
Springer Proceedings in Complexity

Stefano Battiston
Francesco De Pellegrini
Guido Caldarelli
Emanuela Merelli    Editors 

Proceedings 
of ECCS 
2014
European Conference on Complex 
Systems



Springer Proceedings in Complexity

Series editors

Henry Abarbanel, San Diego, USA
Dan Braha, Dartmouth, USA
Péter Érdi, Kalamazoo, USA
Karl Friston, London, UK
Hermann Haken, Stuttgart, Germany
Viktor Jirsa, Marseille, France
Janusz Kacprzyk, Warsaw, Poland
Kunihiko Kaneko, Tokyo, Japan
Scott Kelso, Boca Raton, USA
Markus Kirkilionis, Coventry, UK
Jürgen Kurths, Potsdam, Germany
Andrzej Nowak, Warsaw, Poland
Hassan Qudrat-Ullah, Toronto, Canada
Linda Reichl, Austin, USA
Peter Schuster, Vienna, Austria
Frank Schweitzer, Zürich, Switzerland
Didier Sornette, Zürich, Switzerland
Stefan Thurner, Vienna, Austria



Springer Complexity

Springer Complexity is an interdisciplinary program publishing the best research
and academic-level teaching on both fundamental and applied aspects of complex
systems—cutting across all traditional disciplines of the natural and life sciences,
engineering, economics, medicine, neuroscience, social, and computer science.

Complex Systems are systems that comprise many interacting parts with the
ability to generate a new quality of macroscopic collective behavior the
manifestations of which are the spontaneous formation of distinctive temporal,
spatial, or functional structures. Models of such systems can be successfully
mapped onto quite diverse “real-life” situations like the climate, the coherent
emission of light from lasers, chemical reaction–diffusion systems, biological
cellular networks, the dynamics of stock markets and of the Internet, earthquake
statistics and prediction, freeway traffic, the human brain, or the formation of
opinions in social systems, to name just some of the popular applications.

Although their scope and methodologies overlap somewhat, one can distinguish
the following main concepts and tools: self-organization, nonlinear dynamics,
synergetics, turbulence, dynamical systems, catastrophes, instabilities, stochastic
processes, chaos, graphs and networks, cellular automata, adaptive systems, genetic
algorithms, and computational intelligence.

The three major book publication platforms of the Springer Complexity program
are the monograph series “Understanding Complex Systems” focusing on the
various applications of complexity, the “Springer Series in Synergetics”, which is
devoted to the quantitative theoretical and methodological foundations, and the
“SpringerBriefs in Complexity” which are concise and topical working reports,
case-studies, surveys, essays, and lecture notes of relevance to the field. In addition
to the books in these two core series, the program also incorporates individual titles
ranging from textbooks to major reference works.

More information about this series at http://www.springer.com/series/11637

http://www.springer.com/series/11637


Stefano Battiston • Francesco De Pellegrini
Guido Caldarelli • Emanuela Merelli
Editors

Proceedings of ECCS 2014
European Conference on Complex Systems

123



Editors
Stefano Battiston
RAF
University of Zürich
Zürich
Switzerland

Francesco De Pellegrini
CREATE-NET
Trento
Italy

Guido Caldarelli
IMT Lucca
Lucca
Italy

Emanuela Merelli
School of Science and Technology
University of Camerino
Camerino
Italy

ISSN 2213-8684 ISSN 2213-8692 (electronic)
Springer Proceedings in Complexity
ISBN 978-3-319-29226-7 ISBN 978-3-319-29228-1 (eBook)
DOI 10.1007/978-3-319-29228-1

Library of Congress Control Number: 2016934958

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



Foreword

In the past decade the field of Complexity Science has moved into a new stage of its
life. The big data and information technology revolutions are finally providing the
necessary data, numerical experiments and validation tests to the many conceptual
and theoretical advances that complex systems science has already provided to a
large number of scientific disciplines. These fast paced developments are aug-
menting complex systems science with an “applied” dimension. Our increasing
capability to solve many open problems, in a large diversity of scientific fields, has
made it possible that Complex Systems Science becomes one of the conceptual and
methodological keys to understand and deal with important real-world challenges
that range from epidemics and traffic congestions, to systemic risks and cultural
evolution, to cite a few.

In this framework, it is no wonder that the Complex Systems Society, gathering
all researchers engaged in complex systems research has grown and developed
along the same lines. The general Society conference is annually gathering about
1,000 scientists from all disciplines and it is a meeting point where every scientist
interested in complex systems research can network the collective with a vibrant
research community.

The annual conference on Complex Systems of 2014, organized at the IMT
School for advanced studies in Lucca, was a smashing success, breaking many
records for attendance, number of presentations—more than 200—and parallel
workshops. The Lucca conference is certainly a milestone in the life of the field and
the Complex Systems Society. We are extremely glad to see that the chairmen
of the conference Guido Caldarelli and Stefano Battiston—Chairmen of the Lucca’s
conference—have teamed up with Francesco De Pellegrini and Emanuela Merelli to
edit a book that collects a selection of 27 papers presented at the conference. The
final result is a proceedings volume that is truly representative of the wide range of
problems addressed by the community and the depth of the technical approaches
used to tackle them. It speaks loudly for itself and we are sure that it will also
become a reference for those that want to grasp what the community is doing
nowadays.
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On behalf of the Complex Systems Society and its members we thank the
organizers of the conference and the editors of this Proceedings of ECCS 2014 for
all their work, the exemplary engagement and their service to Complex Systems
Science.

Alessandro Vespignani
President of the Complex Systems Society 2012–2015

Boston, MA, USA

Yamir Moreno
President of the Complex Systems Society 2016–2019

Zaragoza, Spain
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Preface

This volume collects a series ofmultidisciplinary contributions in the field of complex
systems science. Several works presented in this collection pivot on the theory and
applications of formal and computational approaches. These methods are suitable to
construct and simulate models of complex systems so as to analyse their properties.
This is indeed an emerging research area encompassing a broad range of fields
including—but not limited to—physics, computer science and mathematics, eco-
nomics, business, political science, biology, sociology, neuroscience and medicine.
The collection is thus addressed to the newgeneration of transdisciplinary researchers.

The work contains contributions which have been initially discussed in the
European Conference on Complex Systems (ECCS’14) held at IMT, Lucca from 22
to 26 September 2014, under the sponsorship of the Complex Systems Society.
ECCS’14 is a major international conference in the area of Complex Systems and
interdisciplinary science in general. The main aim is to offer unique opportunities to
study novel foundational approaches in a multitude of application areas. Thus, it
spans from Complexity in ICT and Social Systems, to Complexity in
Infrastructures, Complexity in Environment and Cities, Complexity in Natural
Sciences, Complexity in Humanities, Linguistics and Society Complexity in
Economics and Finance.

The project had an internal call for papers presented at the ECCS14 Conference.
It contains a selection of 27 papers which originated from the conference oral
presentations and poster sessions. All the manuscripts are extended versions of the
contributions presented there and went through an independent review process.

The editors express their thanks to all authors of the articles submitted to this
special issue. They also acknowledge the efforts of our many reviewers for their
help in selecting the papers published in this special issue.

Zürich, Switzerland Stefano Battiston
Trento, Italy Francesco De Pellegrini
Lucca, Italy Guido Caldarelli
Camerino, Italy Emanuela Merelli
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Chapter 1
Detection of Non-self-correcting Nature
of Information Cascade

Shintaro Mori, Masafumi Hino, Masato Hisakado
and Taiki Takahashi

Abstract We propose a method of detecting non-self-correcting information
cascades in experiments in which subjects choose an option sequentially by observ-
ing the choices of previous subjects. The method uses the correlation function C(t)
between the first and the t + 1th subject’s choices. C(t) measures the strength of the
domino effect, and the limit value c ≡ limt→∞ C(t) determines whether the domino
effect lasts forever (c > 0) or not (c = 0). The condition c > 0 is an adequate con-
dition for a non-self-correcting system, and the probability that the majority’s choice
remains wrong in the limit t → ∞ is positive. We apply the method to data from two
experiments in which T subjects answered two-choice questions: (i) general knowl-
edge questions (Tavg = 60) and (ii) urn-choice questions (T = 63).We find c > 0 for
difficult questions in (i) and all cases in (ii), and the systems are not self-correcting.

1.1 Introduction

Herding phenomena are ubiquitous in human and animal behavior [1, 2]. An example
is an information cascade, in which a person observes others’ choices and chooses
the majority’s choice even though the person’s private signal contradicts it [3, 4]. It
is a rational behavior for people who are uncertain about choosing. If an information
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cascade occurs, the samemechanism applies to later decision-makers, and themajor-
ity’s choice tends to prevail. In some cases, the successive choices are wrong, and
the cascade leads to irrational herding behavior [5].

An experimental setup demonstrates a situation in which an information cascade
occurs [6]. There are two urns, A and B, and urn A (B) contains two a (b) balls and
one b (a) ball. In each run of the experiment, an urn is randomly chosen initially and
called X. Then, the subjects guess whether urn X is A or B and choose sequentially.
They get a reward for the correct choice. In the course of the experiment, each subject
draws a ball from X, which is his private signal. If the ball is a (b), urn X is more
likely to be A (B). He also observes the choices of the previous subjects. If the
difference between the numbers of subjects who choose each urn exceeds two, the
private signal cannot overcome the majority’s choice. An information cascade starts
if someone chooses the majority’s choice although his private signal suggests the
minority’s one. As the probability that the first two persons both choose the wrong
option is non-zero, the probability for the onset of a cascade where the majority’s
choice is wrong is positive.

We now consider whether the wrong cascade continues [5]. If it continues forever,
the majority’s choice converges to the wrong option. Information cascades were
initially considered to be fragile phenomena. As the trigger of the cascade is a small
imbalance, people can be dissuaded from following the majority’s choice [3]. In
addition, an agent model with a Bayesian update of the private belief showed that
the information cascade is self-correcting [8]. As the number of agents tends toward
infinity, the wrong cascade disappears, and the majority’s choice converges to the
optimal option.

Using an information cascade experiment with a general knowledge two-choice
quiz, we have shown that a phase transition occurs between a one-peak phase and a
two-peak phase [9]. If the questions are easy, the ratio z(t) of the correct choices of t
subjects converges to a value z+ > 1/2 in the limit t → ∞. As there is only one peak
in the probability distribution function of z(t), we call the corresponding phase the
one-peak phase [10, 11]. If the questions are difficult and most people do not know
the answers, z(t) converges to z+ > 1/2 or z− < 1/2. One cannot predict the value
in {z+, z−} to which z(t) converges. We call the corresponding phase the two-peak
phase. In the two-peak phase, the wrong cascade does not necessarily disappear, and
the system is not self-correcting.

It was recently shown that the limit value of the normalized correlation function is
the order parameter of the phase transition [14]. The normalized correlation function
shows how the first subject’s choice propagates to later subjects. It provides ameasure
of the domino effect. In addition, the positiveness of the limit value is a sufficient
condition for a non-self-correcting system. By extrapolating the results for a finite
system to infinity, we can determine whether the system is self-correcting. We report
on the application of the method to data from two types of information cascade
experiments. In Sect. 1.2, we define the normalized correlation function. We also
explain the behavior of the function in each phase and the extrapolation method used
to estimate its limit.We present the results of the data analysis in Sect. 1.3. Section1.4
summarizes the results.
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1.2 Correlation Function and Asymptotic Behaviors

We consider a typical information cascade experiment. T subjects answer a two-
choice question sequentially in each run. We denote the order of the subjects as
t , where t = 1, 2, . . . , T . We denote the choice of subject t by X (t) ∈ {0, 1}, t =
1, 2, . . . , T . If the choice is true (false), X (t) takes 1 (0).

The correlation function C(t) is defined as the covariance between X (1) and
X (t + 1) divided by the variance of X (1):

C(t) ≡ Cov(X (1), X (t + 1))/Var(X (1)).

C(t) can be expressed as the difference of two conditional probabilities.

C(t) = Pr(X (t + 1) = 1|X (1) = 1) − Pr(X (t + 1) = 1|X (1) = 0). (1.1)

C(t) shows the degree to which the first subject’s choice is transmitted to later
subjects. It is a measure of the domino effect in an information cascade.

C(t) is generally positive, and its asymptotic behavior depends on the phase of
the system and the shape of the response function q(z). Here q(z) represents the
dependence of the probability of the correct choice by subject t + 1 on the ratio z(t)
of the correct choices of the previous t subjects.

q(z) ≡ Pr(X (t + 1) = 1|z(t) = z), z(t) = 1

t

t∑

s=1

X (s).

With the definition of q(z), the stochastic process {X (t)}, t = 1, 2 . . . becomes a
generalized Pólya urn process [12]. If there is one solution for z = q(z) at z+ (left
panel in Fig. 1.1), z(t) converges to z+. C(t) shows power-law decay for large t with
two constants, c′ and l, as

Fig. 1.1 Response function q(z) versus z. Left panel shows the one-peak phase, in which there
is one solution, z+, for z = q(z). Right panel shows the two-peak phase, in which there are three
solutions, z− < zu < z+, for z = q(z)
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C(t) � c′ · t l−1 l < 1.

Here, l is the exponent for the power-law decay and is less than 1. The value of l is
given by g′(z+) [11, 13]. If there are three solutions for z = q(z) at z− < zu < z+
(right panel in Fig. 1.1), the system is in the two-peak phase; limt→∞ z(t) =
z+ or z− [12]. The limit value c ≡ limt→∞ C(t) is positive, and the first subject’s
choice propagates to an infinite number of later subjects [14]. C(t) behaves asymp-
totically as

C(t) ∼ c + c′ · t l−1. (1.2)

Here c′ · t l−1 is the subleading term of C(t), and l is given by the larger value among
{g′(z+), g′(z−)}. Further, c acts as an order parameter of the phase transition, and
(1.2) is the general asymptotic behavior of C(t) [15].

As it is difficult to estimate c using c ≡ limt→∞ C(t) with empirical data, where
the system size and number of samples are strictly limited, we introduce two quan-
tities for the estimation. First, we define the nth moment mn(t) for C(t) as mn(t) ≡∑t−1

s=0 C(s)(s/t)n . We define the integrated correlation time τ(t) as τ(t) = m0(t).
We also define the secondmoment correlation time ξ(t) as ξ(t) ≡ t · √m2(t)/m0(t).
Using the asymptotic behavior ofC(t), we estimate the subsequent asymptotic behav-
ior of τ(t)/t and ξ(t)/t .

τ(t)/t � c + c′

l
· t l−1 (1.3)

ξ(t)/t →
{√

l/ l + 2 c = 0√
1/3 c > 0

(1.4)

As τ(t)/t is defined as the summation of C(s) over 0 ≤ s < t divided by t , the
standard error becomes smaller than that of C(t). The asymptotic behavior of τ(t)/t
in (1.3) provides a more reliable estimate of c and l than the fitting of C(t) to (1.2).
ξ(t)/t also provides a reliable estimate for l [15]. If c > 0, the leading term of C(t)
is the constant c, and l should be interpreted as l = 1.

We define whether the system is self-correcting according to whether z(t)
always converges to z+. In the one-peak (two-peak) phase, the system is (non-)self-
correcting. If c > 0, the system is in the two-peak phase and is non-self-correcting.
However, c = 0 does not necessarily mean that the system is self-correcting. For the
system to be self-correcting, q(z) = z has to have only one solution, z+.

1.3 Domino Effect and Detection of Non-self-correcting
Nature

We study the domino effect and non-self-correction in information cascades. We
discuss two types of information cascade experiments.
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In experiment 1 (EXP-I), subjects answered a general knowledge two-choice quiz.
First, the subjects answered using only their own knowledge. Then, they observed the
choices of previous subjects and answered the question again. The average length of
the sequence of subjects is T = 60, and the number of choice sequences is 240. The
choice sequences are classified into four bins according to the ratio of correct choices
z0(T ) of the first answers without observation as z0(T ) = 50 ± 5, 60 ± 5, 70 ± 5,
and 80 ± 5%, and the number of samples in each bin is 38(50 ± 5%), 52(60 ±
5%), 38(70 ± 5%), and 38(80 ± 5%), respectively [16].

Experiment 2 (EXP-II) is similar to the situation explained in the Introduction.
There are two urns, A and B, which contain a and b balls in different configurations.
We use two configuration patterns: (i) two a balls and one b ball in urn A versus
one a ball and two b balls in urn B and (ii) five a balls and four b balls in urn A
versus four a balls and five b balls in urn B. Urn X ∈ {A,B} is chosen at random at
the beginning of each run, and subjects are asked to choose between A or B. Each
subject draws one ball from X and checks whether it is a or b. The ball corresponds
to the type of urn X with probability q = 2/3(5/9) for (i) [(ii)]. In addition, the
subject also observes the choices of previous subjects. Our results, unlike those of
previous experiments [6–8], show the summary statistics of the number of subjects
who have chosen each urn. The length T and number of questions I are 63 and 200,
respectively, for q ∈ {2/3, 5/9} [17].

We denote the choice sequences in each bin as {X (i, t)}, i = 1, . . . , I, t =
1, . . . , T (i). Here, the length of the sequence depends on question i in EXP-I;
we denote it as T (i). The number of samples I also depends on the bins. In
EXP-II, T (i) = 63, and I = 200. First, we estimate C(t) and its standard error
ΔC(t) using (1.1). We denote the estimate and standard error of the probabilities
as qx (t + 1) = Pr(X (t + 1) = 1|X (1) = x) and Δqx (t + 1), respectively. They are
estimated from experimental data {X (i, t)} as

qx (t + 1) = 1 + ∑I
i=1 X (i, t + 1)δX (i,1),x

Nx + 2
,

Nx =
I∑

i=1

δX (i,1),x ,

Δqx (t + 1) =
√
q(x, t + 1)(1 − qx (t + 1))

Nx + 3
.

Here, we use the expectation value and standard deviation obtained from the posterior
probability distribution for the probabilities. C(t) is then estimated as

C(t) = q1(t + 1) − q0(t + 1).

The error bars of C(t) are given as

ΔC(t) =
√

Δq1(t + 1)2 + Δq0(t + 1)2. (1.5)
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Using C(t) and ΔC(t), we estimate the error bars of mn(t) as

Δmn(t) =
√√√√

t−1∑

s=1

ΔC(s)2(s/t)2n.

Here we assume that ΔC(s) and ΔC(s ′) are independent of each other if s �= s ′. We
estimate the error bars of τt (t) and ξt (t) as

Δτt = 1

t
Δm0(t),

Δξt = √
ξt (Δm2(t)/2m2(t) + Δm0(t)/2m0(t)). (1.6)

In the estimation ofΔξt , we assume thatΔm2(t) andΔm0 are completely correlated.

1.3.1 EXP-I: General Knowledge Quiz Case

Figure1.2 plots C(t) versus t . The value of C(t) generally decreases from its initial
value of 1 with increasing t . Because the sample number is restricted,ΔC(t) is large.
We see that for difficult questionswith z0(T ) = 50 ± 5 and 60 ± 5%,C(t) is positive
for large values of t . On the other hand, for easy questions with z0(T ) = 70 ± 5
and 80 ± 5%, C(t) decreases to zero with increasing t . These results suggest that
the system is in the two-peak phase for difficult questions. For z0(T ) = 70 ± 5 and
80 ± 5%, an analysis of q(z) showed that the systemwas in the one-peak phase [16].

Fig. 1.2 C(t) versus t for
EXP-I. The sample choice
sequences are classified
according to the value of
z0(T ) as z0(T ) =
50 ± 5% (filled quare), 60 ±
5% (opened circle), 70 ±
5% (opened triangle), and
80 ± 5%(opened down
triangle). We plot only data
with the interval Δt = 5. To
see the behavior clearly, we
slightly shift the data
horizontally
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Fig. 1.3 ξ(t)/t and τ(t)/t
versus t for EXP-I with the
interval Δt = 5. We also plot
the fitted results for τ(t)/t
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Figure1.3 shows plots of ξ(t)/t and τ(t)/t versus t . The standard errors for
ξ(t)/t are larger than those for τ(t)/t because ξ(t) is calculated with the second
moment m2(t). For large values of t , ξ(t)/t takes

√
1/3 for difficult questions with

z0(T ) = 50 ± 5 and 60 ± 5%. The results suggest that the system is in the two-peak
phase. For easy questions with z0(T ) = 70 ± 5 and 80 ± 5%, ξ(t)/t � 0.5 for large
values of t . As ξ(t)/t � √

l/ l + 2, l � 0.7 for easy questions. As l is smaller than
1, the system is in the one-peak phase.

As the system is considered to be in the two-peak phase for z0(T ) = 50 ± 5
and 60 ± 5%, we assume τ(t)/t = c + d · t l−1 and estimate c, l, d using the least
square fit. We find that c = 0.297(2) for z0(T ) = 50 ± 5% and c = 0.26(1) for
z0(T ) = 60 ± 5%. For z0(T ) = 70 ± 5 and 80 ± 5%, we assume τ(t)/t = d · t l−1

and estimate l and d. We find that l = 0.43(1) for z0(T ) = 70 ± 5% and l = 0.35(1)
for z0(T ) = 80 ± 5%, which differ slightly from the value of l � 0.7 estimated from
ξ(t)/t .
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1.3.2 EXP-II: Urn Choice Case

Figure1.4 shows plots of C(t), ξ(t)/t , and τ(t)/t versus t for q ∈ {2/3, 5/9}. As
the number of samples is larger than that in EXP-I, the standard errors are smaller
than the symbols’ size for τ(t)/t and large t . We see that C(t) is positive for large
values of t for both cases of q, where q ∈ {2/3, 5/9}. In addition, ξ(t)/t for large
values of t converges to

√
1/3, and the exponent l for C(t) ∼ t l−1 is almost one.

These results suggest that the system is in the two-peak phase for both values of q.
We assume τ(t)/t = c + d · t l−1 and estimate c, l, d using the least square fit. We
find that c = 0.261(1) for q = 2/3 and c = 0.207(1) for q = 5/9.
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Fig. 1.4 C(t), ξ(t)/t , and τ(t)/t versus t for EXP-II. We use the symbol opened square (opened
circle) for q = 2/3(5/9). We plot only data with the interval Δt = 4. To see the behavior clearly,
we slightly shift the data horizontally
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1.4 Conclusion

Westudied the self-correcting nature of information cascades.Weproposed the use of
the normalized correlation function C(t), which shows how the first subject’s choice
is propagated to later subjects and measures the strength of the domino effect in
information cascades. c ≡ limt→∞ C(t) > 0 is a sufficient condition for a non-self-
correcting information cascade. In this case, the domino effect continues infinitely.
The system is in the two-peak phase, and the probability that z(t) converges to z− <

1/2 is positive. We used data from two types of information cascade experiment:
EXP-I, which used a general knowledge quiz, and EXP-II, which used urns. The
accuracy q of the private signal is q ∈ {2/3, 5/9} in EXP-II. We estimate C(t) and
its integrated quantities τ(t) and ξ(t). In EXP-I, when the questions were difficult,
c > 0. In EXP-II, c > 0 for both cases of q where q ∈ {2/3, 5/9}. In these cases, the
system is non-self-correcting.

We focus on the study of the non-self-correcting nature of information cascades.
Although c > 0 is a sufficient condition for a non-self-correcting cascade, c = 0 is
not a sufficient condition for a self-correcting cascade. To verify this, one should
study the response function q(z) and count the number of solutions for z = q(z).
Alternatively, it is necessary to study the limit value of the variance of z(t). If there is
only one solution, z+ > 1/2, or the limit value is zero, the system is self-correcting.
In EXP-I, we studied these points and concluded that the system is self-correcting
for z0(T ) = 70 ± 5 and 80 ± 5% [16]. Our experiment for EXP-II and its analysis
are under way [17].

Acknowledgments This work was supported by Grant-in-Aid for Challenging Exploratory
Research 25610109.
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Chapter 2
Fitting Planar Proximity Graphs
on Real Street Networks

Dimitris Maniadakis and Dimitris Varoutas

Abstract Due to the rising progress of sustainable urban infrastructures, modeling
realistic street networks is a fundamental challenge. This study contributes to this
modeling direction, by suggesting the utilization of planar proximity graphs, and
specifically the β-skeleton graphs. Their goodness of fit on producing real-like urban
street networks is verified by comparison to real data. In particular, the basic topo-
logical and geometrical properties derived from synthetic β-skeleton planar graphs
are compared to the properties of five urban street network datasets, all represented
using the Primal approach. A good agreement with empirical patterns is found and
a possible explanation is discussed.

2.1 Introduction

There are broad agreements that the street patterns shape overlay infrastructure
deployment since they define a basic template which strongly constrains the further
development of other webs (e.g., power grid or communication networks). Due to
the rising progress of sustainable urban infrastructures, understanding and modeling
the structure of street networks is an elementary challenge. Despite a large num-
ber of studies on street networks, the existing modeling methodologies are mostly
long, random-based and simulation-based, which require several assumptions for
generating a realistic street layout, e.g., [1].

On the other hand, the construction of planar proximity graphs can be straightfor-
ward by using analytical or simulation methods. Planar proximity graphs are planar
graphs (edges intersect only in the points/nodes) where two points in Euclidean
plane are connected by an edge if they are close in some sense. Each pair of points
is assigned a certain neighborhood, and the points of the pair are connected by an
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edge if their neighborhood is empty. The Delaunay Triangulation (DT), the Relative
Neighborhood Graph (RNG), the Gabriel Graph (GG) and the Minimum Spanning
Tree (MST) are well known examples of proximity graphs. These are constructed
by parameter-less algorithms, given the nodes positions. Specifically, the DT for a
set of points in a plane is a triangulation such that no point is inside the circumcircle
of any triangle; the RNG is defined by connecting two points whenever there does
not exist a third point closer to both points; the GG is a graph where two points have
an edge between them if no other point exists in the circumball containing the two
points; last, theMST is a tree consisting of all points while having the minimum total
weight (length). Though, the β-skeleton graphs [2] constitute a parameterized family
of planar proximity graphs where different β values give rise to different graphs.

This study contributes to the urban streetmodeling, examining the fitness of planar
proximity graphs, particularly the β-skeleton graphs, on real street networks with
complex characteristics. Additionally, a possible explanation is discussed concerning
the findings of the analysis.

The rest of this paper is structured as follows. Section2.2, contains some pre-
liminaries on the β-skeleton concept. The datasets and the methodology used are
described in Sect. 2.3, while the results of applying the methodology are presented
in Sect. 2.4. Section2.5 discusses a possible explanation of the findings and finally
Sect. 2.6 concludes the study.

2.2 The β-Skeleton Graphs

In the lune-based neighborhoods approach [2], given a spatial distribution of points
S in two-dimensional space, two points u and v are connected by an edge whenever
the intersection of the two disks of radius r , centered at the points c1 and c2, contains
no points of S (see Fig. 2.1).

The case β = 0 corresponds to the DT, β = 1 corresponds to the GG and β = 2
corresponds to the RNG. For 1 ≤ β < ∞, the radius and the disk centers are defined
as follows:

Fig. 2.1 Definition of
β-skeleton in the lune-based
variant for 1 ≤ β < ∞
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while for 0 < β < 1 the two disks pass through both u and v, with radius given by:

r = D(u, v)

2 · β
(2.4)

The parameter β determines the size and shape of the lune-based neighbourhood.
With the increase of β, the number of edges in the β-skeleton decreases (see Fig. 2.2).

A β-skeleton of a random planar set usually becomes a disconnected graph for
β > 2 and continues losing its edges with further increase of β [3]. On the other
hand, as β approaches zero, more and more edges are added to the β-skeleton until
it eventually forms the complete geometric graph. For 1 ≤ β ≤ 2, the following
relationships among the different proximity graphs hold for any finite set of points
S in the plane:

DT (S) ⊇ GG(S) ⊇ β − skeleton(S, β) ⊇ RNG(S) ⊇ MST (S) (2.5)

Since urban street networks are usually connected networks neither DT-like,
nor MST-like [4], it is thus of interest to answer to the following questions; (a) is
there sufficient accuracy when using β-skeletons with 1 ≤ β ≤ 2 to reproduce urban
street networks? (b) is there a particular β value or subrange of values for which the
accuracy is better? (c) what is the possible mechanism that leads real street networks
to be associated with particular β values?

Fig. 2.2 Graph visualizations for the same set of 100 points: a delaunay triangulation (β = 0),
b Gabriel graph (β = 1), c β-skeleton (here β = 1.4), d relative neighborhood graph (β = 2),
e minimum spanning tree


