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Preface

In recent years, numerous variable-structure approaches have been developed for
the control of nonlinear dynamic systems and for the model-based estimation of
non-measurable states and parameters. These approaches typically make use of
first-order as well as higher order sliding mode techniques and related procedures
that are characterized by a variable-structure nature. One of their main advantages is
the inherent proof of asymptotic stability. This stability proof is either performed
offline during the corresponding controller and estimator design or online by the
real-time evaluation of a suitable candidate for a Lyapunov function.

The methodological framework for variable-structure control and estimation
approaches is quite well developed in the case of continuous-time and discrete-time
systems, for which process models are accurately known.

Nevertheless, research efforts are still necessary to make the corresponding pro-
cedures applicable when only worst-case bounds are available for specific parame-
ters. This type of uncertainty is often caused by non-negligible, however, inevitable
manufacturing tolerances. Moreover, significant stochastic disturbances—for
example, as a result of measurement noise—may act as further system inputs in many
practically relevant applications. To enhance robustness in such cases, it is possible to
combine variable-structure approaches with techniques which are for instance based
on interval analysis, stochastic differential equations, or linear matrix inequalities.

This book aims at presenting current research activities in the field of robust
variable-structure systems. The scope equally consists in highlighting novel
methodological aspects as well as in presenting the use of variable-structure tech-
niques in industrial applications including their implementation on hardware for
real-time control.

Besides variable-structure approaches for the design of feedback control strate-
gies and state estimation procedures, computational techniques for simulation—as
included in predictive controllers—robustness and stability analysis, as well as for
the identification of system models which are characterized by an inherent
variable-structure behavior are included. Such models may result from a mathe-
matical representation of state-dependent transitions between various state-space
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representations, for example, due to faults of selected system components or due to
different system models depending on the current operating conditions of the
considered system.

Rostock Andreas Rauh
January 2016 Luise Senkel
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Part I
Sliding Mode Control for Continuous and

Discrete-Time Systems

In the first part of this book, scientific works are presented which focus on solving
control tasks for nonlinear and uncertain dynamic systems by the application as well
as the novel development of sliding mode control techniques. In Chap. 1, Saif Sid-
dique Butt, Hao Sun, andHaraldAschemann describe a comparison of backstepping-
based sliding mode techniques and adaptive backstepping approaches for the design
of robust controllers of a twin rotor helicopter. In contrast to the continuous-time
design in the first chapter, Chap. 2 authored by Piotr Leśniewski and Andrzej Bar-
toszewicz deals with the robust, discrete-time congestion controller design for a sin-
gle virtual circuit in connection-oriented communication networks. Andreas Rauh
and Luise Senkel develop and implement novel interval methods for the robust slid-
ing mode control synthesis of high-temperature fuel cells. Besides the influence of
uncertain but bounded parameters and disturbances, the handling of state and input
constraints is explicitly addressed in this Chap. 3. Further methodological extensions
of interval-based sliding mode controllers are presented in Chap. 4 by Luise Senkel,
Andreas Rauh, and Harald Aschemann. It deals with the experimental and numerical
validation of a reliable sliding mode control strategy considering uncertainty with
the help of interval arithmetic in a real-time capable implementation.

http://dx.doi.org/10.1007/978-3-319-31539-3_1
http://dx.doi.org/10.1007/978-3-319-31539-3_2
http://dx.doi.org/10.1007/978-3-319-31539-3_3
http://dx.doi.org/10.1007/978-3-319-31539-3_4


Comparison of Backstepping-Based
Sliding Mode and Adaptive Backstepping
for a Robust Control of a Twin Rotor
Helicopter

Saif Siddique Butt, Hao Sun and Harald Aschemann

Abstract In this contribution, two robust MIMO backstepping control approaches
for a twin rotor aerodynamic system (TRAS) test-rig are considered. The TRAS rep-
resents a nonlinear system with significant couplings. A nonlinear multibody model
of the TRAS with lumped unknown disturbance torques is derived using Lagrange’s
equations. Herewith, both a backstepping-based sliding mode control and an adaptive
backstepping control are designed to track desired trajectories for the azimuth angle
and the pitch angle. An explicit expression is derived for the reaching time in the
case of the backstepping-based sliding mode control. In order to estimate immeasur-
able angular velocities and unknown disturbance torques for the backstepping-based
sliding mode control, a discrete-time extended Kalman filter (EKF) is employed.
For the adaptive backstepping, a robust sliding mode differentiator is used instead
to estimate the angular velocities. Moreover, in the adaptive backstepping control
approach, the disturbance compensation is realised with the help of additional adap-
tive control parts driven by the tracking errors of the controlled variables. The overall
stability of the proposed controllers in combination with the corresponding estima-
tor is investigated thoroughly by simulations. Furthermore, in order to validate the
proposed control schemes, experiments are performed on the dedicated test-rig and
a comparison of the two proposed control structures is provided as well.

S.S. Butt · H. Sun (B) · H. Aschemann
Chair of Mechatronics, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock,
Germany
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1 Introduction

A twin rotor aerodynamic system (TRAS) with two degrees of freedom (DOF) devel-
oped by INTECO [10], Poland, is depicted in Fig. 1. It consists of a beam with two
propellers—the main and the tail propellers—at both ends of the beam, driven by DC
motors. The beam is pivoted in a cardanic joint and can rotate within confined regions
in the horizontal and vertical planes. These limitations arise due to the mechanical
construction of the test-rig. Two levers with counter-weights at their ends are fixed
to the beam at the pivot. The counter-weights determine the steady-state pitch angle
without propeller actuation. Two velocity sensors are coupled with the PWM-driven
DC motors for the main and tail rotors. Moreover, two incremental encoders are
directly mounted at the pivot point of the beam in order to measure the relative angle
of the beam. Based on the mechanical construction, the TRAS test-rig possesses
2-DOF. The first DOF characterises the horizontal rotation of the frame using the
azimuth angle, whereas the second one is given by the pitch angle describing the
inclination of the frame. In a real helicopter the aerodynamic force is adjusted by
changing the angle of attack. The TRAS, however, uses a changing angular velocity
for this purpose.

The 2-DOF helicopter system imposes challenging control problems due to its
given nonlinearities and significant couplings between both degrees of freedom. To
remedy such drawbacks and achieve satisfactory control performance for the accurate
tracking of desired trajectories for the azimuth and pitch angles, a control-oriented
model of the system is useful. In the past decade, several contributions related to
the modelling and experimental identification of similar 2-DOF helicopter set-ups
have been published [1, 2, 7, 18, 19]. The methods proposed therein correspond to
typical set-ups provided by different manufacturers, various model-based and

Fig. 1 TRAS test-rig at the
Chair of Mechatronics

tail rotor

main rotor

DC motor
with tacho

counter-weight

beam encoder
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artificial-intelligence-based methods, e.g. radial basis function, neural networks and
genetic algorithms. In [18], a complete mathematical description of the TRAS based
on the both the Newton–Euler approach and Lagrange’s equations is presented. How-
ever, the mechanical construction of the test set-up therein differs from the TRAS
test-rig used in this contribution. A complete mathematical description of the TRAS
set-up is derived in the form of a detailed ninth-order model in the work of [8].
Regarding the control of the TRAS, the authors performed a simulation study using
a nonlinear predictive control for the ninth-order system model. In [16], a feedback
linearising control scheme is presented for the pitch motion only. Therein, the yaw
position is not considered as a DOF. Lopez et al. [15, 17] proposed an H∞-controller
for the helicopter dynamics. In [4], a nonlinear control-oriented model of the TRAS
manufactured by INTECO along with a multi-variable flatness-based control scheme
has been proposed for TRAS. However, the influence of the mass moments of inertia
of the rotating beam on the kinetic energy of the system has not been addressed. For
the estimation of disturbance torques and unmeasured states, the authors employed
a discrete-time EKF. In [3, 5], a sliding mode and an integral sliding mode control
are considered, respectively, allowing to deal with couplings inherent in the twin
rotor dynamics. Following the idea of a cascaded control structure, it is suitable
to employ backstepping techniques for the control design. Both the design and the
implementation of the separate controllers are simplified in comparison to a central
control structure. Disturbances are taken into account by an adaptive backstepping
control approach. Although an adaptive control scheme based on backstepping con-
trol is already proposed in [11], the authors focus especially on the derivation of
adaptive control laws for a set of uncertain parameters within the pitch and the
azimuth dynamics. The adaptive backstepping control design guarantees global sta-
bilisation. Nevertheless, due to the large number of adaptive laws, the convergence
of the parameter estimates to their true values cannot be guaranteed. This may lead to
unrealistic values of the parameters [20]. One possible way to handle this situation is
to introduce a lumped disturbance term that represents the overall parameter uncer-
tainty and to design a parameter update law for this lumped disturbance. Therefore,
in the given contribution, the parameter uncertainty and the model uncertainty are
combined together as a lumped disturbance torque for each axis. As a result, the
adaptive laws are needed only for these lumped disturbance torques rather than for
the individual parameter uncertainty.

As mentioned earlier, the TRAS system is affected by parameter uncertainty due
to the limited knowledge of the true parameter values and unknown disturbances.
Hence, a robust way of controlling such a system is the application of variable
structure control techniques [23]. For this purpose, a backstepping-based sliding
mode control scheme is proposed and investigated as well. Although many significant
contributions are already available for the control design of the TRAS, a lot of
questions are worth further investigations. This in particular includes the analysis of
a damping term in the sliding mode control law concerning the reaching time. One
of the main contributions regarding the backstepping-based sliding mode control is
the derivation of the corresponding reaching time which—according to the best of
the authors knowledge—has not been addressed in previous works.
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This chapter is structured as follows: in Sect. 2, the mathematical description of
the nonlinear control-oriented model of the TRAS based on Lagrange’s equations
is presented. Based on the derived system model, two alternative control strategies
are described in Sect. 3: a backstepping-based sliding mode control and an adaptive
backstepping control. For each control strategy, the asymptotic stability is shown
by Lyapunov techniques. Moreover, the overall closed-loop error dynamics for each
control scheme emphasise the asymptotic stability. In Sect. 4, a discrete-time EKF
is designed to estimate the angular velocities as well as the unknown lumped distur-
bance torques, which are required for the backstepping-based sliding mode control
structure. For the adaptive backstepping control structure, a robust sliding mode dif-
ferentiator is proposed that provides estimates for the angular velocities. The imple-
mentation of the proposed two control strategies together with their corresponding
estimators are explained as well in this section. In Sect. 5, relevant simulation results
and experimental investigations from the TRAS test-rig are presented and discussed.
Finally, conclusions and outlook are provided in Sect. 6.

2 Control-Oriented Model of TRAS

Dynamic system modelling plays a key role in modern control engineering. For
a model-based control design, an accurate mathematical description of the system
dynamics is essential to improve the overall system performance. For the control-
oriented modelling of the TRAS an inertial reference frame is defined and the
dynamic model is derived using Lagrange’s equations.

The multibody system model for the TRAS consists of a beam, point masses
for the two rotors and point masses for the two counterbalances. The mathematical
analysis starts with assigning a right-hand coordinate system with the origin O placed
at the pivot point of the beam as depicted in Fig. 2. The pitch angle is denoted by ψ

and the azimuth angle is given by φ. The distance of the main rotor from the origin
O is characterised by the length lm , whereas the distance of the tail rotor from the
origin O is given by lt . The lumped masses corresponding to the main rotor and
the tail rotor are denoted by mm and mt , respectively. Moreover, lcw represents the
relevant length of the two levers with a lumped mass mcw as counter-weight at their
end. The propulsive forces acting on the main rotor and the tail rotor are denoted by
Fψ and Fφ , respectively. The corresponding position vectors rm for the main rotor
and rt for the tail rotor are given by

rm =
⎡
⎣
lm cos ψ cos φ

lm cos ψ sin φ

lm sin ψ

⎤
⎦ , rt =

⎡
⎣

−lt cos ψ cos φ

−lt cos ψ sin φ

−lt sin ψ

⎤
⎦ . (1)

Likewise, the position vectors rcw1 and rcw2 for the counter-weights result in
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Fig. 2 Free body diagram of
TRAS

rcw1 =
⎡
⎣

−lcw sin ψ sin φ

−lcw sin ψ cos φ

−lcw cos ψ

⎤
⎦ , rcw2 =

⎡
⎣
lcw sin ψ sin φ

lcw sin ψ cos φ

−lcw cos ψ

⎤
⎦ . (2)

The overall kinetic energy T of TRAS is determined with the help of velocity
vectors as well as the mass moments of inertia of the rotating beam. The kinetic
energy of the TRAS in terms of the generalised coordinates is expressed as

T = mm

2
ṙ2
m + mt

2
ṙ2
t + mcw

2
(ṙ2
cw1 + ṙ2

cw2) + 1

2
Jz φ̇

2 + 1

2
Jx ψ̇

2

= 1

2

(
(mml

2
m + mtl

2
t )(φ̇2 cos2 ψ + ψ̇2) + mcwl

2
cw(φ̇2 sin2 ψ + ψ̇2) + Jz φ̇

2 + Jx ψ̇
2
)

,

(3)

where the square of the velocity components along the corresponding axes are calcu-
lated using the standard vector dot product identity, i.e. ṙ2 = ṙT · ṙ. The parameters
Jx and Jz denote the moment of inertias of the rotating beam w.r.t. the body-fixed
x-axis and z-axis, respectively. Similarly, the overall potential energy U of the point
mass system is given as

U = g

(
(mmlm − mtlt ) sin(ψ) + 2mcwlcw(1 − cos(ψ))

)
+ 1

2
kφ φ2. (4)

Here, g is the gravitational constant. The parameter kφ is used to model the restoring
energy due to the elasticity in the cable. The Lagrangian of the system is defined as
the difference between the kinetic energy and the potential energy, i.e.

L = T −U.
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Finally, Lagrange’s equations including non-conservative forces result in [9]

d

dt

(
∂L

∂ q̇

)
− ∂L

∂q
= τq − ∂R

∂q̇
, q = {φ,ψ}, (5)

where τφ and τψ are torques along the azimuth and the pitch axes, respectively. The
Rayleigh dissipation function R is given by [9]

R = 1

2
cφ φ̇2 + 1

2
cψ ψ̇2. (6)

Substituting (3), (4) and (6) into (5), the equations of motion for the system become

Jφφ̈ = τφ + J φ̇ψ̇ sin(2ψ) − kφφ − cφφ̇, (7)

Jψψ̈ = τψ − g

[
(mmlm − mtlt ) cos ψ + 2mcwlcw sin ψ

]
−J

φ̇2

2
sin(2ψ) − cψψ̇,

(8)

with the following definition of the mass moments of inertia

Jφ = Jφ(ψ) = (mml
2
m + mtl

2
t ) cos2 ψ + 2mcwl

2
cw sin2 ψ + Jz, (9)

Jψ = mml
2
m + mtl

2
t + 2mcwl

2
cw + Jx , (10)

J = mml
2
m + mtl

2
t − 2mcwl

2
cw. (11)

The dynamics of the beam w.r.t. the pitch angle and azimuth angle is strongly nonlin-
ear and contains couplings. The torques τφ and τψ are combined in the input vector
u = [τφ τψ ]T , with

τφ = Fφlt cos ψ and τψ = Fψ lm . (12)

Here, Fψ and Fφ denote the propulsive forces provided by the main rotor and the tail
rotor, respectively. To handle the parameter uncertainty and unknown disturbances,
the model is extended with two lumped disturbance torques z = [zφ zψ ]T acting on
the azimuth and pitch axes, respectively. With the state vector x = [φ φ̇ ψ ψ̇]T ,
the extended nonlinear state-space model ẋ = f(x,u, z) becomes

⎡
⎢⎢⎣

φ

φ̇

ψ

ψ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ̇
1

Jφ

(
−cφφ̇ − kφφ + J φ̇ψ̇ sin(2ψ)

)
+ lt cos(ψ)

Jφ

Fφ + 1

Jφ

zφ

ψ̇

1

Jψ

(
−cψψ̇ − J

φ̇2

2
sin(2ψ) − g

(
(mmlm − mtlt ) cos ψ

+ 2mcwlcw sin ψ
)) + lm

Jψ

Fψ + 1

Jψ

zψ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)
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These disturbance torques, on the one hand, account for parameter uncertainty. On the
other hand, the unmodelled effects due to the supply cables and gyroscopic torques
as well as the couplings caused by the tail rotor and the main rotor in the case of
angular accelerations of the propellers are encompassed by the lumped disturbance
torques.

For trajectory tracking, the azimuth angle and the pitch angle are chosen as con-
trolled outputs. The measurement vector ym is given by

ym(t) = [
φ ψ

]T
. (14)

The nonlinear control-oriented model given in (13) represents a control-affine sys-
tem. The system under consideration has matched uncertainties, since the unknown
disturbance torques appear in the span of the control input. The systematic procedure
of backstepping control design, however, allows to achieve global stabilisation under
the influence of both matched and mismatched uncertainties. Therefore, in order to
track desired trajectories robustly for the azimuth angle as well as the pitch angle,
backstepping-based sliding mode control and adaptive backstepping approaches are
proposed and investigated thoroughly.

3 Tracking Control Design for the TRAS

The aim of a robust control approach is to accurately track desired trajectories for both
the azimuth angle and the pitch angle despite the parameter uncertainty and unknown
disturbances. For this purpose, a comparison between two alternative robust nonlinear
control strategies based on backstepping techniques—a backstepping-based sliding
mode control and an adaptive backstepping control—is carried out. Generally, the
backstepping control design is based on a recursive procedure by systematically
choosing appropriate control Lyapunov functions, and the corresponding stabilising
functions [12]. In the case of backstepping-based sliding mode control, the lumped
disturbance torques along with the immeasurable angular velocities are estimated
with the help of an EKF. The adaptive backstepping control design, however, includes
a dynamic part that involves the derivation of nonlinear adaptive control laws for the
estimation of unknown lumped disturbance torques. Thereby, both the robust per-
formance and the trajectory tracking accuracy are improved. For the state estimation
within the adaptive backstepping control strategy, robust sliding mode differentiators
are employed for the estimation of the angular velocities. The asymptotic stability of
the closed-loop systems for both feedback control approaches is proved using Lya-
punov methods. Moreover, the stability of the overall control structures—involving
the corresponding estimators—is investigated thoroughly by simulations and exper-
iments. The detailed design procedures for both control techniques are presented in
the following subsections.
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3.1 Backstepping-Based Sliding Mode Control

A backstepping control design is generally carried out in a recursive fashion. The
backstepping-based sliding mode control law can be derived in the two following
steps:

Step 1:
Given the continuously differentiable reference signals of class C2 for the azimuth
angle φd and the pitch angle ψd , the tracking errors eφ and eψ corresponding to the
azimuth angle and the pitch angle, respectively, are defined as

eφ = φ − φd and eψ = ψ − ψd . (15)

Introducing a so-called virtual control input α = [αφ αψ ]T , which has to be chosen
properly, the time derivatives of the error dynamics are given by

ėφ = φ̇ − φ̇d = αφ + rφ − φ̇d ,

ėψ = ψ̇ − ψ̇d = αψ + rψ − ψ̇d ,
(16)

with

rφ = φ̇ − αφ and rψ = ψ̇ − αψ. (17)

The stabilising functions αφ and αψ are chosen as

αφ = −kφeφ + φ̇d , αψ = −kψeψ + ψ̇d , (18)

with the strictly positive coefficients kφ and kψ . This leads to the error dynamics

ėφ = −kφeφ + rφ, and ėψ = −kψeψ + rψ. (19)

Consider a quadratic control Lyapunov function V1 and its corresponding time deriv-
ative,

V1 = 1

2
e2
φ + 1

2
e2
ψ,

V̇1 = eφ ėφ + eψ ėψ = −kφe
2
φ + eφrφ − kψe

2
ψ + eψrψ, (20)

where eφrφ and eψrψ will be eliminated in the next step. After elimination, the time
derivative of the Lyapunov function is negative definite, i.e.

V̇1 = −kφe
2
φ − kψe

2
ψ < 0, (21)

hence, the asymptotic stability can be easily established.
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Step 2:
Now, the error dynamics rφ and rψ are given by

ṙφ = φ̈ − α̇φ, and ṙψ = ψ̈ − α̇ψ . (22)

From (18) and (19), the following relationships can be obtained, i.e.

α̇φ = k2
φeφ − kφrφ + φ̈d , and α̇ψ = k2

ψeψ − kψrψ + ψ̈d , (23)

resulting in

ṙφ = f2(x) + lt cos(ψ)

Jφ

Fφ + 1

Jφ

zφ − k2
φeφ + kφrφ − φ̈d ,

ṙψ = f4(x) + lm
Jψ

Fψ + 1

Jψ

zψ − k2
ψeψ + kψrψ − ψ̈d ,

(24)

where the functions f2(x) and f4(x) are defined using the nonlinear control-oriented
model (13). They are given by

f2(x) = 1

Jφ

(
−cφφ̇ − kφφ + J φ̇ψ̇ sin(2ψ)

)
,

f4(x) = 1

Jψ

(
−cψψ̇ − J

φ̇2

2
sin(2ψ) − g

(
(mmlm − mtlt ) cos ψ + 2mcwlcw sin ψ

))
.

(25)

For the backstepping-based sliding mode control, sliding manifolds need to be
defined. Mathematically, the sliding manifolds are expressed as

sφ(x) = cφeφ + rφ , sψ(x) = cψeψ + rψ . (26)

Here, strictly positive coefficients ci > 0, i ∈ {φ,ψ}, are employed. The sliding
manifolds sφ(x) and sψ(x) correspond to the azimuth axis and the pitch axis, respec-
tively. The time derivatives of the sliding manifolds are given by

ṡφ(x) = cφ ėφ + ṙφ , ṡψ(x) = cψ ėψ + ṙψ . (27)

To ensure that the manifolds are reached in a finite period of time and that they are
independent of the initial conditions of the system, sufficient reaching conditions

si (x)ṡi (x) < 0,∀s(x) �= 0 , i ∈ {φ,ψ} , (28)

have to be fulfilled. A necessary condition for the existence of a sliding mode implies
that, ∀t ≥ tr the output trajectory should remain on the sliding surface, i.e., si (x) =
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ṡi (x) = 0. Here, tr denotes the finite reaching time. Hence, to achieve finite-time
convergence, the time derivatives of the Lyapunov functions 1/2 · s2

i (x), i ∈ {φ,ψ},
have to fulfil the following reaching conditions

si (x)ṡi (x) ≤ si (x)(−hi si (x) − ηi sgn(si (x))) < 0, hi > 0 and ηi > 0 , i ∈ {φ,ψ} .

(29)

The parameters ηi determine the switching height and guarantee that the time-
derivative of the Lyapunov functions become negative definite. The introduction
of the additional damping terms −hi si (x) together with the switching terms ensure
a shorter reaching time in comparison to the case where only the switching func-
tions are employed. A detailed mathematical derivation for the reaching condition
discussed at the end of this subsection highlights the effectiveness of the damping
term.

Define a Lyapunov function V2 along with its corresponding time differentiation
as

V2 = 1

2
e2
φ + 1

2
s2
φ + 1

2
e2
ψ + 1

2
s2
ψ,

V̇2(x) = eφ ėφ + sφ ṡφ︸ ︷︷ ︸
V̇φ

+ eψ ėψ + sψ ṡψ︸ ︷︷ ︸
V̇ψ

. (30)

In order to make the analysis simple, the time derivative of the control Lyapunov
function V2(x) is split into two parts, V̇φ and V̇ψ . Considering

V̇φ = eφ ėφ + sφ ṡφ, (31)

= eφ(−kφeφ + rφ) + sφ

(
cφ(−kφeφ + rφ) + ṙφ

)
, (32)

= eφ(−kφeφ + sφ − cφeφ) + sφ

(
cφ(−kφeφ + rφ) + ṙφ

)
, (33)

= −(kφ + cφ)e2
φ + sφ

(
eφ + cφ(−kφeφ + rφ) + f2(x) + lt cos(ψ)

Jφ

Fφ

+ 1

Jφ

zφ − k2
φeφ + kφrφ − φ̈d

)
. (34)

With the following choice of the control input Fφ , i.e.

Fφ =
(

−hφsφ − ηφ sgn(sφ) − eφ − cφ(−kφeφ + rφ) − f2(x) − 1

Jφ

zφ

+ k2
φeφ − kφrφ + φ̈d

)
Jφ

lt cos(ψ)
, (35)
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the time derivative of the Lyapunov function is negative definite

V̇φ = −(kφ + cφ)e2
φ − hφs

2
φ − ηφsφ sgn(sφ) < 0. (36)

It is worth mentioning that the singularity condition due to ψ = ±π/2 does not
arise in the real set-up which is fortunately outside the range of feasible pitch angles
because of the mechanical design of the test-rig.

Likewise, the control input Fψ for the main rotor can be determined based on the
design procedure already described in detail for the control input Fφ . Therefore, the
following expression is obtained for the Fψ , i.e.

Fψ =
(

−hψsψ − ηψ sgn(sψ) − eψ − cψ(−kψeψ + rψ) − f4(x) − 1

Jψ

zψ

+ k2
ψeψ − kψrψ + ψ̈d

)
Jψ

lm
. (37)

With this choice of the control input, the time derivative of the Lyapunov function
Vψ is

V̇ψ = −(kψ + cψ)e2
ψ − hψs

2
ψ − ηψsψ sgn(sψ) < 0. (38)

Hence, the time derivative of the control Lyapunov function from (30) can be rewrit-
ten as

V̇2(x) = −(kφ + cφ)e2
φ − hφs

2
φ − ηφ|sφ| − (kψ + cψ)e2

ψ − hψs
2
ψ − ηψ |sψ | < 0.

(39)

Since all the coefficients are positive, the time derivative of the Lyapunov function
remains negative definite. As a consequence, the asymptotic stability of the system
is guaranteed.

In order to proof a convergence in finite time to the sliding manifold, i.e. s(x) =
ṡ(x) = 0, a detailed mathematical analysis is provided in the following.

Proof of Finite Reaching Time

For brevity, only the sliding manifold regarding the azimuth angle is considered.
According to Lyapunov’s stability theory, the existence as well as the reaching con-
ditions for a sliding mode can be summarised as follows: if there exists a Lyapunov
function Vs,φ with a negative-definite time-derivative [12, 20], i.e.

Vs,φ = 1

2
s2
φ, (40)

V̇s,φ = sφ ṡφ < 0 for sφ �= 0, (41)

asymptotic stability can be ensured. To achieve finite-time convergence, however,
the time derivative of the Lyapunov function has to fulfil the following reaching
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condition

V̇s,φ = sφ ṡφ ≤ sφ

(
−hφsφ − ηφ sgn(sφ)

)
< 0. (42)

The parameter ηφ > 0 determines the switching height and guarantees that the time
derivative of the Lyapunov function becomes negative definite. Moreover, the intro-
duction of the damping constant hφ > 0 leads to fast finite-time convergence to the
sliding manifold as shown in the sequel. To determine the reaching time tr , inequal-
ity (42) can be rewritten in terms of Vs,φ as

V̇s,φ + 2hφVs,φ ≤ −√
2ηφ

√
Vs,φ. (43)

This inequality is in the form of a generalised Bernoulli’s differential equation and can
be easily transformed to a first-order linear non-autonomous differential equation.

Multiplying both sides of (43) with
1√
Vs,φ

leads to

1√
Vs,φ

V̇s,φ + 2hφ

√
Vs,φ ≤ −√

2ηφ. (44)

Applying the transformation

Ṽ = √
Vs,φ, (45)

leads to a first-order differential equation of the form

˙̃V + hφ Ṽ ≤ − ηφ√
2
. (46)

Keeping in mind that the initial value of Ṽ (t) at time t = 0 is Ṽ (0), the solution of
this non-homogeneous linear differential equation results in

Ṽ (t) ≤
(
Ṽ (0) + ηφ√

2hφ

)
exp−hφ t − ηφ√

2hφ

. (47)

Transforming back this solution in terms of the original Lyapunov function Vs,φ(t)
leads to

Vs,φ(t) ≤
[(√

Vs,φ(0) + ηφ√
2hφ

)
exp−hφ t − ηφ√

2hφ

]2

. (48)
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Consequently, Vs,φ(t) reaches zero in a finite time tr bounded by

tr ≤ 1

hφ

ln

[√
2hφ

ηφ

(√
Vs,φ(0) + ηφ√

2hφ

)]
. (49)

Here, it becomes obvious that the reaching time is proportional to the natural loga-
rithmic of the square root of the initial value, i.e.

√
Vs,φ(0). This is in contrast to the

case where only the switching term is employed and reaching time is proportional
to the square root of the initial value

√
Vs,φ(0) only [12, 20, 22]. Therefore, condi-

tion (43) guarantees a fast finite reaching time. The same procedure can be repeated
for the sliding manifold for the pitch axis and a finite reaching time can be guaran-
teed. It is worth mentioning that the reaching time condition is generally applicable
for all sliding mode control design techniques where the finite-time convergence is
achieved using a combination of a damping term with a switching term as already
introduced in (42).

After reaching the sliding surface si = 0, i ∈ {φ,ψ}, in finite time t < tr , the
closed-loop error dynamics of the azimuth axis and the pitch axes are governed by
the following set of state equations

[
ėi
ṙi

]
=

[ −ki 1
−1 + ki ci −ci

] [
ei
ri

]
. (50)

The characteristic polynomial of the error dynamics results in

pBS-SMC(s) = s2 + (ki + ci )s + 1, (51)

which satisfies Hurwitz’s stability criterion for strictly positive control gains ki > 0
and ci > 0. The eigenvalues of the closed-loop error dynamics during an ideal sliding
mode are, hence, located in the left half s-plane, thus the asymptotic stability of the
overall closed-loop system is guaranteed.

The sliding mode control suffers from the chattering phenomenon caused by fast
switching actions introduced by the sgn(s) function and may lead to the excitation of
unmodelled high-frequency dynamics. To counteract this effect, smooth switching
functions tanh(si/ε) with a strictly positive constant ε—representing a boundary
layer thickness—are utilised. The chattering reduction depends on the value of ε

at the cost of robustness. By using a large value for the boundary layer thickness
ε the reaching time increases. This is due to the fact that the control input within
the boundary thickness changes in a smooth way rather in a fast switching way.
Therefore, the boundary layer thickness should be carefully selected. A typical value
of ε 	 1 is chosen for the boundary layer thickness.
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3.2 Adaptive Backstepping Control Design

To compensate the unknown lumped disturbance torques zφ and zψ , appropriate
adaptive control laws are designed for their estimation. On choosing single integra-
tors as disturbance models, which proved advantageous in many applications, the
corresponding dynamics are governed by the following relationship

żφ = 0 and żψ = 0.

Note that the integrators are driven by the output errors in observer or filter schemes.
Using the recursive nature of the backstepping control, the design procedure for the
adaptive backstepping control for TRAS is performed in two steps.

Step 1:
For brevity, any derivations in this step are omitted because this step is similar to the
first step of the backstepping-based sliding mode control design scheme presented
in Sect. 3.1.

Step 2:
To stabilise rφ and rψ dynamics as well as to carry out the design of the adaptive
laws for the lumped disturbances, the Lyapunov candidate V2 and the corresponding
differentiation V̇2 w.r.t. time are considered

V2 = 1

2
e2
φ + 1

2
r2
φ + 1

2
z̃φΓ −1

φ z̃φ + 1

2
e2
ψ + 1

2
r2
ψ + 1

2
z̃ψΓ −1

ψ z̃ψ, (52)

V̇2 = eφ ėφ + rφ ṙφ + z̃φΓ −1
φ

˙̃zφ︸ ︷︷ ︸
V̇φ

+ eψ ėψ + rψ ṙψ + z̃ψΓ −1
ψ

˙̃zψ︸ ︷︷ ︸
V̇ψ

. (53)

The strictly positive parameters Γφ and Γψ represent the adaptation gains and deter-
mine the convergence speed of the estimated values to their true ones. In order to
derive the control law in a simpler way, expression (53) is split into two terms denoted
by V̇φ and V̇ψ . The estimation errors and the corresponding time derivatives of the
disturbance torques are given by

z̃φ = zφ − ẑφ, ˙̃zφ = żφ − ˙̂zφ = −˙̂zφ,

z̃ψ = zψ − ẑψ, ˙̃zψ = żψ − ˙̂zψ = −˙̂zψ.
(54)

Regarding the lumped disturbance torque of the azimuth axis, a thorough analysis
will be presented in the sequel for the derivation of the control law and the adaptive
law. Considering

V̇φ = eφ ėφ + rφ ṙφ + z̃φΓ −1
φ

˙̃zφ, (55)
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substituting (13), (24) and (54) into (55) leads to

V̇φ = eφ(−kφeφ + rφ) + rφ

(
f2(x) + lt cos(ψ)

Jφ

Fφ + 1

Jφ

zφ − k2
φeφ + kφrφ − φ̈d

)

− z̃φΓ −1
φ

˙̂zφ,

= −kφe
2
φ + rφ

(
eφ + f2(x) + lt cos(ψ)

Jφ

Fφ − k2
φeφ + kφrφ − φ̈d

)

+ zφ

(
1

Jφ

rφ − Γ −1
φ

˙̂zφ

)
+ ẑφΓ −1

φ
˙̂zφ. (56)

Now, the update law for the estimation of the disturbance torque zφ can be stated as

˙̂zφ = 1

Jφ

Γφrφ. (57)

Substituting back the parameter update law into (56) leads to

V̇φ = −kφe
2
φ + rφ

(
eφ + f2(x) + lt cos(ψ)

Jφ

Fφ − k2
φeφ + kφrφ − φ̈d + 1

Jφ

ẑφ

)

︸ ︷︷ ︸
−k̃φrφ

< 0.

(58)

For asymptotic stability, the Lyapunov function must be negative definite. This con-
dition is ensured by replacing the term within the bracket with −k̃φrφ with the strictly
positive control parameter k̃φ > 0. Therefore, the control law Fφ is given by

Fφ =
(

−(k̃φ + kφ)rφ − (1 − k2
φ)eφ − f2(x) − 1

Jφ

ẑφ + φ̈d

)
Jφ

lt cos(ψ)
. (59)

Similarly, based on the same guidelines provided above for the azimuth axis, the
control law for the pitch motion can be derived. Thus, the corresponding disturbance
torque update law, the time derivative of the Lyapunov function and the control input
are summarised as follows

˙̂zψ = 1

Jψ

Γψrψ. (60)

V̇ψ = −kψe
2
ψ + rψ

(
eψ + f4(x) + lm

Jψ

Fψ − k2
ψeψ + kψrψ − ψ̈d + 1

Jψ

ẑψ

)

︸ ︷︷ ︸
−k̃ψrψ

< 0,

(61)

Fψ =
(

−(k̃ψ + kψ)rψ − (1 − k2
ψ)eψ − f4(x) − 1

Jψ

ẑψ + ψ̈d

)
Jψ

lm
. (62)



18 S.S. Butt et al.

Subsequently, the time derivative of the Lyapunov function V2 is stated as

V̇2 = −kφe2
φ − k̃φr2

φ − kψe2
ψ − k̃ψr2

ψ < 0. (63)

With the choice of the positive control parameters, the time derivative of the control
Lyapunov function is negative definite, and the asymptotic stability of the overall
closed-loop system can be guaranteed.

The closed-loop error dynamics with respect to the azimuth axis and the pitch
axes are governed by the following set of state equations

⎡
⎣
ėi
ṙi˙̃zi

⎤
⎦ =

⎡
⎢⎢⎢⎣

−ki 1 0

−1 −k̃i
1

Ji
0 − 1

Ji
Γi 0

⎤
⎥⎥⎥⎦

⎡
⎣
ei
ri
z̃i

⎤
⎦ , (64)

with i ∈ {φ,ψ}. The characteristic polynomial for the error dynamics is given by

pABS = s3 + (ki + k̃i )s
2 +

(
1 + ki k̃i + 1

J 2
i

Γi

)
s + ki

J 2
i

Γi . (65)

Since the parameters ki , k̃i , Γi as well as the moment of inertia Ji are strictly positive,
the Hurwitz stability criterion is satisfied. Therefore, the eigenvalues of the closed-
loop error dynamics are located in the left half s-plane and the tracking error goes
asymptotically to zero. Here, the control gains ki , k̃i and Γi determine the convergence
rate. Using large control gains, it is possible to increase the decay rate; an asymptotic
convergence characteristic, however, is always present. In contrast to this fact, the
backstepping-based sliding mode control guarantees a finite-time convergence based
on the reaching condition.

4 State and Disturbance Estimation

As the backstepping-based sliding mode control laws (35) and (37) require the knowl-
edge of the immeasurable angular velocities as well as the unknown lumped distur-
bance torques, a discrete-time EKF is employed for the estimation tasks. In the case
of the adaptive backstepping control laws (59) and (62), the angular velocities are
estimated with the help of a robust sliding mode differentiator, whereas the distur-
bance torques are estimated using the corresponding adaptive laws. The discussion
in this section focusses on the implementation of both the EKF and the robust sliding
mode differentiator.
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4.1 Discrete-Time Extended Kalman Filter

For the estimation of the lumped disturbance torques, the integrator disturbance
models are introduced according to

żφ = 0, and żψ = 0. (66)

Note that these disturbance models are excited in the case of output errors between
the measured and the estimated output variables. The state vector of the extended
system representation results in

xe = [
φ φ̇ ψ ψ̇ zφ zψ

]T
, (67)

and the measurement vector becomes

ym = Cm,e xe =
[

1 0 0 0 0 0
0 0 1 0 0 0

]
xe. (68)

Given the continuous-time state equation of the extended system

ẋe = f(xe,u), (69)

an explicit Euler time discretization of (69) and an introduction of additive noise
processes lead to the following discrete-time state-space representation used for the
EKF design

xe,k+1 = xe,k + Tsfk(xe,k,uk)︸ ︷︷ ︸
ϕk (xe,k ,uk )

+wk, (70)

ym,k = Cm,exe,k + vk . (71)

Here, Ts denotes the sampling time, xe,k the extended state vector, uk the con-
trol input vector, and ym,k the measured output at discrete-time tk . Furthermore,
the process noise and the measurement noise are given by wk and vk , respectively.
Both are assumed to be zero-mean Gaussian white noise processes with zero cross-
correlation. The vanishing cross-correlation leads to diagonal covariance matrices
Qk andRk characterising the process noisewk and the measurement noise vk , respec-
tively. Figure 3 shows that the implementation of the discrete-time EKF can be
divided into two stages, namely a prediction stage and an innovation stage [21].
The error covariance matrix is denoted by Pk . The algorithm for the discrete-time
EKF can be summarised at each time tk as follows, cf. [21]:

• State prediction

x̃e,k+1 = ϕk(x̂e,k,uk) (72)
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Fig. 3 Implementation of
the discrete-time EKF

Fig. 4 Implementation
scheme of the
backstepping-based sliding
mode control in combination
with the discrete-time EKF

• Prediction of the error covariance matrix P̃k+1

P̃k+1 = Φk P̂kΦ
T
k + Qk , with Φk = ∂ϕk(xe,k,uk)

∂xe,k

∣∣
x̂e,k

(73)

• Update of the gain matrix L̃k+1

L̃k+1 = P̃k+1CT
m,e

(
Cm,eP̃k+1CT

m,e + Rk
)−1

(74)

• Update of the state vector x̂e,k+1

x̂e,k+1 = x̃e,k+1 + L̃k+1
(
ym,k+1 − Cm,ex̃e,k+1

)
(75)

• Update of the error covariance matrix for the next sampling interval

P̂k+1 = (
I − L̃k+1Cm,e

)
P̃k+1 (76)

The block diagram of the backstepping-based sliding control along with the EKF
in depicted in Fig. 4.
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4.2 Robust Sliding Mode Differentiator

The real differentiation using a DT1-system is sensitive to input noise. On the one
hand, choosing a low cut-off frequency reduces the negative impact of high-frequency
noise. On the other hand, it introduces a significant and undesired time delay. Accord-
ingly, a high cut-off frequency results in small time delay at the cost of high-frequency
noise in the output signal. This trade-off between noise and time delay in the estima-
tion of the angular velocities could even lead to instability [13]. For the estimation
of the angular velocities as required for implementation of the adaptive backstep-
ping control, Levant’s differentiator—based on a robust exact differentiation via
sliding mode techniques—is employed [6, 13, 14]. The exact derivatives are calcu-
lated by successive implementation of a robust exact first-order differentiator based
on a second-order sliding mode control. The finite-time convergence of this robust
differentiator is proved in [13]. Provided that γ is the maximum magnitude of the
measurement noise, the accuracy of the differentiator is proportional to γ 1/2 for the
second time-derivative of the applied signal. The design procedure for the estima-
tion of the exact differentiation of the angular velocity φ̇ is outlined in the following.
Consider the azimuth angle φ as a basis signal with the third time-derivative having
a known Lipschitz constant L . The robust sliding mode differentiator aiming at the
estimation of φ̇(t), φ̈(t) and

...
φ(t) is such a way that it is exact in the absence of

measurement noise. A second-order differentiator for the input φ with |...φ(t0)| ≤ L
according to [14] is given by

ż0 = ν0, ν0 = −3L1/3|z0 − φ|2/3 sgn(z0 − φ) + z1,

ż1 = ν1, ν1 = −1.5L1/2|z1 − ν0|1/2 sgn(z1 − ν0) + z2,

ż2 = −1.1L sgn(z2 − ν1),

(77)

with [z0 z1 z2]T = [φ̂ ˙̂
φ

¨̂
φ]T . Similarly, the angular velocity for the pitch angle can

be easily estimated using the robust sliding mode differentiation.
Figure 5 shows the implementation scheme of the controller in combination with

the robust sliding mode differentiator.
The closed-loop stability of the overall control structure consisting of the nonlinear

control techniques along with the estimators has been investigated thoroughly in
simulations.

5 Simulation and Experimental Results

In this section, the proposed backstepping-based sliding mode control (BS-SMC)
and the adaptive backstepping (ABS) control laws in combination with the EKF
and the robust state differentiators, respectively, are investigated by both simulations
and experimental evaluations. To guarantee realistic simulation results, the system
model is extended with measurement noise concerning the incremental encoders for


