1926 Nobel Prize in physics. In his 1913
book Les atomes, about the motion of atoms (see the English translation [Per16]), he writes
in the introduction: “I wish to offer a few remarks designed to give objective justification for
certain logical exigencies of the mathematicians. It is well known that before giving accurate
definitions we show beginners that they already possess the idea of continuity. We draw a
well-defined curve and say to them, holding a ruler against the curve, ‘You see that there is
a tangent at every point.’ Or again, in order to impart the more abstract notion of the true
velocity of a moving object at a point in its trajectory, we say, ‘You see, of course, that the
mean velocity between two neighbouring points on this trajectory does not vary appreciably
as these points approach infinitely near to each other.’ And many minds, perceiving that
for certain familiar motions this appears true enough, do not see that there are considerable
difficulties in this view. To mathematicians, however, the lack of rigour in these so-called
geometrical considerations is quite apparent, and they are well aware of this childishness
of trying to show, by drawing curves, for instance, that every continuous function has a
derivative. Though derived functions are the simplest and the easiest to deal with, they are
nevertheless exceptional; to use geometrical language, curves that have no tangents are the
rule, and regular curves, such as the circle, are interesting though quite special cases. At first
side the consideration of such cases seems merely an intellectual exercise, certainly ingenious
but artificial and sterile in application, the desire for absolute accuracy carried to a ridiculous
pitch. And often those who hear of curves without tangents, or underived functions, think at
first that Nature presents no such complications, nor even offers any suggestion of them. The
contrary, however is true, and the logic of mathematicians has kept them nearer to reality
than the practical representations employed by physicists.”

Or consider Grace Chisholm Young’s (1868–1944) apologia (see [You16a], §18) of contin-
uous nowhere differentiable functions, in which she says, “We of the twentieth century are
bound to recognise it in its full importance. These curves (i.e. such without tangents) afford us
a means of rendering more veracious the representation of the physical universe by the realm
of Mathematics.” So the last resistance to this kind of new function gradually disappeared.

In addition to Cellérier, another mathematician, Bernard Bolzano (1781–1841), found
a function continuous but not differentiable at many points. This function is contained
in Bolzano’s book Functionenlehre, written around 1834, but published only in 1930.
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The function itself remained unpublished until 1921, when it was discovered by the young
Czech mathematician M. Jasek, who was asked by the Bohemian Academy of Sciences to go
through Bolzano’s manuscripts. Bolzano’s function is the limit of a sequence of effectively
given piecewise linear functions. Bolzano himself comments thus on his function: “The func-
tion Fx considered in I, §75, changes its increasing and decreasing behavior so many times
that for no value of x does there exist a small enough w so that it is possible to believe that
Fx is continuously increasing or continuously decreasing between x and x±w. This function
gives us a proof that even a continuous function can have no derivative for so many values of
the variable that between each two such points there is a third one for which there is also no
derivative to be found.”7

A precise proof that his function is continuous and even nowhere differentiable was given
by Karel Rychlik (1855–1968) in 1922 (see his comment in [Ryc23]) and by Vojtěch Jarńık
(1897–1970) (see [Jar22]). Because of its late publication, this kind of function did not have
as great an influence on the early discussions about continuous but nowhere differentiable
functions as did the example of Weierstrass.

A number of papers dealing with new examples of continuous nowhere differentiable func-
tions appeared. In fact, in the bibliography of Emde-Boas (see [Boa69]) there are eight articles
listed before 1900 and 33 papers during the period 1901–1931; see also the bibliography in
[Sin35] and the one for this book. Even more, the Weierstrass example began to appear
in several textbooks, for example in U. Dini: Grundlagen für eine Theorie der Funktionen
einer veränderlichen reellen Grösse (see [Din92]), F. Klein: Anwendungen der Differential-
und Integralrechnung auf Geometrie. Eine Revision der Prinzipien (see [Kle02]), M. Pasch:
Veränderliche und Funktion (see [Pas14]), E.W. Hobson: The theory of functions of a real
variable and the theory of Fourier series (see [Hob26]). For example, let us quote U. Dini
from his book, §145: “The theorems proved in the last paragraphs should be able to reject,
at least from the better books, the belief up to now that a continuous function has to have
a derivative.”8 Finally, modern mathematics, such as the theory of fractals, has sufficiently
proved the importance of the existence of these monster functions.

In developing the discussion of these monster functions, there are first examples that, under
certain restrictions on their parameters, can be handled by simple means. The discussion of
these particular functions is exactly the content of Part I. Later on, mathematicians became
interested in understanding the role of the parameters that lead to a function being nowhere
differentiable. More difficult reasoning became necessary to study such functions. Moreover,
one-sided derivatives and also infinite derivatives became of interest. Results of this kind will
be discussed in Part III.

But apart from all these examples, more is true, namely that most of the continuous
functions are monster functions. This kind of investigation has its basis in the theorem of
Baire. It was Stefan Banach (1892–1945) who proved that the complement of the set of
continuous nowhere differentiable functions is of first category, i.e., is a rather small set. As
it turned out, most continuous functions behave in a strange way and are thus themselves
monsters of various types. This is the content of Part II. Note that this abstract approach

7 “Die in I, §75, betrachtete Function Fx, bey welcher das Steigen und Fallen so vielmals abgewechselt, dass
es zu keinem Werthe von x ein w klein genug gibt, um behaupten zu können, dass Fx innerhalb x und x±w

fortwährend wachse oder fortwährend abnehme, gibt uns einen Beweis, dass eine Function sogar stetig seyn
könne und doch keine abgeleitete hat für so viele Werthe ihrer Veränderlichen, dass zwischen je zwey derselben
sich noch ein dritter, für welchen sie abermahls keine abgeleitete hat nachweisen.”
8 “Den in den letzten Paragraphen bewiesenen Sätzen dürfte, wie uns scheint, die Aufgabe zufallen, künftig
aus den bessern Lehrbüchern den bis in die neueste Zeit als Grundlage der Differentialrechnung figurirenden
Leitsatz zu verdrängen, nach welchem die Existenz der Derivierten jeder endlichen und stetigen Function
wenigstens im Allgemeinen ausser Zweifel sein sollte.”
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does not give any effective example of such a function. Thus it makes the study of concrete
examples not superfluous at all. The notion of being of first category has certain refinements
such as porosity. Looking at even stranger monsters such as continuous functions having
nowhere finite or infinite one-sided derivatives ended with a negative result: those functions
are rare among the continuous ones. Such functions, as was shown by Stanis�law Saks (1897–
1942) in 1932, are of first category among all continuous functions. So there was no immediate
deduction that such functions exist. Earlier, in 1924, Abram Samoilovitch Besicovitch (1891–
1970) had already constructed such an example using very difficult geometric reasoning. In
Chap. 11, we will present, in addition to concrete examples, a categorial argument showing,
in fact, that there are many of those monsters.

Later, at the end of the twentieth century and into the current one, there appeared authors
who have constructed Weierstrass-type monsters with additional pathologies. It has been a
generalized trend in mathematics toward the search for large algebraic structures of patho-
logical objects such as the continuous nowhere differentiable functions. The lineability of this
type of functions has been thoroughly studied in recent years. Recall that a subset M of a
topological vector space X is called lineable (resp. spaceable) in X if there exists an infinite-
dimensional linear space (resp. an infinite-dimensional closed linear space) Y ⊂ M \ {0}.
These notions of lineable and spaceable were originally coined by V.I. Gurariy (1935–2005).
The very first result in this direction was also due to him (see [Gur67, Gur91]). He showed that
the set of continuous nowhere differentiable functions on [0, 1] is lineable. Further, V.P. Fonf,
V.I. Gurariy, and M.I. Kadets (see [FGK99]) proved that the set of nowhere differentiable
functions on [0, 1] is spaceable. To give the reader a feeling for such results, we discuss some
of them in Chap. 12.

We close this discussion by emphasizing that we have given only our own historical journey.
We do not claim that it is a complete survey.



Part I

Classical Results



Chapter 2

Preliminaries

Summary. This chapter contains definitions and auxiliary results related to various notions of nowhere

differentiability. In particular, in § 2.3, we present a proof of the famous Denjoy–Young–Saks theorem, which

may permit the reader to understand better the sense of nowhere differentiability.

2.1 Derivatives

Let I ⊂ R be an arbitrary interval containing at least two distinct points.

Definition 2.1.1. For a function ϕ : I −→ C, set

Δϕ(t, u) :=
ϕ(u)− ϕ(t)

u− t
, t, u ∈ I, t �= u.

Recall that ϕ has a (finite) derivative ϕ′(t) at a point t ∈ I if the limit

ϕ′(t) := lim
I�u→t

Δϕ(t, u)

exists and is finite. In the case ϕ : I −→ R, we may also consider an infinite derivative ϕ′(t)
if the limit

ϕ′(t) := lim
I�u→t

Δϕ(t, u)

exists but is infinite, i.e., ϕ′(t) ∈ {−∞,+∞}.
Remark 2.1.2. If ϕ : I −→ C, then

Δϕ(u1, u2) =
u2 − t

u2 − u1
Δϕ(t, u2) +

t− u1

u2 − u1
Δϕ(t, u1),

t, u1, u2 ∈ I, u1 < t < u2.

© Springer International Publishing Switzerland 2015
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Consequently:

(a) If a finite derivative ϕ′(t) exists at an interior point t ∈ int I, then

ϕ′(t) = lim
u1,u2→t
u1<t<u2

Δϕ(u1, u2);

note that this fact was already known to T.J. Stieltjes (cf. [Sti14]).

(b) If ϕ : I −→ R, then

min{Δϕ(t, u2),Δϕ(t, u1)} ≤Δϕ(u1, u2) ≤max{Δϕ(t, u2),Δϕ(t, u1)},
t, u1, u2 ∈ I, u1 < t < u2.

In particular, if an infinite derivative ϕ′(t) exists at an interior point t ∈ int I, then

ϕ′(t) = lim
u1,u2→t
u1<t<u2

Δϕ(u1, u2).

Definition 2.1.3. Let ϕ : I −→ C, t ∈ I. We say that ϕ has a finite right- (resp. left-) sided
derivative ϕ′

+(t) (resp. ϕ′
−(t)) at t if the limit

ϕ′
+(t) := lim

I�u→t
u>t

Δϕ(t, u) = lim
I�u→t+

Δϕ(t, u)

(
resp. ϕ′

−(t) := lim
I�u→t
u<t

Δϕ(t, u) = lim
I�u→t−

Δϕ(t, u)
)

exists and is finite. In the case ϕ : I −→ R, we allow infinite one-sided derivatives ϕ′
±(t) ∈

{−∞,+∞}. Notice that:
• if t ∈ I is the right endpoint of the interval, then ϕ′

+(t) is not defined and ϕ′−(t) = ϕ′(t);
• if t ∈ I is the left endpoint of the interval, then ϕ′

−(t) is not defined and ϕ′
+(t) = ϕ′(t).

One-sided derivatives are also called unilateral derivatives.

Remark 2.1.4. Let ϕ : I −→ C.

(a) If a finite ϕ′
+(t) exists, then for every C > 0, we have

ϕ′
+(t) = lim

I�u′,u′′→t, t<u′<u′′

| u′′−t
u′′−u′ |≤C

Δϕ(u′, u′′).

Indeed, we have ϕ(u) = ϕ(t) + ϕ′
+(t)(u − t) + α(u)(u − t), t < u ∈ I, where

limu→t+ α(u) = 0. Hence

Δϕ(u′, u′′) =
ϕ(t) + ϕ′

+(t)(u
′′ − t) + α(u′′)(u′′ − t)

u′′ − u′

− ϕ(t) + ϕ′
+(t)(u

′ − t) + α(u′)(u′ − t)

u′′ − u′

= ϕ′
+(t) +

u′′ − t

u′′ − u′α(u
′′)− u′ − t

u′′ − u′α(u
′) −→

I�u′,u′′→t
t<u′<u′′

ϕ′
+(t),

provided u′′−t
u′′−u′ is bounded.

(b) An analogous result may be easily obtained for finite left derivatives.
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(c) Notice that (a) is not true for infinite unilateral derivatives.
For example, let n1 = 2, nk+1 = n2

k, k ∈ N. Define ϕ :
[
0, 1

4

] −→ R, ϕ(0) := 0,

ϕ(u) :=
1

nk
, u ∈

[
1
n3
k
, 1
n2
k

]
, ϕ(u) := nk+1u, u ∈

[
1

n2
k+1

, 1
n3
k

]
, k ∈ N.

Observe that ϕ is continuous and ϕ′
+(0) = +∞. In fact, for u ∈ [

1
n3
k
, 1
n2
k

]
, we have

Δϕ(0, u) = 1
nku
≥ nk. For u ∈ [

1
n2
k+1

, 1
n3
k

]
, we have Δϕ(0, u) = nk+1.

Take u′
k := 1

n3
k
, u′′

k := 1
n2
k
. Then Δϕ(u′

k, u
′′
k) = 0 and

u′′
k−0

u′′
k−u′

k
≤ 2.

(d) A finite derivative ϕ′(t) exists at an interior point t ∈ int I iff

∀ε>0 ∃δ>0 ∀ t−δ≤ai≤t≤bi≤t+δ
ai,bi∈I, ai<bi, i=1,2

: |Δϕ(a1, b1)−Δϕ(a2, b2)| < ε.

Indeed, if the above condition is satisfied, then taking a1 = a2 = t (resp. b1 = b2 = t), we
conclude that a finite one-sided derivative ϕ′

+(t) (resp. ϕ′
−(t)) exists. Taking a1 = b2 = t,

we get ϕ′
+(t) = ϕ′−(t). Conversely, if ϕ′(t) ∈ R exists, then we use Remark 2.1.2(a).

We will use also the following more general derivatives, introduced, e.g., by U. Dini in
[Din92].

Definition 2.1.5. Let ϕ : I −→ R, t ∈ I. The lower (resp. upper) right Dini derivative
D+ϕ(t) (resp. D+ϕ(t)) of ϕ at t is defined as

D+ϕ(t) := lim inf
I�u→t+

Δϕ(t, u) ∈ R

(
resp. D+ϕ(t) := lim sup

I�u→t+
Δϕ(t, u) ∈ R

)
.

Analogously, the lower (resp. upper) left Dini derivative D−ϕ(t) (resp. D−ϕ(t)) of ϕ at t is
defined as

D−ϕ(t) := lim inf
I�u→t−

Δϕ(t, u) ∈ R

(
resp. D−ϕ(t) := lim sup

I�u→t−
Δϕ(t, u) ∈ R

)
.

Similarly to the above, D+ϕ(t) and D+ϕ(t) (resp. D−ϕ(t) and D−ϕ(t)) are not defined if
t ∈ I is the right (resp. left) endpoint of the interval.

Remark 2.1.6. (a) ϕ′
+(t) exists iff D+ϕ(t) = D+ϕ(t); ϕ′

−(t) exists iff D−ϕ(t) = D−ϕ(t).

(b) D−ϕ = −D−(−ϕ), D+ϕ = −D+(−ϕ).

(c) D−∨
ϕ(t) = −D+ϕ(−t), D−

∨
ϕ(t) = −D+ϕ(−t), where

∨
ϕ(t) := ϕ(−t) (provided that −I =

I).

Remark 2.1.7. If ϕ : I −→ R is continuous, then the functions D+ϕ, D+ϕ, D−ϕ, D−ϕ are
Borel measurable.

We will prove that D+ϕ is Borel measurable (the remaining cases are left to the reader as
an Exercise). We may assume that the right endpoint of I does not belong to I. It suffices
to show that for every C ∈ R, the set AC := {t ∈ I : D+ϕ(t) < C} is Borel measurable. Fix
a C ∈ R. Let N ∈ N be such that In := {t ∈ I : t+ 1

n ∈ I} �= ∅ for n ≥ N . Now we need only
observe that in view of the continuity of ϕ, we have
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AC =
⋃

n∈NN , k∈N

⋂

h∈Q∩(0, 1n )

{
t ∈ In :

ϕ(t + h)− ϕ(t)

h
≤ C − 1

k

}
.

Notice that the result remains true for arbitrary Borel-measurable functions ϕ : I −→ R

(cf. [Ban22]).

2.2 Families of Continuous Nowhere Differentiable Functions

Recall that our principal aim is to discuss continuous nowhere differentiable functions. To sim-
plify notation related to nowhere differentiability, we define the following classes of continuous
nowhere differentiable functions.

– ND(I) := the set of all ϕ ∈ C(I,C) that are nowhere differentiable in the finite sense;
– ND∞(I) := the set of all ϕ ∈ C(I) that are nowhere differentiable in the finite or infinite
sense;

– ND±(I) := the set of all ϕ ∈ C(I,C) such that for every t ∈ I, there is neither a finite
right nor a finite left derivative at t;

– ND∞± (I) = B(I) := the set of all Besicovitch functions, i.e., the set of all ϕ ∈ C(I) such
that for every t ∈ I, there is neither a finite or infinite right nor a finite or infinite left
derivative at t (cf. § 7.5);

– M(I) := the set of all Morse functions, i.e., the set of all ϕ ∈ C(I) such that

max{|D+ϕ(t)|, |D+ϕ(t)|} = max{|D−ϕ(t)|, |D−ϕ(t)|} = +∞, t ∈ I;

we skip the left (resp. right) max{. . . } if t is the right (resp. left) endpoint of the interval;
– BM(I) = B(I) ∩M(I) := the set of all Besicovitch–Morse functions (cf. § 11.1).

Notice that

BM(I) ⊂M(I) ⊂ ND±(I) ⊂ ND(I),

BM(I) ⊂ B(I) = ND∞
± (I) ⊂ ND∞(I).

Remark 2.2.1. Observe that if I is an open interval, then there exists a real-analytic in-
creasing diffeomorphism σ : R −→ I. In particular, if a continuous function ϕ : I −→ C

belongs to one of the above classes of nowhere differentiable functions on I, then the function
ϕ ◦ σ belongs to the corresponding class on R.

The above remark permits us to transport many results from I to R and vice versa.

2.3 The Denjoy–Young–Saks Theorem

The following result may give some feelings for the general behavior of functions with respect
to their differentiability. On a first reading, the reader may skip the proof.

Theorem 2.3.1 (Denjoy–Young–Saks). Let I ⊂ R be an arbitrary nontrivial interval. Let
f : I −→ R. Then there exists a set E ⊂ I of Lebesgue measure zero such that for every
x ∈ I \ E, either
• a finite f ′(x) exists, or
• D+f(x) = D−f(x) ∈ R and D+f(x) = −∞, D−f(x) = +∞, or
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• D−f(x) = D+f(x) ∈ R and D+f(x) = +∞, D−f(x) = −∞, or
• D−f(x) = D+f(x) = +∞ and D−f(x) = D+f(x) = −∞.

Remark 2.3.2. Symbolically, for x ∈ I \ E we have the following four possibilities:

∗ ∗ +∞∗ ∗−∞
+∞∗ ∗−∞

+∞ +∞
−∞ −∞

If f is continuous, the result was first proved by A. Denjoy in [Den15]. The case in which
f is measurable was solved by G.C. Young in [You16b]. Finally, the general case was proved
by S. Saks in [Sak24]. Our elementary proof is due to E.H. Hanson [Han34].

Corollary 2.3.3. Let f : I −→ R, f ∈ ND(I). Then at almost all points of I, the function
f has no one-sided (finite or infinite) derivatives.

The following two classical results from measure theory will be important for the proof.

Theorem 2.3.4 (Vitali Covering Theorem; Cf. [KK96], Theorem 0.3.2). Let S ⊂ R be
bounded and let F be a family of bounded closed intervals, none consisting of a single point,
such that for every x ∈ S and ε > 0, there exists a P ∈ F such that x ∈ P and diam(P ) ≤ ε.
Then there exists an at most countable subfamily F0 ⊂ F , consisting of pairwise disjoint
intervals, such that

L
(
S \

⋃

P∈F0

P
)
= 0,

where L denotes the Lebesgue measure on R.

Theorem 2.3.5 (Lebesgue Density Theorem; Cf. [KK96], Theorem 2.2.1). Let A ⊂ R. Then
for almost all x ∈ A and for every sequence (Ps)

∞
s=1 of bounded intervals with x ∈ Ps and

0 < diam(Ps) −→ 0, we have

lim
s→+∞

L∗(A ∩ Ps)

L(Ps)
= 1,

where L∗ stands for the outer Lebesgue measure on R.

Proof of Theorem 2.3.1. Using Remark 2.2.1, we may assume that I = R.
Step 1o. It suffices to prove that there exists a zero-measure set E0 = E0(f) such that for

every x ∈ R \ E0, either
• D+f(x) = D−f(x) ∈ R, or
• D+f(x) = +∞ and D−f(x) = −∞.
Indeed, then we put E := E0(f) ∪ E0(−f).

Step 2o. The main idea of the proof is to show that:

(a) the set E1 := {x ∈ R : D+f(x) = +∞, D−f(x) �= −∞} is of measure zero,

(b) the set E2 := {x ∈ R : D−f(x) = −∞, D+f(x) �= +∞} is of measure zero,

(c) the set E3 := {x ∈ R : D+f(x) < D−f(x) or D−f(x) < D+f(x)} is at most countable,

(d) the set E4 := {x ∈ R : D+f(x), D−f(x) ∈ R, D+f(x) �= D−f(x)} is of measure zero.

Observe that (b) follows from (a) applied to the function −f .
Suppose for a moment that the above properties are already proven. Put E0 := E1 ∪E2 ∪

E3 ∪ E4 and fix an x ∈ R \ E0. By (d), we need to check only that if D+f(x) or D−f(x) is
infinite, then D+f(x) = +∞ and D−f(x) = −∞. The configurations from (a) and (b) are
excluded. Thus, their remains the case D+f(x) = −∞ (resp. D−f(x) = +∞), but then, in
view of (c), D−f(x) = −∞ (resp. D+f(x) = +∞), which contradicts (b) (resp. (a)).
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Step 3o. Proof of (a).
We have

E1 =
⋃

r∈Q, n∈N

Ar,n,

where
Ar,n := {x ∈ R : D+f(x) = +∞, ∀x′∈(x− 1

n ,x) : Δf(x, x′) > r}.
We need to prove only that each set Ar,n is of measure zero. Fix r, n ∈ N, and b ∈ Ar,n. Let
a ∈ R be such that 0 < b− a < 1

n . Put S := Ar,n ∩ (a, b). Take an arbitrary t ∈ R and let

Ft := {[p, q] : q > p, [p, q] ⊂ (a, b), p ∈ S, Δf(p, q) > t}.

It is clear that (S,Ft) satisfies the assumptions of the Vitali covering theorem. Thus there
exists an at most countable subfamily F0

t ⊂ Ft, consisting of pairwise disjoint intervals, such

that L(S \ ⋃P∈F0
t
P ) = 0. Take P1, . . . , PN ∈ F0

t , Pi = [pi, qi]. Then (a, b) \ ⋃N
i=1 Pi =

⋃M
j=1(αj , βj), where the intervals (α1, β1), . . . , (αM , βM ) are pairwise disjoint and βj ∈ Ar,n,

j = 1, . . . ,M . In particular, Δf(αj , βj) > r. Consequently,

f(b)− f(a) =

M∑

j=1

(f(βj)− f(αj)) +

N∑

i=1

(f(qi)− f(pi))

> r
M∑

j=1

(βj − αj) + t
N∑

i=1

(qi − pi) = (t− r)
N∑

i=1

L(Pi) + r(b − a).

Thus
f(b)− f(a) ≥ (t− r)

∑

P∈F0
t

L(P ) + r(b − a).

Observe that ∑

P∈F0
t

L(P ) = L(
⋃

P∈F0
t

P ) ≥ L∗(S).

Consequently, for t > r, we get

f(b)− f(a) ≥ (t− r)L∗(S) + r(b − a).

Letting t −→ +∞, we conclude that L∗(S) = L(Ar,n ∩ (a, b)) = 0. Hence, L(Ar,n) = 0.

Step 4o. Proof of (c).
It suffices to prove that the set A := {x ∈ R : D+f(x) < D−f(x)} is of measure zero (and

then apply this result to −f). Observe that

A =
⋃

r∈Q, n∈N

Ar,n,

where
Ar,n := {x ∈ R : ∀x′∈(x− 1

n ,x), x′′∈(x,x+ 1
n ) : Δf(x, x′) < r < Δf(x, x′′)}.

It is clear that if x, y ∈ Ar,n, then |x− y| ≥ 1
n . Consequently, Ar,n is at most countable.
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Step 5o. Proof of (d).

We have
E4 \E3 =

⋃

r1,r2,r3,r4∈Q

r1>r2>r3>r4, n∈N

Ar1,r2,r3,r4,n,

where

Ar1,r2,r3,r4,n := {x ∈ R : r4 < D−f(x) < r3 < r2 < D+f(x) < r1,

∀x′∈(x− 1
n ,x) : Δf(x, x′) > r4, ∀x′′∈(x,x+ 1

n ) : Δf(x, x′′) < r1}.

Fix r1 > r2 > r3 > r4, n ∈ N, and a, b ∈ Ar1,r2,r3,r4,n such that 0 < b − a < 1
n . Put

S := Ar1,r2,r3,r4,n ∩ (a, b). In view of the proof of Step 3o with (r, t) = (r4, r2), we get

f(b)− f(a) ≥ (r2 − r4)L∗(S) + r4(b− a).

Let
F := {[p, q] : q > p, [p, q] ⊂ (a, b), q ∈ S, Δf(p, q) < r3}.

It is clear that (S,F) satisfies the assumptions of the Vitali covering theorem. Thus there
exists an at most countable subfamily F0 ⊂ F , consisting of pairwise disjoint intervals, such

that L∗
(
S \⋃P∈F0 P

)
= 0.

Take P1, . . . , PN ∈ F0
t , Pi = [pi, qi]. Then (a, b) \ ⋃N

i=1 Pi =
⋃M

j=1(αj , βj), where the
intervals (α1, β1), . . . , (αM , βM ) are pairwise disjoint and αj ∈ Ar1,r2,r3,r4,n, j = 1, . . . ,M . In
particular, Δf(αj , βj) < r1. Consequently,

f(b)− f(a) ≤ (r3 − r1)
∑

P∈F0
t

L(P ) + r1(b− a) ≤ (r3 − r1)L∗(S) + r1(b− a).

Hence

L∗(S)
b− a

=
L∗(Ar1,r2,r3,r4,n ∩ [a, b])

L([a, b])
≤ r1 − r4

r1 − r4 + r2 − r3
< 1. (2.3.1)

Suppose that L∗(Ar1,r2,r3,r4,n) > 0. Then by the Lebesgue density theorem, there exists a
point b ∈ Ar1,r2,r3,r4,n such that

lim
a→b−

L∗(Ar1,r2,r3,r4,n ∩ [a, b])

L([a, b])
= 1. (2.3.2)

In particular, in view of (2.3.1), there are no sequences (as)
∞
s=1 ⊂ Ar1,r2,r3,r4,n such that

0 < b− as < 1
n and as −→ b. Thus Ar1,r2,r3,r4,n ∩ (b, b− 1

s ) = ∅ for s� 1, which contradicts
(2.3.2). ��

2.4 Series of Continuous Functions

Many of the functions discussed in this book will be of the form

ϕ(t) :=

∞∑

n=0

ϕn(t), t ∈ I,
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where ϕn : I −→ C is continuous, n ∈ N0, and the series is normally convergent, i.e.,

A :=
∞∑

n=0

(sup
t∈I
|ϕn(t)|) < +∞.

In particular, such a series is uniformly convergent, and therefore, the function ϕ is continuous.
Obviously, ϕ is bounded and |ϕ(x)| ≤ A, x ∈ I.

Remark 2.4.1. It is well known that if, moreover, each function ϕn : I −→ C is differentiable
and the series

∑∞
n=0 ϕ′

n is uniformly convergent (e.g., normally convergent) in I, then ϕ is
differentiable and ϕ′(t) =

∑∞
n=0 ϕ′

n(t), t ∈ I.

2.5 Hölder Continuity

Definition 2.5.1. Let α ∈ (0, 1]. We say that a continuous function ϕ : I −→ C is:
• α-Hölder continuous at a point t ∈ I (ϕ ∈Hα(I; t)) if

∃c, δ>0 ∀h∈(−δ,δ)∩(I−t) : |ϕ(t + h)− ϕ(t)| ≤ c|h|α;

• Lipschitz at a point t ∈ I if ϕ ∈H1(I; t);
• α-Hölder continuous (ϕ ∈Hα(I)) if

∃C>0 ∀t,u∈I : |ϕ(u)− ϕ(t)| ≤ C|u − t|α;

• Lipschitz continuous if ϕ is 1-Hölder continuous;
• M -Lipschitz at a point t ∈ I (where M > 0) if

∀u∈I : |ϕ(u)− ϕ(t)| ≤M |u− t|.

Remark 2.5.2. (a) Observe that if ϕ : I −→ C is a bounded continuous function, then ϕ is
α-Hölder continuous at t iff

∃c>0 ∀u∈I : |ϕ(u)− ϕ(t)| ≤ c|u− t|α (Exercise);

in particular, ϕ is 1-Hölder continuous at t iff ϕ is M -Lipschitz at t for some M > 0.

(b) If a finite derivative ϕ′(t) exists, then ϕ is Lipschitz at t.

(c) It is known (cf. [KK96], Theorems 1.2.8, 6.1.5, 6.1.15) that if ϕ : I −→ C is Lipschitz
continuous, then there exists a zero-measure set S ⊂ I such that ϕ′(t) exists for all
t ∈ I \ S.

(d) Assume that I is a bounded closed interval and let TM denote the set of all ϕ ∈ C(I,C)
such that for every t ∈ I, the function ϕ is not M -Lipschitz at t. Consider C(I,C) as a
metric space endowed with the distance d(ϕ, ψ) := maxI |ϕ − ψ|. Then TM is open in
C(I,C)1 (Exercise). Consequently, the set T :=

⋂
M∈Q>0

TM of all functions that are

nowhere Lipschitz on I is a Borel set. Observe that T ⊂ ND(I).

1 Recall that a pair (X, d) is a metric space if d : X ×X −→ R+, (d(x, y) = 0 ⇐⇒ x = y), d(x, y) = d(y, x),
and d(x, y) ≤ d(x, z) + d(z, y). A set A ⊂ X is called open if for each a ∈ A, there exists an r > 0 such that
{x ∈ X : d(x, a) < r} ⊂ A.
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Definition 2.5.3. For α > 0, we say that a continuous function ϕ : I −→ C is:
• nowhere α-Hölder continuous (ϕ ∈ NHα(I)) if ∀t∈I : ϕ /∈Hα(I; t);
• α-anti-Hölder continuous if

∃ε>0 ∀t∈I, δ∈(0,1) ∃h±∈(0,δ)
t±h±∈I

: |ϕ(t± h±)− ϕ(t)| > εδα;

we skip h+ (resp. h−) if t is the right (resp. left) endpoint of the interval;
• weakly α-anti-Hölder continuous if

∃ε>0 ∀t∈I, δ∈(0,1) ∃h∈(−δ,δ)∩(I−t) : |ϕ(t + h)− ϕ(t)| > εδα.

Remark 2.5.4. Let α ∈ (0, 1).

(a) If ϕ is α-anti-Hölder continuous, then ϕ ∈M(I) ⊂ ND±(I).
(b) If ϕ is weakly α-anti-Hölder continuous, then ϕ is nowhere 1-Hölder continuous, and hence

ϕ ∈ ND(I).



Chapter 3

Weierstrass-Type Functions I

Summary. The aim of this chapter is to present various classical methods of testing the nowhere differen-

tiability of the Weierstrass-type function x �−→ ∑∞
n=0 a

n cosp(2πbnx + θn). More developed results will be

discussed in Chap. 8.

3.1 Introduction

We will discuss the nowhere differentiability of the following Weierstrass-type function

Wp,a,b,θ(x) :=

∞∑

n=0

an cosp(2πbnx + θn), x ∈ R, (3.1.1)

where

p ∈ N, 0 < a < 1, ab ≥ 1, θ := (θn)
∞
n=0 ⊂ R. (3.1.2)

Throughout the chapter, we always assume that p, a, b, θ satisfy (3.1.2) (cf. Figs. 3.1, 3.2,
and 3.3).

Notice that the function W1,a,b,0 with p = 1, b ∈ 2N+ 1, and ab > 1 + 3
2π, coincides with

the original nowhere differentiable Weierstrass function presented by him to the Königliche
Akademie der Wissenschaften on 18 July 1872; cf. [Wei86].

We will be mainly interested in a characterization of the parameters p, a, b, θ for which
the function Wp,a,b,θ belongs to one of the following three classes of nowhere differentiable
functions: ND∞(R), ND±(R), and M(R) ∩ ND∞(R). Recall that M(R) ⊂ ND±(R). We
would like to point out that in general, most of the cases are not completely understood (even
for p = 1 and θ = 0).

To simplify notation, we will use the following conventions:
• If θn = θ for all n ∈ N0, then we simply write θ = θ.
• If the parameters p, a, b are fixed, then Wθ := Wp,a,b,θ.
A special role is played by the cases in which p = 1 or/and (θ = 0 or θ = −π

2 ). In
particular,

Ca,b(x) : = W 1,a,b,0(x) =
∞∑

n=0

an cos(2πbnx),
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Fig. 3.1 Weierstrass-type function I 	 x �−→ W1,0.9,1.2,0(x)
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Fig. 3.2 Weierstrass-type function I 	 x �−→ W1,0.5,3,0(x)
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Fig. 3.3 Weierstrass-type functions W1,0.5,1,0, W1,0.5,2,0, W1,0.5,3,0, W1,0.5,4,0

Sa,b(x) : = W 1,a,b,−π
2
(x) =

∞∑

n=0

an sin(2πbnx), x ∈ R,

are the classical Weierstrass functions (cf. [BR74, Wei86]).

Remark 3.1.1. To give the reader an idea of the content of the chapter, we give below a
list of results that will be presented. The list is organized in chronological order. We do not
pretend that the list is complete. Most of the results will be presented in a somewhat more
general form than in the original papers. Nowadays, most of these results have only historical
significance. They will be essentially generalized and strengthened in Chap. 8. Nevertheless,
they might give some insight into how over 120 years (1872–1992), the methods of studying
nowhere differentiability have evolved.

(1) 1872: If b, p ∈ 2N0+1 and ab > 1+ 3
2pπ, then Wp,a,b,0 ∈M(R)∩ND∞(R) ⊂ ND±(R)∩

ND∞(R) (Theorem 3.5.1).

(2) 1890: If b ∈ 2N and b ≥ 14, then W1,1/b,b,θ ∈ ND±(R) (Theorem 3.6.1).

(3) 1892: If (a < a1(p) and b > Ψ1(a)) or (a < a2(p) and b > Ψ2(a)) (the functions ai, Ψi,
i = 1, 2, are given by effective formulas), then Wp,a,b,θ ∈ ND±(R). In particular, if (a < 1

3
and ab > 1 + 3

2π
1−a
1−3a ) or (a < 2

9 and ab2 > 1 + 21
4 π2 1−a

2−9a ), then W1,a,b,θ ∈ ND±(R)
(Theorem 3.7.1).


