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Abstract

This book is about monotone complete C�-algebras, their properties, and the new
classification theory (using spectroid invariants and a classification semigroup). A
basic account of generic dynamics is included because of its important connections
to these algebras. Each bounded, upward-directed net of real numbers has a limit.
Monotone complete algebras of operators have a similar property. In particular,
every von Neumann algebra is monotone complete, but the converse is false. The
small von Neumann factors can be labelled by the set of real numbers. But there
are many more (2R) small monotone complete C�-algebras which are factors. The
aim of this book is to give an account of monotone complete C�-algebras which
includes recent advances but also indicates the many mysteries and open problems
which remain.
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Chapter 1
Introduction

This book is about monotone complete C�-algebras, their properties and their
classification. We also give a basic account of generic dynamics because of its useful
connections to these algebras.

1.1 Monotone Complete Algebras of Operators

Fundamental to analysis is the completeness of the real numbers. Each bounded,
monotone increasing sequence of real numbers has a least upper bound. Monotone
complete algebras of operators have a similar property.

Let A be a C�-algebra. Its self-adjoint part, Asa, is a partially ordered, real Banach
space whose positive cone is fzz� W z 2 Ag. If each upward directed, norm-bounded
subset of Asa, has a least upper bound then A is said to be monotone complete. Every
von Neumann algebra is monotone complete but the converse is false.

Recently there have been major advances in the theory of monotone complete
C�-algebras; for example the construction of classification semigroups [144]. This
followed an important breakthrough in [66], which introduced huge numbers of
new examples. But much remains to be discovered. The purpose of this book is to
expound the new theory. We want to take readers from the basics to the frontiers
of the subject. We hope they will be stimulated to work on the many fascinating
open problems. Our intention is to strive for clarity rather than maximal generality.
Our intended reader has a grounding in elementary functional analysis and point
set topology and some exposure to the fundamentals of C�-algebras, say, the first
chapters of [161]. But prior knowledge of von Neumann algebras or operator
systems is not essential. However, in this introduction, we may use terminology
with which some readers are unfamiliar. If so, we apologise and reassure them that
all necessary technicalities will be discussed later in the text.

© Springer-Verlag London 2015
K. Saitô, J.D.M. Wright, Monotone Complete C*-algebras and Generic Dynamics,
Springer Monographs in Mathematics, DOI 10.1007/978-1-4471-6775-4_1
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2 1 Introduction

Algebras of operators on Hilbert space, including C�-algebras, von Neumann
algebras and their generalisations, are the focus of intense research activity world-
wide. They are fundamental to non-commutative geometry and intimately related to
work on operator systems and operator spaces and have connections to many other
fields of mathematics and quantum physics. But the first to be investigated (with a
different name and a more “spatial” viewpoint) were the von Neumann algebras.

Monotone complete C�-algebras arise in several different areas. There are close
connections with operator systems, with operator spaces and with generic dynamics.
In the category of operator systems, with completely positive maps as morphisms,
each injective object can be given the structure of a monotone complete C�-algebra
in a canonical way. Injective operator spaces can be embedded as “corners” of
monotone complete C�-algebras, see Theorem 6.1.3 and Theorem 6.1.6 [38] and
[25, 59, 60]. When a monotone complete C�-algebra is commutative, its lattice
of projections is a complete Boolean algebra. Up to isomorphism, every complete
Boolean algebra arises in this way.

Let A be a monotone complete C�-algebra then A is a von Neumann algebra
precisely when it has a separating family of normal states. If a monotone complete
C�-algebra does not possess any normal states it is called wild.

The best known commutative example of a wild monotone complete C�-algebra
is straightforward to construct. Let B.R/ be the commutative C�-algebra of all
bounded, complex valued Borel measurable functions on R. Let M.R/ be the ideal
of all functions h in B.R/ such that ft 2 R W h.t/ ¤ 0g is a meagre subset of R.
(Let us recall that a set is meagre if it is contained in the union of countably many
nowhere dense sets; a set is nowhere dense if its closure has empty interior.) Then
the quotient algebra B.R/=M.R/ is a commutative monotone complete C�-algebra
which has no normal states and so is not a von Neumann algebra. It turns out that
if we replace R by any complete separable metric space, without isolated points,
and perform the same construction then we end up with the same commutative
monotone complete C�-algebra.

A monotone complete C�-algebra, like a von Neumann algebra, is said to be a
factor if its centre is trivial. In other words, factors are as far as possible from being
commutative. Just as for von Neumann algebras, monotone complete C�-factors
can be divided into Type I, Type II1,Type II1 and Type III. It turns out that all
Type I factors are von Neumann algebras. So it is natural to ask: are all monotone
complete C�-factors, in fact, von Neumann algebras? The answer is “no” in general
but to clarify the situation, we need some extra notions. Let H be a separable Hilbert
space and L.H/ the bounded operators on H. A C�-algebra A is said to be separably
representable if there exists a �-isomorphism � from A into L.H/. It is known
that if A is a monotone complete C�-factor which is also a separably representable
C�-algebra then A must be a von Neumann algebra [179]. So where are the wild
factors?

A (unital) C�-algebra B is said to be small if there exists a unital complete
isometry from B onto an operator system in L.H/, where H is separable. When
an algebra is separably representable then it is small but the converse is false. In
other words, there exist C�-algebras which can be regarded as operator systems
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on a separable Hilbert space but which can only be represented as �-algebras of
bounded operators on a larger Hilbert space. There do exist small Type III monotone
complete C�-factors which are not von Neumann algebras. In fact they exist in
huge abundance. There are 2c, where c is the cardinality of the real numbers. By
contrast, there are only c small von Neumann algebras. (Each small von Neumann
algebra is isomorphic to a �-subalgebra of L.H/ where the subalgebra is closed
in the weak operator topology. In particular, each small von Neumann algebra is
separably representable. This follows from [1].) Incidentally, if a small C�-algebra
is a wild factor then it is always of Type III.

One way to find a wild monotone complete C�-factor is to start with a separable,
simple, unital C�-algebra and use a kind of “Dedekind cut” completion [173].
This approach will be discussed later. Another method is to associate a monotone
complete C�-algebra with a dynamical system. This “generic dynamics” approach
is outlined below.

Monotone complete C�-algebras are a generalisation of von Neumann algebras.
The theory of the latter is now very well advanced. But it took many years before
it was demonstrated that there were continuum many von Neumann factors of
Type III [126], Type II1 [100] and Type II1 [148]. Then the pioneering work
of Connes, Takesaki and other giants of the subject transformed our knowledge
of von Neumann algebras, see [8, 30, 96, 162]. By comparison, the theory of
monotone complete C�-algebras is in its infancy with many fundamental questions
unanswered. But great progress has been made in recent years. In the early study
of monotone complete C�-algebras the emphasis was on showing how similar they
were to von Neumann algebras. Nowadays we realise how different they can be.

In 2001 Hamana [66] made a major breakthrough which implied that there are
2c small monotone complete C�-factors. In 2007 [144] we found a way to classify
monotone complete C�-algebras. This is set out in Chap. 3.

In [144] we introduced a quasi-ordering between monotone complete
C�-algebras. From this quasi-ordering we defined an equivalence relation and used
this to construct, in particular, a classification semigroup W for small monotone
complete C�-algebras. This semigroup is abelian, partially ordered, and has the
Riesz decomposition property. For each small monotone complete C�-algebra A we
assign a “normality weight”, w.A/ 2 W . If A and B are algebras then w.A/ D w.B/,
precisely when these algebras are equivalent. It turns out that algebras which
are very different can be equivalent. In particular, the von Neumann algebras are
equivalent to each other and correspond to the zero element of the semigroup. It
might have turned out that W is very small and fails to distinguish between more
than a few algebras. This is not so; the cardinality of W is 2c, where c D 2@0 .

A natural reaction by anyone familiar with K-theory, is to construct the
Grothendieck group of W . But this group is trivial because each element of the
semigroup is idempotent. However this implies that W has a natural structure as
a semi-lattice. Furthermore, the Riesz Decomposition Property for W ensures that
the semi- lattice is distributive.



4 1 Introduction

As we shall see later, one of the useful properties of W is that it can sometimes
be used to replace problems about factors by problems about commutative algebras
[144].

To each monotone complete C�-algebra we can associate a spectroid invariant,
@A [144]. Just as a spectrum is a set which encodes information about an operator, a
spectroid encodes information about a monotone complete C�-algebra. It turns out
that if wA D wB then A and B have the same spectroid. So the spectroid may be
used as a tool for classifying elements of W .

Kaplansky wished to capture the algebraic essence of von Neumann algebras
and to do it, introduced AW�-algebras [90–92]. An AW�-algebra may be defined
as a unital C�-algebra in which every maximal abelian �-subalgebra is monotone
complete [146]. Every monotone complete C�-algebra is easily seen to be an
AW�-algebra. Nobody has ever seen an AW�-algebra which is NOT monotone
complete. It is strongly suspected that EVERY AW�-algebra is monotone complete.
But in full generality this is a difficult open problem. But many positive results are
known. In particular, all “small” AW�-factors are known to be monotone complete.
Since our interest is strongly focused on small C�-algebras we shall postpone
a discussion of AW�-algebras until Chap. 8. (But this can be read now, without
working through all the earlier chapters.) They will appear on our list of open
problems, some of which have been unsolved for over 60 years. For a scholarly
account of the classical theory of AW�-algebras the reader may consult [13].

Generic dynamics is used in an essential way in this book but we shall not
introduce this tool until Chap. 6. So some readers may prefer to turn immediately to
Chap. 2 and postpone reading the introduction to generic dynamics.

1.2 Generic Dynamics

An elegant account of generic dynamics was given by Weiss [165]; the term
occurred earlier in [157]. In these articles, the underlying framework is a countable
group of homeomorphisms acting on a complete separable metric space with no
isolated points (a perfect Polish space). The key result of [157] was a strong
uniqueness theorem. As a consequence, the wild factor discovered by Dyer [36]
and the factor found by Takenouchi [159] were shown to be isomorphic.

We devote a chapter to aspects of generic dynamics useful for monotone
complete C�-algebra theory, including some recent discoveries [145]. This is an
elementary exposition. In this book, generic dynamics is only developed as far as we
need it for applications to C�-algebras. But this does require us to consider generic
dynamics on compact non-metrisable separable spaces; a topic which has been little
explored and gives rise to interesting open questions.

Let G be a countable group. Unless we specify otherwise, G will always be
assumed to be infinite. Let X be a Hausdorff topological space with no isolated
points. Further suppose that X is a Baire space i.e. such that the only meagre open
set is the empty set. In other words, the Baire Category Theorem holds for X. We
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shall also suppose that X is completely regular. (These conditions are satisfied if X is
compact or homeomorphic to a complete separable metric space or, more generally,
a Gı-subset of a compact Hausdorff space or is the extreme boundary of a compact
convex set in a locally convex Hausdorff topological vector space.) A subset Y of X
is said to be generic if XnY is meagre.

Let " be an action of G on X as homeomorphisms of X.
In classical dynamics we would require the existence of a Borel measure on

X which was G-invariant or quasi-invariant, and discard null sets. In topological
dynamics, no measure is required and no sets are discarded. In generic dynamics,
we discard meagre Borel sets.

We shall concentrate on the situation where, for some x0 2 X, the orbit f"g.x0/ W
g 2 Gg is dense in X. Of course this cannot happen unless X is separable. (A
topological space is separable if it has a countable dense subset. This is a weaker
property than having a countable base.) Let S be the Stone space of the (complete)
Boolean algebra of regular open sets of X. Then, see below, the action " of G on
X induces an action O" of G as homeomorphisms of S; which will also have a dense
orbit.

When, as in [165] and [157], X is a perfect Polish space, then S is unique; it can
be identified with the Stone space of the regular open sets of R. But if we let X range
over all separable compact subspaces of the separable space, 2R, then we obtain 2c

essentially different S; where S is compact, separable and extremally disconnected.
For each such S, C.S/ is a subalgebra of `1.

Let E be the relation of orbit equivalence on S. That is, sEt, if, for some group
element g, O"g.s/ D t. Then we can construct a monotone complete C�-algebra ME

from the orbit equivalence relation. When there is a free dense orbit, the algebra
will be a factor with a maximal abelian �-subalgebra, A, which is isomorphic to
C.S/. There is always a faithful, normal, conditional expectation from ME onto A.
It can be shown that wME D wA. So some classification questions about factors
can be replaced by questions about commutative algebras. When E and F are
orbit equivalence relations which coincide on a dense Gı-subset of S then ME is
isomorphic to MF.

For f 2 C.S/, let �g. f / D f ı O"g�1 . Then g 7! �g is an action of G as
automorphisms of C.S/. Then we can associate a monotone complete C�-algebra
M.C.S/;G/, the monotone cross-product with this action (see Chap. 7). When the
action O" is free, then M.C.S/;G/ is naturally isomorphic to ME. In other words, the
monotone cross-product does not depend on the group, only on the orbit equivalence
relation.

In this book we shall consider 2c algebras C.S/. Each is a subalgebra of `1
and each takes different values in the weight semigroup W . (Here c D 2@0 , the
cardinality of R.)

For general S there is no uniqueness theorem but we do show the following. Let
G be a countably infinite group. Let ˛ be an action of G as homeomorphisms of S
and suppose this action has at least one orbit which is dense and free. Then, modulo
meagre sets, the orbit equivalence relation obtained can also be obtained by an action
of
L

Z2 as homeomorphisms of S. This should be contrasted with the situation in
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classical dynamics. (e.g. It is shown in [31] that any action by an amenable group is
orbit equivalent to an action of Z. But, in general, non-amenable groups give rise to
orbit equivalence relations which do not come from actions of Z.)

On each of 2c, essentially different, compact extremally disconnected spaces
we construct a natural action of

L
Z2 with a free, dense orbit. Let ƒ be a set of

cardinality 2c, where c D 2@0 . Then by applying generic dynamics, as in [144],
we can find a family of monotone complete C�-algebras fB� W � 2 ƒg with
the following properties. Each B� is a monotone complete factor of Type III, and
also a small C�-algebra. For � ¤ �, B� and B� have different spectroids and so
wB� ¤ wB� and, in particular, B� is not isomorphic to B�. Furthermore each B� is
generated by an increasing sequence of full matrix algebras.



Chapter 2
Order Fundamentals

This chapter presents basic material which will be needed later. Among the topics
discussed are order limits, monotone �-complete C�-algebras and commutative
algebras.

Our aim is to present an account of monotone complete C�-algebras which can
be followed without requiring the reader to constantly look up results elsewhere. So,
particularly in this first chapter, we give proofs of some basic results which appear
in standard texts. We shall also state a number of results without proof but with an
indication of where proofs can be found.

The books [161] and [121] are our sources for much of the canonical theory of
C�-algebras; we have used their guidance for some basic results. There are many
other excellent books in this area, an interesting recent example is [15] as well as
the classic [34]. An elegant succinct introduction to operator algebras is to be found
in [67].

In the 80 years of its development, operator algebra theory has woven together
the thoughts of many brilliant contributors. In such a vast subject it is no longer
practical to keep track of every individual contribution. If we fail to attribute results
to their original discoverers this is not a slight, not an insult, but evidence of how
fundamentally enmeshed in the general theory their work has become. In particular,
none of the results are claimed as our own unless we specifically say so.

The first three sections of this chapter are “Order structures and order conver-
gence”, “Monotone �-complete C�-algebras” and “Commutative algebras”. They
are basic to all that follows. The final section, “Matrix algebras over a monotone
complete C�-algebra”, is not needed until the later chapters.

© Springer-Verlag London 2015
K. Saitô, J.D.M. Wright, Monotone Complete C*-algebras and Generic Dynamics,
Springer Monographs in Mathematics, DOI 10.1007/978-1-4471-6775-4_2
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8 2 Order Fundamentals

2.1 Order Structures and Order Convergence

We are familiar with the fact that a bounded set of real numbers has a least upper
bound. Let P be a partially ordered set and S a subset of P. An upper bound for S
is an x 2 P such that a � x for each a 2 S. We call y a least upper bound for S if
y is an upper bound for S and, whenever x is an upper bound for S, then y � x. If
a least upper bound exists then it is unique. Lower bound and greatest lower bound
are defined analogously. We shall also use “supremum” and “least upper bound”
interchangeably; they mean the same. Similarly with “infimum” and “greatest lower
bound”. If, for each x; y in P the set fx; yg has a supremum and an infimum then P
is a lattice.

When S � P and S has a supremum s, we write s D supS or s D W
S. Both these

notations are in common use and we shall make use of both of them.
We recall that S is upward directed if a 2 S and b 2 S implies there exists c 2 S

such that a � c and b � c. (Downward directed is defined similarly.)
Let A be any C�-algebra (not necessarily with a unit element) and let Asa be

the (real) Banach space of self-adjoint elements of A. We recall that the positive
elements of A are, by definition, those of the form zz�. Let AC be the set of all
positive elements of A. Then AC is a cone, that is, if x and y are in AC and if � and
� are in R

C then �x C �y is in AC. This cone AC is closed in the norm topology.
Furthermore, AC \ �AC D f0g and Asa D AC � AC. So we can define a partial
ordering on Asa by x � y precisely when x � y 2 AC. (We also use y � x to mean
x � y.) Then with this partial ordering, Asa is a partially ordered Banach space with
the real numbers as scalars.

Let us put A D C.T/, the algebra of complex valued continuous functions on a
compact Hausdorff space T. Then Asa can be identified with CR.T/, the real valued
continuous functions. Then f � g if f .t/ � g.t/ for each t 2 T. It is easy to see that
this ordering makes Asa into a lattice.

In fact this lattice property is equivalent to commutativity. Given a C�-algebra A,
Sherman’s Theorem [152] tells us that Asa is a (vector) lattice if, and only if, A is
commutative. A striking theorem of Kadison [81] tells us that L.H/ is an anti-lattice.
That is, given x; y 2 L.H/sa, the pair fx; yg does not have a supremum unless x � y or
y � x. For these, and more general results, see [9, 29]. At first sight Kadison’s result
seems puzzling, since we know the projections in L.H/ form a lattice, with respect
to the partial ordering induced by �. But this apparent paradox is easily resolved.
Given projections p and q in L.H/ the set of projections above both of them has a
smallest element; but, in general, the set of all self-adjoint elements above both of
them does not have a smallest element.

Whenever J is a closed ideal of A then JC is a hereditary cone in AC, in other
words, if x 2 A, 0 � x � b and b 2 JC then x 2 JC. (Our main reference for the
basic theory of C�-algebras is Takesaki [161] but see, also, Pedersen [121] for his
elegant account of order properties in C�-algebras.)
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Let U be a subset of Asa. Then U is a norm bounded, upward directed set if and
only if �U D f�a W a 2 Ug is a norm bounded, downward directed set. Furthermore
U has a least upper bound x if, and only if, x � U D fx � y W y 2 Ug has infimum 0.

If .an/ is a monotone increasing sequence in Asa then, clearly, fan W n D 1; 2 : : :g
is an upward directed set; when this directed set has a supremum a we say that
the sequence has supremum a. Similarly, a monotone decreasing sequence .bn/ has
infimum b, when the downward directed set fbn W n D 1; 2 : : :g has infimum b.

As well as sequences we shall also make use of nets, see below.
The set ft 2 R W t < 1g is an upper bounded set of real numbers but it is not

bounded. In general, given an upper bounded set U in A we can pick y0 2 U and
define U0 D fy 2 U W y � y0g. Then U0 is norm bounded.

If U is upward directed then U0 has the same set of upper bounds as U. But if U
is not upward directed then this need not be true. (For a trivial example, recall that
L.H/ is an anti-lattice. So we can find self-adjoint a and b for which fa; bg has no
supremum. Put U D fa; bg and U0 D fy 2 U W y � bg D fbg.)

Definition 2.1.1 A C�-algebra A is monotone complete if each norm bounded,
upward directed subset of Asa has a least upper bound.

By using the map a 7! �a it is easy to see that A is monotone complete if each
norm bounded, downward directed subset of Asa has a greatest lower bound.

Definition 2.1.2 A C�-algebra A is monotone �-complete if each norm bounded,
monotone increasing sequence has a least upper bound.

It is immediate that A is monotone �-complete if each norm bounded, monotone
decreasing sequence has a greatest lower bound.

We shall see, later, that all monotone complete C�-algebras have a unit element.
This is not true for monotone �-complete C�-algebras. However, suppose that A is
monotone �-complete and does not posses a unit. Then A1 the algebra formed by
adjoining a unit, will be shown to be monotone �-complete.

When working with C�-algebras things go much more smoothly when they
possess a unit. But, particularly for dealing with ideals, we need to extend parts
of the theory to the non-unital situation. Most of the (minor) contortions which this
requires are dealt with in this chapter.

Let A be monotone (�-)complete and let T be a Hausdorff topology for A. Let us
call T sequentially order compatible if, whenever .an/ is a norm bounded, monotone
increasing sequence with least upper bound a, then an ! a in the T -topology. In
L.H/ the strong operator topology is sequentially order compatible. When A is any
von Neumann algebra, with predual A�, then the �.A;A�/ topology is (sequentially)
order compatible. Does every monotone complete C�-algebra have a Hausdorff,
locally convex vector space topology which is sequentially order compatible? If the
answer were “yes” we could replace order considerations by topological arguments.
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But the answer is “no”. There are commutative counter examples:

Example 2.1.3

(a) Let BŒ0; 1� be the space of all bounded Borel measurable, complex valued
functions on the unit interval. Let M be the set of all f in BŒ0; 1� for which
f� 2 Œ0; 1� W f .�/ ¤ 0g is a meagre set. Then, when the algebraic operations
are defined pointwise and BŒ0; 1� is equipped with the supremum norm, it is a
commutative C�-algebra. Also M is a closed ideal and the quotient BŒ0; 1�=M
will be shown to be monotone complete in Chap. 4. We have already remarked,
and will prove later, that this algebra has no normal states. It is known that if T
is a Hausdorff, locally convex vector space topology for BŒ0; 1�=M then T is not
sequentially order compatible. This follows from [44] because this work shows
that if BŒ0; 1�=M is equipped with a Hausdorff topology S which is sequentially
order compatible then the map .x; y/ 7! x � y is not jointly continuous. Hence
such an S cannot be a locally convex vector topology. However, as we shall see
later, the Wright Representation Theorem [171] does show that each monotone
�-complete C�-algebra is the quotient of a monotone �-complete C�-algebra
which does posses a sequentially order compatible topology. This is illustrated
by the above example.

(b) Let Bnd.R/ be the commutative C�-algebra of all bounded complex valued
functions on R. Let J be the ideal consisting of all f 2 Bnd.R/ for which
fr 2 R W f .r/ ¤ 0g is a countable set. Then J is monotone �-complete. It is not
monotone complete and does not possess a unit element.

(c) Let CŒ0; 1� be the C�-algebra of continuous complex valued functions on
the closed unit interval. Then this algebra is neither monotone complete nor
monotone �-complete. Now let U be the set of all f 2 CŒ0; 1� such that f is
real valued, f .0/ D 0 and 0 � f .�/ < 1 for each � 2 Œ0; 1�. Then U is upward
directed and the function with the constant value 1 is the least upper bound of
U in CŒ0; 1�. We have jj f � 1jj D 1 for each f 2 U. So there does not exist a
sequence in U which converges in norm to the least upper bound of U.

When A is not assumed to be monotone complete it may still have some norm
bounded, downward directed subset which has a greatest lower bound e.g. in
Example 2.1.3(c) put D D f1 � f W f 2 Ug. Then D has 0 as its greatest lower
bound.

When A is a C�-algebra without a unit, we define A1 to be the algebra formed by
adjoining a unit. Then A is a maximal ideal of A1. When A does have a unit we put
A1 D A.

In the rest of this section A is a C�-algebra which is not assumed to possess a
unit and is not required to be monotone complete, unless this is stated explicitly.

Notation 2.1.4 In an algebra A we use: “.an/ " a” as an abbreviation for: .an/

is a monotone increasing sequence in Asa with least upper bound a in Asa. We also
use .xn/ # x to indicate that .xn/ is a monotone decreasing sequence in Asa with
infimum x in Asa. When we write “.an/ "” that will mean that the sequence is
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monotone increasing. We shall also use a similar notation for sequences in more
general partially ordered sets.

We shall sometimes find it convenient to abuse our notation, mildly, by referring
to a monotonic sequence or directed set as being “in A” when “in Asa” would be
more correct; similarly we sometimes refer to a supremum or infimum as being
“in A”.

Lemma 2.1.5 Let A be any C�-algebra. Let .an/ " a and .bn/ " b. Then .anCbn/ "
a C b.

Proof Let x be an upper bound for .an C bn/. Then

ar C bm � arCm C brCm � x.

So ar � x � bm. Fix m. Then x � bm is an upper bound for .ar/. Thus a � x � bm.
So, for all m, bm � x � a. Hence b � x � a. It now follows that a C b is the least

upper bound of .an C bn/. ut
Let ƒ be a directed set. Let .a� W � 2 ƒ/ be a net in Asa. Then the net is

increasing if � � � implies a� � a�. We say the net has least upper bound a when
its range fa� W � 2 ƒg has a least upper bound a. It is clear that when .a� W � 2 ƒ/ is
increasing then fa� W � 2 ƒg is an upward directed subset of Asa. Similarly the net is
decreasing if � � � implies a� � a� and it has infimum b if its range fa� W � 2 ƒg
has infimum b. When D is a downward directed set in Asa then .d W d 2 D/ is a
decreasing net.

Lemma 2.1.6

(i) Let .a� W � 2 ƒ/ be an increasing net in Asa with least upper bound a and
.b� W � 2 ƒ/ an increasing net in Asa with least upper bound b. Then .a�C b� W
� 2 ƒ/ is an increasing net in Asa with least upper bound a C b.

(ii) Let .x� W � 2 ƒ/ be a decreasing net in Asa with infimum x and .y� W � 2 ƒ/ a
decreasing net in Asa with infimum y. Then .x� C y� W � 2 ƒ/ is a decreasing
net in Asa with infimum x C y.

Proof

(i) This is a straightforward modification of the proof of Lemma 2.1.5.
(ii) Put x� D �a� and y� D �b� and apply (i). ut
Lemma 2.1.7 Let A be any C�-algebra. Let .xn/ be a monotone increasing
sequence in Asa. Suppose this sequence converges in norm to x. Then the sequence
has a supremum and this supremum is x.

Proof For m � n, xm � xn � 0. Because the positive cone is closed in the norm
topology,

x � xn D limm!1.xm � xn/ � 0.



12 2 Order Fundamentals

Let b be an upper bound for the sequence. Then b � x D limn!1.b � xn/ � 0. So x
is the least upper bound of the sequence. ut

The converse of this lemma is, of course, false. To see this, first take a separable,
infinite dimensional, Hilbert space H. Then, in L.H/, take a monotone increasing
sequence of finite rank projections converging to 1H (the identity operator on H)
in the strong operator topology. Then the sequence has 1H as its supremum but the
sequence is certainly not convergent in norm.

Corollary 2.1.8 Let T be a Hausdorff locally convex vector topology for Asa such
that AC is closed in the T topology. Let .x� W � 2 ƒ/ be an increasing net in Asa

such that .x� W � 2 ƒ/ converges in the T topology to x. Then x is the least upper
bound of fx� W � 2 ƒg.

Proof Straightforward modification of the proof of the preceding lemma. ut
We shall see that if S is an upward directed set in Asa with supremum s, then, for

any z in A, zSz� is upward directed with supremum zsz�. We also obtain a weaker,
but useful, result which can be used when S is not a directed set.

We call a subset S � Asa order bounded in A if there exist a and b in Asa such
that

a � x � b

for each x in S. Clearly an order bounded set is bounded in norm. When A is unital,
norm bounded sets are order bounded. But when A is not unital, norm bounded
sets need not be order bounded. For example, let A be the compact operators on
a separable, infinite dimensional Hilbert space and take S to be the self-adjoint
(compact) operators in the unit ball of A.

In the following lemma, there is no requirement that S be a directed set. Part of
the proof is based on [61].

Lemma 2.1.9 Let J be a (closed two sided) ideal in A. Let S be a norm bounded
subset of Jsa with least upper bound s in J. If z 2 A1 is invertible then zSz� is a norm
bounded subset of J with least upper bound zsz� in J. Furthermore, if S is order
bounded in Jsa, and c 2 JC then cSc has supremum csc in JC.

Proof We observe that J is a closed ideal of A1.
Let L D s � S D fs � y W y 2 Sg. Then L is a subset of JC which is bounded in

norm and has infimum 0. Since J is an ideal, zLz� is a subset of J. We show that, in
J, zLz� has an infimum and that this infimum is 0.

Since a 7! a� is an anti-automorphism of A1, z� is invertible and .z�1/� D
.z�/�1. The map Tz defined by Tz.x/ D zxz� for x 2 A is an order-isomorphism of
Asa onto itself with Tz

�1 D Tz�1 and Tz.J/ D J. Hence zLz� has infimum 0.
Now suppose S is order bounded in Jsa. Then there exists a 2 Jsa which is an

upper bound for L. Let d be any element of L. So, there exists a 2 Jsa such that
d � a for all d 2 L.
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Then

d2 � jjdjjd � jjdjja � jjajja.

Let c 2 JC. We shall show that cLc has an infimum in J and that this infimum is 0.
Let x 2 J be a lower bound for cLc and let d be any element of L. So x � cdc.
Let " be a positive real number. Then

.c C "1/d.c C "1/ D cdc C ".cd C dc/C "2d

D cdc C "..c C d/.c C d/� � c2 � d2/C "2d

� cdc � ".c2 C d2/

� x � ".c2 C kaka/ 2 Jsa.

Hence it follows that

d � .c C "1/�1.x � "c2 � "kaka/.c C "1/�1 in Jsa

for all d 2 L. So, we have

0 � x � "c2 � "kaka

for all " and so 0 � x follows. So, csc D sup cSc in Jsa. ut
Proposition 2.1.10 Let J be a (closed two sided) ideal in A. Let S be an upward
directed subset of Jsa with least upper bound s in J. Then, for any z 2 A1, we have
zSz� is an upward directed subset of J with least upper bound zsz� in J.

Proof Let a0 2 S then S0 D fa 2 S W a � a0g is upward directed, order bounded
and with supremum s. So, without loss of generality, we may assume that S is order
bounded in Jsa. We use the same notation as in the preceding lemma.

Let L D s � S D fs � y W y 2 Sg. Then L is a subset of JC which is downward
directed with infimum 0. It suffices to show that, in J, zLz� has an infimum and that
this infimum is 0.

We may assume that z ¤ 0 for otherwise there is nothing to prove. Let x D z C
2jjzjj and y D z�2jjzjj. Then x and y are invertible elements of A1. By the preceding
lemma, xLx and yLy both have infimum 0. We shall show that .x C y/L .x C y/� also
has infimum 0. To see this, we argue as follows.

For any f and g in A we find, by expanding . f � g/. f � g/�, that fg� C gf � �
ff � C gg�.

Let d 2 L. Put f D xd1=2 and g D yd1=2. Then xdy� C ydx� � xdx� C ydy�. So
.x C y/d.x C y/� � 2xdx� C 2ydy�.

Let c be any lower bound for .x C y/L.x C y/�. Then c � 2xdx� C 2ydy� for
every d 2 L.
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In Lemma 2.1.6 (ii) put ƒ D L and consider the nets .2xdx� W d 2 L/ and
.2ydy� W d 2 L/. Then .2xdx� C 2ydy� W d 2 L/ has infimum 0. So c � 0. Hence
zLz�has infimum 0 and so zSz� has supremum zsz�. ut

Suppose A does not possess a unit. Let S be an upward directed set with
supremum s. When S is regarded as a subset of A1does it still have a supremum
in A1sa and, if it does, is it s? Fortunately the answer is “yes”. See the proposition
below.

In contrast to this result, an upward directed set in Asa may have a supremum in
A1sa but fail to have a supremum in Asa. To see this, let H be a separable, infinite-
dimensional, Hilbert space. Let A be the algebra of compact operators on H. Then
take an increasing sequence of finite rank projections converging (in the strong
operator topology) to 1, the identity operator on H. This sequence has no supremum
in A but, in A1, it has 1 as its supremum.

Proposition 2.1.11 Let A be a C�-algebra without a unit element. Let S be an
upward directed set in Asa with supremum s in Asa. Then S has supremum s in A1.

Proof Because A is a closed ideal in A1 the quotient map q W A1 7! A1=A is a
�-homomorphism and hence a positive map.

Let a C �1 be any upper bound for S in A1, where a 2 A. Since q maps each
element of A to zero, it follows that � � 0.

For any z 2 A, since A is an ideal of A1, z.a C �1/z� is an upper bound for zSz�
in A. So

zsz� � z.a C �1/z� � zaz� C �jjzjj21.

Now let .z˛/ be an approximate unit for A. Then z˛sz�̨ � z˛az�̨ C �1. Also jjz˛.a �
s/z�̨ � .a � s/jj ! 0. Since the positive cone of A1 is closed in the norm topology it
follows that 0 � a � s C �1. That is, s � a C �1. ut
Corollary 2.1.12 Let A be monotone �-complete. Let .an/ " a. Let jjanjj � 1 and
an � 0 for each n. Then jjajj � 1.

Proof In A1, the unit 1 is an upper bound for the sequence. So, from the proposition,
a � 1. ut
Lemma 2.1.13 Let � be a positive linear functional on a C�-algebra A. Then � is
a bounded linear functional.

Proof Let AC
1 D fa 2 AC W jjajj � 1g. It suffices to show � is bounded on AC

1 .
Suppose this is false. Then for each n there is an in AC

1 such that n2n < �.an/.
Using norm convergence, let a D P1

1
1
2n an. Then, for each n,

n � �.
1

2n
an/ � �.a/.

This is impossible. ut
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Let � be a positive linear functional on a C�-algebra. Then � is said to be faithful
if x � 0 and �.x/ D 0 implies x D 0.

Theorem 2.1.14 Let A be a monotone �-complete C�-algebra. Let � be a faithful,
positive linear functional on A. Then A is monotone complete. In particular, let D be
an upward directed, norm bounded set in Asa. Then there is a monotone increasing
sequence in D whose supremum is the supremum of D.

Proof It suffices to prove this when D is a subset of AC
1 , the intersection of the

closed unit ball with the cone of positive elements.
Let D be the set of all x 2 AC

1 for which there is a monotone increasing sequence
in D with x as its supremum.

Since D is upward directed, it is easy to see that D is also upward directed. Let
.dn/ be any sequence in D. Then, for each n we have .x.n/r / " dn where each x.n/r is
in D. Since D is upward directed we can find a monotone increasing sequence in D,
.yn/ such that yn � x.k/r for n � k and n � r.

Let .yn/ " d. Then d 2 D and d � x.k/r for all r and all k. So d � dn for all n.
By the preceding lemma, � is bounded. Let � D supf�.y/ W y 2 Dg. For each n

let dn 2 D such that �.dn/ � � � 1=n. Then there exists d 2 D with �.d/ � �. So
�.d/ D �.

Now let b 2 D. Then, because the set is upward directed, we can find c 2 D such
that c � b and c � d. Thus � � �.c/ � �.d/ D �. So �.c � d/ D 0. Since � is
faithful, c D d. So d � b. So d is an upper bound for D. Since d is the least upper
bound of an increasing sequence from D, it is the least upper bound of D. ut
Proposition 2.1.15 Let A be monotone complete. Then A has a unit element.

Proof Let 	 D fa 2 AC W jjajj < 1g. Then, see p.11 [121], 	 is upward directed
and an approximate unit. Since it is norm bounded it has a supremum e in A. Then
0 � e. By Proposition 2.1.11 e � 1 in A1. So kek � 1. By spectral theory e2 � e.
So z�e2z � z�ez � z�z for all z 2 A.

Let x 2 Asa. Since 	 is an approximate unit, and since

jjx2 � xaxjj � jjxjjjjx � axjj

it follows that the net .jjx2 � xaxjj W a 2 	/ converges to 0. So the net .xax W a 2 	/
converges in the norm topology to x2

But, by Proposition 2.1.10, xex is the least upper bound of x	x. So, by
Lemma 2.1.7, xex D x2.

So we have

0 � .x � ex/�.x � ex/ D x2 � xex � xex C xe2x

D �x2 C xe2x � �x2 C xex D 0

which implies that kx � exk2 D 0, that is, x D ex. Taking adjoints gives x D xe. So,
e is a unit element of A. ut


