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Preface

Advances in micro electromechanical systems and wireless technologies have
allowed for the emergence of inexpensive micro-sensors with embedded processing
and communication capabilities. A wireless sensor network (WSN) is a collection
of these physically distributed micro-sensors communicating with one another over
wireless links. In their various shapes and forms, the WSNs have greatly facilitated
and enhanced the automated, remote, and intelligent monitoring of a large variety
of physical systems and have found applications in various areas, such as industrial
and building automation; environmental, traffic, wildlife, and health monitoring;
and military surveillance. The purpose of a WSN is to provide users access to
the information of interest from data gathered by spatially distributed sensors.
In most applications, users are interested in a processed data that carries useful
information of a physical plant rather than a measured data contaminated by noises.
Therefore, it is not surprising that signal estimation, especially the multisensor
fusion estimation, has been one of the most fundamental collaborative information
processing problems in WSNs. The WSN, as a typical multisensor system, has
greatly extended application areas of multisensor information fusion estimation,
which was originally developed for military applications, such as target tracking and
navigation. Although WSNs present attractive features, challenges associated with
communication constraints, such as the scarcity of bandwidth and energy, as well as
the delays and packet losses, in wireless communications have to be addressed in the
WSN-based information fusion estimation and have attracted increasing research
interest during the past decade.

This book provides the recent advances in distributed multisensor fusion esti-
mation methods for WSNs with communication constraints, including the energy
constraint, bandwidth constraint, communication delays, and packet losses. First,
a review on the latest developments in the literature is presented in Chap. 1.
Then, two energy-efficient fusion estimation methods, namely, the transmission
rate method and the packet size reduction method, are introduced for sensor
networks with energy constraints in Chaps. 2, 3, 4 and 5. Specifically, by slowing
down the sampling and estimation rates, a multi-rate fusion estimation method is
presented in Chap. 2 for sensor networks, where the sampling rate and the estimation
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rate are allowed to be different from each other and are parameters that can be
designed to meet the energy constraints. In Chap. 3, a distributed state fusion
estimation method is presented for sensor networks with nonuniform estimation
rates, where the estimation rates among the various local estimators are allowed to
be nonuniform and different from each other, that is, each local estimator is allowed
to generate local estimates independently with an adjustable rate according to its
power status. In Chap. 4, a distributed H1 fusion estimation method is introduced
for sensor networks with nonuniform sampling rates, where the sampling rate of
each sensor is allowed to be nonuniform and can be adjusted according to the
sensor’s power status. The energy-efficient fusion estimation method based on
packet size reduction is introduced in Chap. 5, where a dimension reduction method
is presented to reduce the size of packets containing the local estimates to be
transmitted to the fusion estimator. The bandwidth constraint problem is considered
in Chaps. 6 and 7. Specifically, a distributed H1 fusion estimation method is
presented for sensor networks with quantized local estimates in Chap. 6. In Chap. 7,
a hierarchical structure is presented for multisensor fusion estimation systems
to reduce the communication burden of the fusion center. The communication
uncertainties, including the delays and packet losses, are considered in Chaps. 8
and 9. Specifically, the fusion estimation for sensor networks with communication
delays is introduced in Chap. 8, while the fusion estimation with both delays and
packet losses is presented in Chap. 9.

The work was supported in part by the National Natural Science Foundation
of China under Grant No. 61104063 and 61573319, the Research Fund for the
Doctoral Program of Higher Education of China under Grant 20113317120001, the
Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education
Institutions of China under Grant No.141064, and the Zhejiang Provincial Natural
Science Foundation of China under Grant No. LR16F030005.
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Hangzhou, China Haiyu Song
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Chapter 1
Introduction

1.1 Distributed Fusion Estimation for Sensor Networks

The multisensor fusion estimation has attracted considerable research interest
during the past decades and has found applications in a variety of areas, such
as target tracking and localization, guidance and navigation, and fault detection
[1, 2, 5, 17]. Multisensor fusion is used because of potentially improved estimation
accuracy [2, 71] and enhanced reliability and robustness against sensor failures.
Many useful fusion estimation methods have been presented in the literature (see,
e.g., [8, 12, 14, 20, 25, 36, 41, 46, 58, 69, 70, 75, 77, 80, 86] and the references
therein). Recently, the rapid developments of wireless sensor networks (WSNs)
have greatly widen applications of the multisensor fusion estimation theory, which
in turn, helps the WSNs monitor the environment more accurately and efficiently.
Therefore, the WSN-based multisensor fusion estimation and its applications have
attracted considerable research interest during the past decade [22, 39, 57, 83].

It is known that the WSN consists of a group of sensor nodes which communicate
with each other via wireless networks and the sensor nodes are usually powered
by batteries. Therefore, the sensor nodes are usually constrained in energy, and
developing energy-efficient algorithms for WSN-based estimation to reduce energy
consumption and prolong network life is of great practical significance [9, 50, 54–
56, 61, 82, 97]. Consider the situation where a WSN is deployed to observe
and estimate states of a dynamically changing process, but the process is not
changing too rapidly. Then it is wasteful from an energy perspective for sensors
to transmit every measurement to an estimator to generate estimates, and this
waste is amplified by packet losses which are usually unavoidable in WSNs
[34, 64, 67, 68, 74, 78, 79, 85, 92]. Therefore, it is not surprising that many research
works have been denoted to the design of energy-efficient estimation methods for
sensor networks with energy constraints. There are mainly two approaches in the
existing results, namely, the quantization method [3, 4, 18, 22–24, 26, 30, 37–
40, 47, 50, 54, 56, 63, 65, 66, 73, 82, 89, 95] and dimension-reduction method

© Science Press, Beijing and Springer Science+Business Media Singapore 2016
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2 1 Introduction

[10, 22, 61, 96, 97]. In the quantization method, the measurements are quantized and
represented by a finite number of bits before they are transmitted to the estimator
for estimation. The coarser the quantization, the smaller the size of the packet
packaging the measurements, and thus one is able to save energy consumptions
in the packet transmissions. In the dimension-reduction method, the dimension of
the measurement to be transmitted is reduced by applying some data compression
methods [97]. Consequently, the size of the packet packaging the measurement to
be transmitted is reduced, and the energy consumption in the packet transmission is
thus reduced. The main idea in both the quantization method and the dimension-
reduction method is to reduce the packet size and ultimately reduce the energy
consumption in the packet transmissions. Therefore, they may be intuitively called
as the packet size approach. Note that in the WSNs, data packets are transmitted
through wireless communication channels, which are usually constrained in band-
width, that is, the bit rate is constrained in communication. Thus, an advantage
of the packet size approach is that it is able to save energy and meanwhile meet
the bandwidth constraint. However, the quantization usually introduces nonlinear
dynamics which adds difficulty to the estimator design; moreover, the design of
quantizers involves additional computations. As investigated in [97], it is usually
difficult to find a data compression operator analytically when one applies the
dimension-reduction method. In this book, a novel dimension-reduction method
will be introduced for energy-efficient fusion estimation without involving a data
compression operator. The main idea of the proposed dimension-reduction method
is that only partial components of each local estimate are selected to be transmitted
to the fusion center to save communication energy, and the fusion center adopts
compensation strategy to compensate the components of the local estimates that
are not transmitted. Detailed results will be presented in Chap. 5. Actually, in
addition to the packet size approach, a useful and straightforward approach to
save energy is to slow down the information transmission rate in the sensors, for
example, the sensors may measure and transmit measurements with an interval
that is several times of the sampling period. Moreover, one may purposively close
the sensor nodes to save power during certain time interval and wake them up
when necessary. That is to say, in many situations, it is not necessary for sensors
to transmit measurements and generate estimates at every sampling instants from
the energy-efficient perspective, and the sensors may work and generate estimates
with two rates, namely, a fast rate and a slow rate according to their power
situations. The main idea in the aforementioned approach is to slow down the
measurement transmission rate and ultimately slow down the estimation rate to
save energies consumed in the communication, and then one is able to make a
trade-off between energy efficiency and estimation performance by appropriately
designing the information transmission rates. Therefore, the approach might be
intuitively called as a transmission rate approach and will be introduced in detail in
Chaps. 2, 3 and 4. Specifically, a multi-rate scheme by which the sensors exchange
measurements with neighbors and generate local estimates at a slower time scale and
generate fusion estimates at a faster time scale is proposed to reduce communication
costs in Chap. 2, a state fusion method with nonuniform estimate rates is introduced
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in Chap. 3, and an H1 fusion estimation method with nonuniform sampling rates is
presented in Chap. 4.

In WSNs, the multisensor fusion estimation could be done under the end-to-end
information flow paradigm by communicating all the relevant measurements from
various sensors to a central collector node, e.g., a sink node. Such a structure for
fusion estimation is usually termed as a centralized one. The centralized structure
is, however, a highly inefficient solution in WSNs, because it may cause long packet
delay, consume large amounts of energies, and require a large bandwidth in the
fusion center end and it has the potential for a critical failure point at the central
collector node. An alternative solution is for the estimation to be performed in-
network [19, 27, 33, 35], i.e., every sensor in the WSN with both sensing and
computation capabilities performs not only as a sensor but also as an estimator,
and it collects measurements only from its neighbors to generate estimates. Such a
setup is usually called as the distributed structure and possesses several advantages,
such as lower communication costs and bandwidth requirement in fusion center
and higher reliability against sensor failures, as compared with the centralized
structure. However, it is obvious that local estimates obtained at each sensor by
the distributed structure are not optimal in the sense that not all the measurements
in the WSN are used. Moreover, there exist disagreements among local estimates
obtained at different sensors. In other words, local estimates at any two sensors
may be different from each other. As pointed out in [51], such form of group
disagreement regarding the signal estimates is highly undesirable for a peer-to-peer
network of estimators. This gives rise to two issues that should be considered in
designing a distributed estimation algorithm: (1) how could each sensor improve its
local performance by taking full use of limited information from its neighbors? (2)
how to reduce disagreements of local estimates among different sensors? Consensus
strategy [4, 51, 52, 62, 84] and diffusion strategy [6, 7] have been presented in the
literature to deal with the aforementioned two issues. The main idea of the consensus
strategy is that all sensors should obtain the same estimate in steady state by using
some consensus algorithms. In the diffusion strategy, both measurements and local
estimates from neighboring sensors are used to generate estimates at each sensor.
A hierarchical two-stage fusion estimation method will be introduced in Chaps. 2
and 7 for distributed fusion estimation.

Communication delays and packet losses are usually unavoidable in WSNs
and are main sources deteriorating the estimation performance. Therefore, opti-
mal estimation with delayed or missing measurements has attracted considerable
research interest during the past decades. For example, the optimal estimation with
delayed measurements has been investigated in [11, 16, 43, 45, 49, 53, 72, 81,
87, 90, 91, 93], and [13, 15, 21, 28, 31, 32, 42, 44, 48, 59, 60, 67, 88, 94] are
devoted to the optimal estimation with missing measurements. However, most of the
aforementioned results are concerned with single-sensor systems. For multisensor
fusion estimation systems, the state estimation with uncertain observations was
investigated in [76], while the robust minimum variance linear estimation for
multiple sensors with different failure rates was presented in [29]. Based on the
consensus strategy, a distributed H1 consensus filtering with multiple missing
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measurements was investigated in [64]. Subsequently, the optimal fusion estimation
problems in the linear minimum variance sense have been investigated in [13] and
[44] for multisensor systems with multiple packet dropouts. However, most of the
existing results adopted the centralized fusion structure. For the multisensor fusion
estimation with time delays, the information fusion problem was investigated in
[72] and [43] for linear stochastic systems with delayed measurements, where the
observation delays are assumed to be constant. Recently, based on the well-known
federated filter, a practical architecture and some algorithms were discussed in [81]
for the networked data fusion systems with time-varying delays, where the accurate
time delay over each sampling period should be known for online computation
of the estimators. Chapters 8 and 9 of this book are devoted to the design of
multisensor fusion estimators for sensor networks with delays and packet losses.
A novel model will be presented to describe the fusion system with delays and
packet losses, and fusion estimators with matrix weights will be designed without
resorting to the augmentation method as usually did in existing results. Moreover,
some sufficient conditions for the boundness and convergence of the estimator will
also be presented.

1.2 Book Organization

So far many important and interesting results have been presented for distributed
multisensor fusion estimation for sensor networks. However, there lacks of a
monograph to provide the up-to-date advances in the literature. Thus, the main
purpose of this book is to fill such gap by providing some recent developments in
the design of distributed fusion estimation for sensor networks with communication
constraints. The materials adopted in the book are mainly based on research results
of the authors.

Besides this short introduction, this book is organized as follows.
Chapter 1 provides a review on the background and latest developments of

distributed fusion estimation for sensor networks with communication constraints
in the literature.

Chapter 2 investigates the multi-rate distributed fusion estimation for sensor
networks. A multi-rate scheme by which the sensors estimate states at a faster
time scale and exchange information with neighbors at a slower time scale is
proposed to reduce communication costs. The estimation is performed by taking
into account the random packet losses in two stages. At the first stage, every
sensor in the WSN collects measurements from its neighbors to generate a local
estimate, then local estimates in the neighbors are further collected at the second
stage to form a fused estimate to improve estimation performance and reduce
disagreements among local estimates at different sensors. It is shown that the time
scale of information exchange among sensors can be slower while still maintaining
satisfactory estimation performance by using the developed estimation method.
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Chapter 3 investigates the multisensor fusion estimation problem for sensor
networks with nonuniform estimation rates. Firstly, each sensor generates local
estimates with two rates, namely, a fast rate and a slow rate according to its power
situation, where the estimation rates among the sensors are allowed to be different
from each other. Secondly, a fusion rule with matrix weights is designed for each
sensor to fuse available local estimates generated at different time scales. The fusion
algorithm is applicable to both cases where the measurement noises are mutually
correlated and are uncorrelated and is also applicable to the case where the sensors
are not time synchronized. Two types of estimators are designed according to
different considerations of design complexity and computation costs.

Chapter 4 is devoted to the problem of distributed sampled-data H1 filtering
problem for sensor networks with nonuniform sampling periods. The measurements
are sampled with nonuniform sampling periods, and each sensor in the network
collects the sampled measurements only from its neighbors and runs a distributed
H1 filtering algorithm to generate estimates. A sufficient existence condition for the
distributed H1 filters is derived, and it is shown that the obtained condition critically
depends on the sampling periods and the packet loss probabilities. The designed
filters guarantee that the filtering system is mean square exponentially stable and all
the filtering errors satisfy an average H1 noise attenuation level.

Chapter 5 addresses the distributed finite-horizon fusion Kalman filtering prob-
lem for a class of networked multisensor fusion systems with energy constraints.
Only partial components of each local estimate are allowed to be transmitted to the
fusion center over one sampling period. Then, a compensation strategy is used at the
fusion center to compensate the untransmitted components of each local estimate,
and a recursively distributed fusion Kalman filter is derived in the linear minimum
variance sense. It is shown that the performance of the designed fusion filter is
dependent on the selecting probability of each component of the local estimate;
some criteria for the choice of the probabilities are derived such that the mean square
errors of the fusion filter are bounded or convergent.

Chapter 6 focuses on the problem of the distributed H1 fusion filtering for a
class of networked multisensor fusion systems with bandwidth constraints. Due
to the limited bandwidth, only finite-level quantized local estimates are sent to
the fusion center, and multiple finite-level logarithmic quantizers are adopted as
the quantization strategy. The co-design of the fusion parameters and quantization
parameters is converted into a convex optimization problem. It is shown that the
performance of the fusion estimator provides better performance than each local
estimator.

Chapter 7 is concerned with hierarchical fusion estimation problem for clustered
sensor networks. The sensors within the same cluster are connected to a local
estimator, and all the local estimators are linked with a fusion center. The fusion
center and the local estimators are not required to be synchronous. A minimum
variance estimation algorithm is presented for each cluster to aperiodically generate
local estimates. A covariance intersection fusion strategy is presented for the fusion
center to generate fused estimates by using asynchronous local estimates without
knowing the cross-covariances among the local estimation errors.
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Chapter 8 deals with the problem of robust fusion Kalman filtering for multi-
sensor systems with randomly delayed measurements and parameter uncertainties.
The stochastic parameter perturbations are considered, and the proposed fusion
estimator is robust against the parameter uncertainties in the system model. Without
resorting to the augmentation of system states and measurements, a robust optimal
recursive filter for each subsystem is derived in the linear minimum variance sense
by using the innovation analysis method. Based on the optimal fusion algorithm
weighted by matrices, a robust distributed state fusion Kalman filter is derived, and
the dimension of the designed filter is the same as the original system, which helps
reduce computation costs as compared with the augmentation method.

Chapter 9 considers the problem of distributed Kalman filtering for a class
of networked multisensor fusion systems with random delays and packet losses.
A novel stochastic model is proposed to describe the estimation system with
transmission delays and packet losses, and an optimal distributed fusion Kalman
filter is designed based on the optimal fusion criterion weighted by matrices. Some
sufficient conditions are derived such that the mean square error of the fusion filter
is bounded or convergent.
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