Juan A. Barceld
Florencia Del Castillo Editors

o Simulating
Prehistoric

and Ancient
Worlds

N Springer



Computational Social Sciences



Computational Social Sciences

A series of authored and edited monographs that utilize quantitative and compu-
tational methods to model, analyze and interpret large-scale social phenomena. Titles
within the series contain methods and practices that test and develop theories of
complex social processes through bottom-up modeling of social interactions. Of
particular interest is the study of the co-evolution of modern communication
technology and social behavior and norms, in connection with emerging issues such
as trust, risk, security and privacy in novel socio-technical environments.

Computational Social Sciences is explicitly transdisciplinary: quantitative methods
from fields such as dynamical systems, artificial intelligence, network theory, agent
based modeling, and statistical mechanics are invoked and combined with state-of
the-art mining and analysis of large data sets to help us understand social agents,
their interactions on and offline, and the effect of these interactions at the macro
level. Topics include, but are not limited to social networks and media, dynamics of
opinions, cultures and conflicts, socio-technical co-evolution and social psychology.
Computational Social Sciences will also publish monographs and selected edited
contributions from specialized conferences and workshops specifically aimed at
communicating new findings to a large transdisciplinary audience. A fundamental
goal of the series is to provide a single forum within which commonalities and
differences in the workings of this field may be discerned, hence leading to deeper
insight and understanding.

Series Editors

Elisa Bertino Larry Liebovitch

Purdue University, West Lafayette, Queens College, City University of
IN, USA New York, Flushing, NY, USA
Claudio Cioffi-Revilla Sorin A. Matei

George Mason University, Fairfax, Purdue University, West Lafayette,
VA, USA IN, USA

Jacob Foster Anton Nijholt

University of California, Los Angeles, University of Twente, Enschede,
CA, USA The Netherlands

Nigel Gilbert Andrzej Nowak

University of Surrey, Guildford, UK University of Warsaw, Warsaw, Poland
Jennifer Golbeck Robert Savit

University of Maryland, College Park, University of Michigan, Ann Arbor,
MD, USA MI, USA

Bruno Gongalves Flaminio Squazzoni

New York University, New York, University of Brescia, Brescia, Italy
NY, USA . Alessandro Vinciarelli

James A. Kitts University of Glasgow, Glasgow,
Columbia University, Amherst, Scotland, UK

MA, USA

More information about this series at http://www.springer.com/series/11784



Juan A. Barcel6 - Florencia Del Castillo
Editors

Simulating Prehistoric
and Ancient Worlds

@ Springer



Editors

Juan A. Barcelo

Department of Prehistory
Universitat Autonoma de Barcelona
Bellaterra

Spain

Florencia Del Castillo

Patagonia National Research Center
(CENPAT) National Scientific
and Technical Research Council
(CONICET)

Puerto Madryn
Argentina

ISSN 2509-9574

Computational Social Sciences
ISBN 978-3-319-31479-2

DOI 10.1007/978-3-319-31481-5

ISSN 2509-9582  (electronic)

ISBN 978-3-319-31481-5 (eBook)

Library of Congress Control Number: 2016948617

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Contents

1  Simulating the Past for Understanding the Present.
A Critical Review . . ...... .. ... . ... .. . .
Juan A. Barcel6 and Florencia Del Castillo

2 Multi-scale Agent-Based Simulation of Long-Term Dispersal
Processes: Towards a Sophisticated Simulation Model
of Hominin Dispersal .....................................
Ingo J. Timm, Fabian Lorig, Ericson Hoélzchen and Christine Hertler

3 An Agent-Based Model of Resource Distribution
on Hunter-Gatherer Foraging Strategies: Clumped
Habitats Favor Lower Mobility, but Result in Higher
Foraging Returns ........... ... ... ... ... ... ... ... . ....
Marco A. Janssen and Kim Hill

4  Testing Brantingham’s Neutral Model: The Effect of Spatial
Clustering on Stone Raw Material Procurement. . . .. ...... ... ..
Simen Oestmo, Marco A. Janssen and Curtis W. Marean

5 Population Spread and Cultural Transmission in Neolithic
Transitions. . . . .. ... .
Joaquim Fort, Neus Isern, Antonieta Jerardino and Bernardo Rondelli

6  Modelling Routeways in a Landscape of Esker and Bog . . ... .. ..
Yolande O’Brien and Stefan Bergh

7  Modelling Cultural Shift: Application to Processes
of Language Displacement . ................................
Neus Isern and Joaquim Fort

8 Pathways for Scale and Discipline Reconciliation:
Current Socio-Ecological Modelling Methodologies
to Explore and Reconstitute Human Prehistoric Dynamics . . . . . ..
Mehdi Saqalli and Tilman Baum



vi

10

11

12

13

14

Contents

Simulating Land Use of Prehistoric Wetland Settlements:

Did Excessive Resource Use Necessitate a Highly Dynamic

Settlement System? . ... ... ... ... ... ... ... 255
Tilman Baum

Revisiting the Dynamics Between Two Ancient Japanese

Descent Groups: What Happened from the Jomon

to the Yayoi Periods in Japan ................. ... ... ... .. 281
Fumihiro Sakahira and Takao Terano

Cultural and Genetic Transmission in the Jomon-Yayoi

Transition Examined in an Agent-Based Demographic

Simulation ... ... ... ... ... 311
Naoko Matsumoto and Mariko Sasakura

Economic Sustainability in Relation to Demographic Decline

of Celtic Agglomerations in Central Europe: Multiple-Scenario
Approach. ... ... .. .. 335
Kamila Stekerova and Alzbéta Danielisova

Zambezil.and: A Canonical Theory and Agent-Based Model
of Polity Cycling in the Zambezi Plateau, Southern Africa . .. .. .. 359
Gary Bogle and Claudio Cioffi-Revilla

Personalities, Physiology, Institutions and Genetics:
Simulating Ancient Societies with Intelligent Virtual Agents. . . . .. 377
Tomas Trescak, Anton Bogdanovych and Simeon Simoff



Chapter 1
Simulating the Past for Understanding
the Present. A Critical Review

Juan A. Barcel6 and Florencia Del Castillo

1.1 Introduction to an Introduction

This book has been edited with the explicit idea of allowing the reader to imagine that
virtual histories can be generated in a computer in the same way as in her/his mind. This
is not a literary exercise, however, but an example of a radical revolution in the way of
doing History as a social science. While computational models can be used to simulate
real-world processes in great detail (e.g., some manufacturing processes), their greatest
potential for historical explanation lies in using them as environments of systematic,
controlled, virtual experiments in human social and socio-ecological dynamics
(Bankes et al. 2002; Diamond and Robinson 2010; Barton et al. 2012; Barton 2013,
2014; Hmeljak and Goldstone 2016; Nakoinz and Knitter 2016; Cegielski and Rogers
2016). Importantly, such models are constructed from the bottom up, requiring the
integration of knowledge about human social processes and theory about the rela-
tionships among individual actors and groups at multiple scales to create the algorithms
which drive agent perception, decision-making, and action. Used in this way, building
computational models can help refine our concepts about the operation of societies, and
the models can serve as complex hypotheses that can be tested against the empirical
record of archaeological, ethnological or historical research (Barton 2014).

The essays present in this book are the result of a special session organized during
the annual conference of the European Social Simulation Association (ESSA) held at
the Autonomous University of Barcelona (Spain) on September 2014. “Simulating the
Past to Understand Human History”—SPUHH—for the first time in an ESSA con-
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ference gathered a multidisciplinary group of researchers interested in different
developments of computer simulation in the archaeological and historical sciences.
The most interesting part of this session was the increasing interest of a multidisci-
plinary community to implement computer simulations to solve historical problems.
Notonly archaeologists and historians are now interested on long term simulations, the
presence of physicists, economists, computer scientists, historians, sociologists,
geographers and anthropologists reflects the transdisciplinarity of this way of research.
The papers selected to be published in this book express some of this excitement.

Most contributions are studies of the most remote past: prehistory and archaeol-
ogy. But it does not mean that other historical periods cannot be made understandable
recreating what people did and believed within a computer. In practice, then, the
virtual pasts we can recreate within a computer are accessible in the sense that they
tend to realign this paradigmatic new way of understanding the past with both the
commonsense trivial idea that history is about what people did in the past (Diiring
2014; Lake 2015; Lercari 2016; Cegielski and Rogers 2016; Marwick 2016).

1.1.1 A “New” Way of Understanding Human History?

History is a science that should look for causal affirmations about the formation
processes of society. Therefore, the startpoint of historical research should be
explaining past social events by showing how human behavior fit into a causal
structure, that is to say, a vast network of interacting actions and entities, where a
change in a property of an entity dialectically produces a change in a property of
another entity (transformation).

This focus on the causal understanding of historical processes fits well with the
notion that archaeology and history should offer something to contemporary society
as an integrated science of long-term societal change and human-environment
interaction (Rashevsky 1968; Abbott 1983; Turchin 2008, 2011; Hurley 2012;
Gavin 2014; Lake 2015; Cegielski and Rogers 2016). History is not the identifica-
tion of who did what in the past, but the quest for what produced a social action
whose effects and consequences may be discerned in the present. Moreover, what
generated those consequences was the interaction of a number of actions and entities,
characterized by direct, invariant and change-relating generalizations. History as an
explicitly scientific discipline should evolve from a subjective description of what
we believe happened in the past, to an investigation of the causes of the present.

Descriptive chains of events, even if true, are not explanations but they are
something to be explained. Clearly, nothing is gained if we introduce as an
explanation of why some x occured, an indicator that some y occurred before or
after (where x and y refer to different acts, events or processes). In some sense,
causal interactions are the factors explaining why a social action was performed at a
specific time and place, which is, its motivation or reason.

We can understand social action in the past only in terms of how humans did it.
It is easy to see then that the concept of mechanism becomes the heart of this kind
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of causal explanation. Obviously, the word “mechanism” is here a parable of how
social intentions, goals and behaviors are causally connected. A “social mecha-
nism” should then explain how social activity worked, rather than why the traits
contributing to these activities or workings are there (Bechtel and Richardson 1993;
Machamer 2002; Craver 2001; Darden 2002; Glennan 2002; Gerring 2008; Yli-
koski 2011; Maurer 2016). “Mechanisms are entities and activities organized such
that they are productive of regular changes from start or set-up to finish or termi-
nation conditions” (Machamer et al. 2000, p. 3). No matter how long or compli-
cated the causal process is, it can be called a mechanism if its description answers
the question how did the cause bring about the effect.

We are adopting an analytical approach in which “social facts” are seen as
generated, triggered, produced, brought about or “caused” by actions which
themselves are in some sense “caused,” or at least partly determined by the con-
straints presented by the social environments and situations in which such actions
take place (Elster 1989). To explain a social event therefore means to describe the
various causal chains linking all the elements involved (once those elements have
been appropriately described and separated) in constituting a social fact.

These prospective for a new way of understanding human history are strongly
related with current developments in Analytical Sociology. Such a term officially
entered the sociological vocabulary with Hedstrom’s Dissecting the Social (Hed-
strom 2005) to denote the sociological perspective that seeks systematically to
formulate and empirically test micro-founded, mechanism-based explanations of
complex macro-level patterns and dynamics (see also: Bortolini 2007; Hedstrom
and Bearman 2009a, b; Racko 2011; Raub et al. 2011; Bearman 2012; Edling 2012;
Wan 2012; Opp 2013; Manzo 2010; 2014; Lombardo 2015). According to such
definition, we can envisage a kind of “Analytical history” when trying to under-
stand complex chains of change in terms of the discovery of patterns in transitions.
To build such a discipline, and paraphrasing Manzo (2014), we should modify the
actual way of describing the past and:

1. using concepts that are as clear and precise as possible to describe both the facts
to be explained and the explanatory hypotheses/facts mobilized to explain them,
while avoiding all linguistic obscurity and convolutedness (Pomeranz 2011),

2. mobilizing the best quantitative and qualitative empirical information available
and use the technical tools best suited to describing the facts to be explained,

3. making emphasis on the social outcome(s) evidenced somewhere and some-
when to understand what happened and why. This can be done by first for-
mulating a “generative model” that is, a model of a set of mechanisms, where a
mechanism is a set of entities and activities likely to trigger a sequence of events
(i.e., a process) likely to bring about the outcome(s),

4. providing a realistic description of the relevant micro-level entities and activities
assumed to be at work, as well as the structural interdependencies in which these
entities are embedded and their activities unfold,

5. translating our hypothesis of the social mechanism implied in the causal con-
nections between events into a “generative model” in order to rigorously assess
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the internal consistency of the hypothesis and to determine its high-level
consequences,

6. comparing the predictions made by the generative model with the empirical
description of the historical facts to be explained in order to assess the gener-
ative sufficiency of the mechanisms postulated,

7. injecting as much empirical data as possible into the generative model in order
to prove that the hypothesized assumptions are not only generative sufficient but
also empirically grounded, and reanalyze its behavior and high-level
consequences.

A common objection to employing mathematical and formal models in the study
of historical dynamics is that social systems are so complex that any mathematical
model would be a hopeless oversimplification without any chance of telling us
interesting things about these systems. As Turchin (2008, 2011) has argued, this
argument is wrong: when any model appears to be “complex” then, the only way to
analyze its behavior is through objective measuring and using mathematical lan-
guage. “Naked” human brain is not a bad tool for extrapolating linear trends, but it
fails abysmally when confronted with systems of multiple parts interconnected with
nonlinear feedback loops. We need mathematical formalism to express our ideas
unambiguously, and both analytical methods and fast computers to determine the
implications of the assumptions we made (West 2011).

The advantage of formal modeling is that, by making explicit and unambiguous
the relationships between events and also the intended scope, it is easier to deter-
mine whether the model is supposed to be applicable to some observed phe-
nomenon and, if so, whether it adequately fits it (Lake 2015; Nakoinz and Knitter
2016).

1.1.2 The Past as a Virtual Model

The past is only accessible through the filter of a “model” built indirectly from
personal narratives, written in the past and preserved in our present. It is then an
artificial world, more or less imaginary, more or less reliable: a replica of what
really happened. There is no doubt that historians have been creating virtual sur-
rogates of the past since the early days of Herodotus and Thucydides. Such virtual
worlds are expressed narratively, using verbal language. In them, the historian
places herself in the context in which the action took place, but she is situated in a
virtual world extracted from a narration—supposed to be true—by an individual
having seen someone doing something in the past, or explaining her intentions
when acting (Bouissac 2015; Lercari 2016).

In any case, virtual worlds that can be narrated using verbal language can also be
expressed using computer languages (Mayfield 2007; Millington et al. 2012). In
that sense, an Artificial Society can be seen as a set of autonomous software entities
(the agents) having autonomy to “act”, thus taking their own decisions based on
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computer instructions that “simulate” the goals of the humans they “imitate” and
the state of the world in which they are supposed to be. Computationally speaking,
virtual agents will consist of a body that contains a set of state variables and
behavioral instructions.

As the real world constrains the structure and behavior of the real agents, the
simulated historical context plays that role for the simulated agent system. The
perceptions of the simulated agents need to have some origin in all factors external
to that agent, and it has to be represented in a specific environmental model. Thus,
complex agent models require rich contextual information that should be transferred
to a virtual model of the “landscape”. This global entity may carry some global state
variables like its own dynamics. These dynamics also can be so complex, e.g.,
containing production of new entities, that one may assign some form of behavior
with the simulated environment.

The successful completion of virtual agents’ tasks should be subject to the
decision and actions of others, and on the specific way the environment constrains
or determines the performance of social action. These models as well as real
phenomena, for example, the societies, are dynamic because they change in time;
therefore, a model will consist not only of structure but also of behavior. To observe
a model’s behavior the passage of time on it is necessary and it is here where
computer simulation functionality is required (Sansores 2007).

In this way, we can move the unit of analysis to the social system of situated
agents, whose center of gravity lies in the functioning of the relationships between
social activities, social action, operations, and social actors. The unit of analysis is
thus not the individual, nor the context, but a relation between the two. Questions of
scale are relevant to understand the advantages of computer simulation of historical
events and processes. In a computer model of a remote past, the historian can
disaggregate in reverse order to the way social organization has evolved: the highest
level groups become independent systems, disassociated from other groups, and
which can subsequently disaggregate into their respective subgroups. Because in a
virtual past, agents, processes and environment interact with other components in
multiple dynamic ways, in variable frequency and intensity across the nested
hierarchical organization, the scale and direction of change at the system level is not
necessarily proportional to the scale and direction of the phenomena that trigger it.
Additionally, it is more the character of the interactions among components rather
than their inherent characteristics that determines the behavior of a simulation at the
system level.

This way of building “artificial societies” from individual building blocks rep-
resenting the lowest units of analysis may be contrasted to macro simulation
approaches that are typically based on generalized models where the characteristics
of a population are averaged together and the model attempts to simulate changes in
these averaged characteristics for the whole population. Thus, in macro simulations,
the set of individuals is viewed as a single entity that can be characterized by a
number of variables, whereas in micro simulations the structure is viewed as
emergent from the interactions between low-level entities—the individuals.
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In this framework, time is defined in terms of steps, and steps are defined by a
transition system that has a recursive structure. History is then computable to the
extent that it can be represented algorithmically as the successive states of some
determined input — output function (Abbott 1983; Ponse 1996; Moschovakis
2001; Moschovakis and Paschalis 2008; Mahoney 2015). Such a computable
system should consist of a set of states, a set of labels representing the agents and
the actions, and a transition relation, prescribing for each state the possible ‘next
steps’, i.e., what actions can be performed, and (per action) what state results.
Selecting one state as the root (the initial state) then yields a formal representation
of a process. In this framework, time is defined in terms of steps, and steps are
defined by the computational process (Mayfield 2007). However, it is not useful to
call “computation” just any non-trivial yet somewhat disciplined coupling between
state variables. We also want this coupling to be intentionally set up for the purpose
of predicting or manipulating, in other words, from knowing or doing something
(Toffoli 2005).

This way of considering the particular—causal—relationship between succes-
sive steps in an evolving social system of agents, activities and products (both
people, things or other actions) brings about the vocabulary of complex systems and
chaos theory into the domain of social science and history. Complexity social
science is not a radically new domain, but in the recent years, it has changed its
emphasis dealing with the unpredictability and non-linearity of many real world
social mechanisms (Ball 2003; Dendrinos and Sonis 2012; Guastello 2013; Schieve
and Allen 2014; Youngman and Hadzikadic 2014; Wright-Maley 2015). Complex
adaptive systems (CAS) represent systems which are dynamic in space, time,
organization, and membership and which are characterized by information trans-
mission and processing that allow them to adjust to changing external and internal
conditions (Barton 2014). Complex systems approaches offer the potential for new
insights into processes of social change, linkages between the actions of individual
human agents and societal-level characteristics, interactions between societies and
their environment, and allometric relationships between size and organizational
complexity.

1.1.3 Testing the Virtual Model

This emphasis on computability and algorithms implies a correlated emphasis in
formalization, on objectivity, but not necessary on “truth”. Simulating the past is
just a way of increasing the explanatory power of historical explanatory models and
not necessarily their “truth likeness”.

We never know for sure whether the generated computer model of historical
transitions and changes actually describes what happened really in the past. It is
important to take into account, however, that the mechanical generation of “hy-
potheses” is no end in itself. A simulation can be “suggestive”, “imaginative”,
“relevant”, “probable”, “plausible”, “credible” (Bankes et al. 2002; Garson 2009;
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Reynolds et al. 2013; Whitley 2016; Balzer 2015; Stettiner 2016). A generative
model of the past that we belive existed is just a formal device to generate
explanatory arguments that can be fitted to reality or not. As such, an “historical
model” is just a deductive system as valid as its initial axioms. The only we can
check is the deductive coherence, that is, that explanatory arguments are expres-
sions generated by the system and hence coherent with the embedded assumptions.
The degree to which that potential is realized is a function of the empirical validity
of substantive models and the degree to which these theoretical ideas have been
implemented clearly and accurately (Cederman 2002; Lustick and Miodownik
2009; Peeters and Romeijn 2016; Marwick 2016).

If virtual explanatory models cannot be tested, they can be explored. When
exploring the resulting computable model of a causal trajectory of “events”, where
each event is just a momentaneous state of the evolving system of agents, and all
events within a trajectory constitute a “history”, we can generate large numbers of
virtual histories by perturbing the chain of events randomly or introducing ran-
domized adjustments in initial conditions. Each one of these alternative “histories”
can be used both to experiment with a theory of historical transition and social
change (parameters are manipulated to test for predicted differences) and as a
demonstration tool (parameters are manipulated to test for predicted robustness).
When used experimentally, manipulations are allowed for agent-level parameters to
test the global implications of behavioral assumptions, but also it is allowed to
manipulate global parameters to test a macro theory about their implications at the
micro scales.

Three methods of evaluating the validity of simulation models, over and above
reliability, have been delineated by Taber and Timpone (1996):

e Outcome validity: demonstrating that outcomes in a simulation correspond to
outcomes in the real world. Outcome validity corresponds to what can also be
called “predictive validity” (Sterman 1984).

e Process validity: demonstrating that the process that leads to outcomes in a
simulation corresponds to processes in the real world by calibrating initial
parameters to empirically known historical data, in the sense proposed by
Epstein (2006). Conversely, if the model omits real-world processes thought to
be important in outcomes, the validity of model predictions is undermined even
when those predictions have outcome validity. In some sense, it can also be
considered a form of “predictive validity”.

e Internal validity: demonstrating that simulation software validly represents the
process being modeled. Put another way, has the model been fully debugged so
that a researcher can be sure that only explicit model assumptions are modeled
without unintended effects due to software artifacts? This is similar to what
others have called “structural validity”.

Turchin (2011) has advocated the use of historical experiments, meaning a
planned comparison between predictions derived from two or more theories and
data. In this way, we may focus on making predictions about the state of a certain
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variable for a certain past society, which is not known at the time when the pre-
dictions are made. For example, Model #1 says that the variable should be
decreasing, while Model #2 says, no, it should be increasing. We then ask historians
to look for ancient narratives, documents or archaeological data sets, and determine
which of the theories is closer to the truth. As more such experiments are con-
ducted, and if one of the theories consistently yields predictions that are in better
agreement with empirical patterns than the other(s), our degree of belief into the
better performing theory is consequently enhanced.

Precise historical case studies offer an opportunity to examine the internal logic
posited by a theory of transitions between different events. A good case study will
trace the causal processes observed in situ and determine whether they are con-
sistent with a specific theory or challenge it. Historical case studies frequently focus
on a specific spatial and temporal scale, varying from small settlements in the past,
to regional land-use changes. They are particularly well suited for testing theories
that predict that some event or process will never occur. Many different methods
can be used to observe the case, including archaeological data, historical docu-
ments, ethnographical observations, remote sensing, surveys, censuses, interviews,
etc. The various ways the system is measured may lead to some challenges when
comparing cases with somewhat different observation procedures (Janssen and
Ostrom 2006; Marwik 2016; Rubio-Campillo 2016; Heppenstall et al. 2016).

Therefore, empirical information, both qualitative and quantitative, can be used
in a variety of ways. It can be used as input data to the computable model or as a
means to falsify and test if not the model itself, its explanatory predictions. When
historical data are used as an input, the focus might be to study a particular scenario,
i.e., the proper historical circumstances from which the data is derived. By carefully
calibrating start-up conditions to what is known from the past, crucial experiments
can be designed to generate particular trajectories whose final states can be con-
sidered as “predictions”, and then individually compared with what we know from
the real past and measure its fitness. The more fitted are those latter states with
equivalently dated historical data, the better the predictive power of the model. The
revolutionary potential of this technique is associated with the fact that alternatively
possible “futures” (or “histories”) can be produced by varying initial conditions or a
specific parameter setting of interest or by subjecting the theoretically specified
model to random perturbations.

1.2 Recreating the Past in the Computer
1.2.1 From Animality to Humanity

Humans are animals. We have evolved from beings that were similar to modern
apes, and those antecessors evolved from previous antecessors with features and
behavior similar to modern squirrels, modern reptiles, modern amphibians, modern
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fishes, and modern bacteria. Animal behavior is a good example of social mech-
anism (without abstract beliefs nor complex motivations, nor desires and only
simple instinctive intentions), and therefore it has been studied in formal terms
since the times of Lotka (1910) and Volterra (1926). Those early works have been
later implemented as computer simulations; see: Bryson et al. (2007), Petersen
(2012), Bak (2013), Dow and Lea (2013), Lei et al. (2013), Boumans et al. (2014),
Ma (2015), Topa et al. (2016) among many others.

There is a lot of “animality” within us, and if we want to know why we do what
we are doing in the present, the only way is to understand our “degree of animality”
and the historical process of differentiation from our “original” animality. This is
not a defense of sociobiological approaches, but just the plain observation that we
act as complex animals, and there is some kind of relationship—probably
non-linear and non-monotonic—from animality to humanity. In any case, the most
important aspect of investigation will not be the animal basis of human behavior,
but the specific process of progressive differentiation in the way we take decisions
—more or less rational—from the original animal instincts. There is no magic in
this historical (prehistorical) process, but a series of explicitly mechanical biological
processes that have historically constrained and determined human behavior:
evolution and natural selection. Human evolution is a complex temporal trajectory
of changes, transformations and modifications, some of which emerged slowly, and
others very quickly. Complex phenomena in the present can be interpreted as the
cumulative products of relatively simple processes acting over time. It is a domain
where computational simulation tools and methods show their idoneity. Among
recent essays in this direction, we can mention: Arenas (2012), Hoban et al. (2012),
Kawecki et al. (2012), Ma et al. (2012), Kutsukake and Innan (2013), Messer
(2013), Mode et al. (2013), Villmoare (2013), Schlétterer et al. (2014), Smaldino
et al. (2013), Acevedo-Rocha et al. (2014), Hunemann (2014), Lehman and Stanley
(2014), Vevgari and Fioley (2014), Roseman et al. (2015), Peart (2015), Shamrani
et al. (2015), Smith et al. (2015), Hatala et al. (2016), Lieberman (2016), Polly et al.
(2016). An interesting related approach is that of considering the analogy of robot
evolution to understand what may be going on human evolution (Wischman et al.
2012; Bongard 2013; Mitri et al. 2013; Eiben 2014; Muscolo et al. 2014).

In any case, natural selection and evolutionary mechanisms have affected ani-
mals and humans not only in morphology but in the development of pre-human
behavior (Premo 2005; Barton and Riel-Salvatore 2012; Pradhan et al. 2012; Witt
and Schwesinger 2013; Kramer and Otérola-Castillo 2015; Tang and Ye 2016). It is
also the question of the origins of “intelligence” and complex decision making
(Gabora and Russon 2011; Gabora and DiPaola 2012; Kurzweil and Ray 2012;
Chandrasekaran 2013; Pringle 2013; Guddemi 2014; Ross and Richerson 2014;
Geary 2015; Cowley 2016) and also culture. This is not the place to define what is
culture, but recent work suggests its computable basis (Belew 1990; Goodhall
2002; Richardson 2003; Bentley et al. 2004; Henrich 2004; Harton and Bullock
2007; Enquist et al. 2011; Gabora and Saberi 2011; Premo 2012, 2015; Premo and
Kuhn 2010; Gabora et al. 2013; Messoudi 2011; Crema et al. 2014a, b; Acerbi et al.
2014; Cowley 2016; Gong and Shuai 2016).
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An interesting example of how computer simulation may be used to test
hypothesis about human evolutionary history is Agusti and Rubio-Campillo (2016).
These authors deal with Neanderthals fast extinction between 40,000 and
30,000 years ago. The authors suggest a much simpler scenario, in which the
cannibalistic behaviour of Neanderthals may have played a major role in their
eventual extinction. They show that this trait was selected as a common behaviour
at moments of environmental or population stress. However, as soon as Nean-
derthals had to compete with another species that consumed the same resources
cannibalism had a negative impact, leading, in the end, to their extinction. To test
this hypothesis, Agusti and Rubio-Campillo have used an agent-based model
computer simulation. The model is simple, with only traits, behaviours and land-
scape features defined and with no attempt to re-create the exact landscape in which
Neanderthals lived or their cultural characteristics. The basic agent is a group of
individuals that form a community. The most important state variable in the model
is the location of the group, coupled with a defined home range and two additional
factors: cannibalism and the chance of fission. The result of the simulation shows
that cannibalistic behaviour is always selected when resources are scarce and
clustered. However, when a non-cannibalistic species is introduced into the same
environment, the cannibalistic species retreats and the new species grows until it
has reached the carrying capacity of the system. The cannibalistic populations that
still survive are displaced from the richest areas, and live on the borders with arid
zones, a situation which is remarkably similar to what we know about the end of the
Neanderthals.

In this book, Ingo Timm et al. (Chap. 2) explore the possibility of simulating
some aspects of hominine prehistoric behavior, notably dispersal and migration.
This subject has also been approached by Mithen and Reed (2002), Beyin (2011),
Eriksson et al. (2012), Wren (2014), Wren et al. (2014), Thompson et al. (2015),
Holzchen et al. (2015), Kealy et al. (2015), Romanowska et al. (2016), Vahia et al.
(2016). Timm et al. suggest a series of reflections for a future simulation, and not a
current implementation. It is very instructive the way they approach the implied
mechanism. Among other things, authors suggest that ecological variations and
demographic pressure likely influenced the dispersal of hominins. The increasing
number of members may have required band (“tribes”?) to split up into smaller
groups in order to keep group sizes manageable. Furthermore, changes in climatic,
geographical or sea-level conditions may have been responsible for hominins to
move towards Eurasia, too. But also changes of physical abilities increasing the
hominin’s stamina as well as the absence or occurrence of diseases outside their
former habitat may have caused migration.

Timm and co-authors have programmed their virtual human antecessors with a
concrete reason to leave their original habitat, and detailed consideration of
potential influencing factors. Although “animals” in the biological sense, these
virtual hominins are seen as utility-based agents, considering changes in their
environment and evaluating the consequences of their actions in advance. Fur-
thermore, the “happiness” regarding new states created by performing an action is
considered as well. Transferred to the challenges hominins faced when crossing
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Africa towards Eurasia, this happiness can be equated with the sufficient availability
of food and other resources of vital importance. However, hominins are not the only
actors which are part of the Out-of-Africa-Hypothesis that deliberate their behavior
in regard to their actions. The behavior of carnivores might for example be modeled
by using a similar approach as well. Choosing appropriate prey as well as selecting,
defending and marking their territory are processes which can be modeled using
intelligent software agents. But not all aspects of the Out-of-Africa-Hypothesis can
and should be modeled as decision-making mechanisms. There are also other
factors affecting the dispersal processes such as outside influences (weather or
climatic changes) or the condition of the landscape (vegetation or geological for-
mation). These factors are modeled by Timm et al. as part of the environment the
agents are located in. All of these factors influence the land’s potential for hominin
dispersal. Yet, the potential is not a constant value but it may change over time.

It can be of interest to compare the dispersal mechanism of pre-humans, to the
motivations and intentionality of movement and dispersal by modern humans of
“prehistoric” times, with motivations different from modern humans of present
times, and even our antecessors from a more recent past with motivations assumed
to be like ours (Young 2002). Janssen and Hill (Chap. 3), Oestmo et al. (Chap. 4),
Fort et al. (Chap. 5) and O’Brien and Bergh (Chap. 6) deal with this issue in
different historical contexts. Jansen and Hill begin their analysis with the
assumption that among early humans it may have existed a relationship between
group size and movement and whether resources are dispersed or clumped in space,
because this relationship exists and it is well attested in animal behavior. The
general prediction is that movement should be less frequent in patchy environments
because foragers should stay within a patch until foraging gain rates drop below
some critical value before moving on. The authors explore different resource dis-
tributions and how they affect optimal group size, movement frequency and average
daily return rate per hunter. They also examine the effect of targeted camp move-
ment (vs. random) on the return rate that can be obtained in more patchy
environment.

Janssen and Hill (Chap. 3) consider the ecological parameters of the environ-
ment and prey characteristics measured in the Mbaracayu Reserve, Paraguay. They
have actually measured the ethnographically known Ache hunter-gatherers moving
in the real world while searching for prey and other resources in any of the seven
vegetation types’ landscapes. Therefore, the probability of encountering a prey or a
resource of a specific type can be estimated, a value that it is unknown for homi-
nins, and it depends on very general assumptions. Virtual hunter and gatherers in
Janssen and Hill model have no explicit beliefs or desires, but a very general
intention to survive by hunting and gathering. They are also implied in more social
activities, like cooperative pursuits that impose on hunters the need to move though
the landscape in a semi coordinated fashion. Instead of assuming that any human
decision should be rational, and social processes are the consequence of plain and
linear mechanisms, Janssen and Hill investigate the most probable way the agents
residing in a camp together determine whether the average weight of meat hunted
over the last few days is above a certain threshold. If so, people decide not to move
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and the camp remains in its location for another day, if not, agents migrate and the
campsite is moved to a new. These two decision criteria define four broad strategies
for a camp: whether it is adaptive or not, and whether new locations are targeted or
not.

Oestmo et al. (Chap. 4) analyze how the actual placement of resources affects
hunter-gatherer movements. The authors compare random walk behavior of virtual
hunter-gatherers from prehistoric times with two other walk behaviors. The first one
is called “seeking walk”. During seeking walk simulations, the forager will move
towards the nearest material source if the level of the materials in the toolkit is
lower than a certain number. This means that at any moment when a foragers’
toolkit is empty it will seek to acquire new material. The second alternative walk
model is termed the “wiggle walk™ where it is assumed that a forager has a direction
and moves forward one cell each time step. At each time step, the forager changes
the direction by taking a left turn with a degree drawn from a uniform distribution
between 0° and 90°. Both the seeking walk, which is a simplified analogy for a
forager that returns to a stone cache, and the random walk behavior show that
increased clustering of the raw material sources leads to increased time without raw
materials in the tool kit. However, time between procurement instances and time
without materials in the tool kit have different implications. If a forager can
stockpile a cache at a central location and can return to such a place then the forager
can go extended periods without procuring because it could return to the cache to
fill up on raw materials. On the other hand, these results suggest that if random walk
takes the forager away from the central location and never or very seldom returns
directly to a stone.

O’Brien and Bergh (Chap. 6) go forward in the investigation of the rationality of
people moving. Instead of considering dispersal in a macro scale, they opt for
investigating local movement in particular well known geographical areas. Strong
rationality is here equated with analytically calculated Least Cost Path, as the values
assigned to these models are derived from legitimate factors which influence
movement, such as distaste for steep slopes, the relative difficulties of traversing
different soil types, and absolute obstacles. However, these authors go well beyond
the logic of “animal” movement, and they consider that social factors should not be
ignored for understanding human movement, and taboos, traditions, exclusivity can
be incorporated into such models. In their case study, the aim of navigating to a
known settlement presupposes a minimum pre-existing cognitive map, which may
be constructed from personal experience, third-party knowledge and topographical
gossip. They also consider the need to include the role of a leader, and some
followers. Nevertheless, they do not consider the mechanisms underlying the
emergence of such differentiation. In this way, the computer simulates how route
ways are established through a series of discrete actions around those natural fea-
tures, acted out by individual agents over time. Modelling allows the investigation
of the overall evolution of a route way as individual agents have access only to local
information, allowing them to approach the optimal path over time through a
process of iterative attempts to traverse a landscape. The environment of North
Offaly in the Irish Midlands is used as the study area, as it is a landscape of natural
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route ways and obstacles for which we have rich archaeological and documentary
evidence supporting interpretation of movement.

Fort et al. (Chap. 5) consider a different way to analyze human motivated
movement. These authors emphasize long run movements of people at a spatial
macro scale as a consequence of population increase. They consider the case study
of Neolithic times, when farmers go away from their birth place when available
land saturates. At a global scale the set of individual migrations can be compared
with a single wave or front, advancing to neighboring areas. In this contribution, the
mechanism is entirely adaptive, and no rationality, except for the intention derived
from recognizing the “need” of suitable land for farming once there are no empty
places in the immediate vicinity due to population increase. At this macro scale, the
rationality of individual decisions can be studied in terms of the central tendency of
the accumulation of individual decisions. In that way, the dispersal behavior of the
population can be probabilistically based on the mean age difference between
parents and their children, and a set of dispersal distances per generation and their
respective probabilities.

Fort et al. contribution vindicates the mechanical nature of some apparently
intrinsically human decisions: migration. At first sight, it would not be an example
of the evolution of human intelligence, but a kind of animal behavior, that is,
instinctive. However, in homogeneous environments it is reasonable to expect that,
on average, intelligent beings will not prefer any specific direction. Obviously, this
is not the single possibility. As the comparison between the different contributions
on human movement in pre-industrial societies show, the intrinsic human definition
lies in the historical variability of such decisions. Other authors have addressed the
same subject from different perspectives (Hazelwood and Steele 2004; Goldstone
and Roberts 2006; Fitzpatrick and Callaghan 2008; Bevan 2011; Callegari et al.
2013; Reynolds et al. 2013; Silva and Steele 2015; Wren 2014; Lanen et al. 2015;
Sanders 2015). It is interesting to compare Fort’s results with Wren’s (2014)
hypothesis combining a model of cognitive dispersal with the wave of advance
mechanism. Wren’s experiments quantify the impact of cognition on dispersal
velocity and wave pattern. The results show that the greater the level of cognitive
complexity, the slower the wave of advance. Increased heterogeneity of the envi-
ronment further decreases wave velocity when cognition is involved in mobility.
Random movement, i.e., non-cognitive mobility, provides the highest velocity
across almost all landscapes. This suggests that previous research may have either
overestimated the importance of cognition in facilitating dispersal events, or has
underestimated the rate of population growth and per generation dispersal distance
of populations. If this is a distinctive feature of pre-human populations or even
Paleolithic hunter-gatherers is something that should be analyzed further, by
exploring the close relationship between cognitive complexity, the spatial hetero-
geneity of the landscape, and dispersal potential and velocity.

In this way we can approach the behavioral, cognitive and social consequences
of evolutionary processes over the human lineages (see more discussion about those
issues in Janssen et al. 2005; Griffith et al. 2010; Kempe et al. 2014; and Ackland
et al. 2014; Kovacevic et al. 2015; Romanowska et al. 2016). Through the
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comparison of the mechanics of dispersal movements in animals, pre-humans, and
humans we can arrive to understand the real impact of “intelligence” on mobility
and survival in terms of an evolutionary trajectory of historically contextualized
motivations and intentions.

1.2.2 Hunting-and-Gathering in the Past Explains How We
Have Survived Until the Present

Previous discussion on simulating movement and dispersal among pre-humans and
humans at different periods of history reveal the strong naturalistic character of
many human decisions, and the constraints imposed by environment. Many modern
historical simulations concentrate on that aspect of human behavior in the past.

Prehistoric hunter-gatherers have been studied many times from the point of
view of animal foraging behavior, stating that human agents also forage in such a
way as to maximize their net energy intake per unit time. In other words, it is
assumed they should find, capture and consume food containing the most calories
while expending the least amount of time possible in doing so. This is the old
Malthusian view on population increasing exponentially while food production
would have increased only linearly, in constant increments (Portugali 1999; Read
and LeBlanc 2003; Lane 2010; Cai 2012; Schlueter et al. 2012; Levin et al. 2013;
Hritonenko and Yatsenko 2013; Ribeiro 2015). Consequently, population growth
would have generated on the long term the depletion of “natural capital”, and
declining biodiversity. Since these trends undermine the probabilities for survival,
when ‘“human load” exceeds local carrying capacity it erodes environmental
potential. These concerns were the first to attract the interest of archaeologists who
found the possibility of the computer modelling of hunter and gatherer survival
(Zubrow 1971; Thomas 1972; Wobst 1974; Joachim 1976). The understanding of
many ecological concepts such as adaptation, energy flow and competition hinges
on the ability to comprehend what food items such human agents selected, and why.
Nevertheless, it is obvious that if humans were in the past just like any other animal
forager or predator, we would say that prehistoric hunter-gatherers survival would
have depended just on the availability of edible resources. Given what we know
about the natural irregularity of natural resources yield, Homo sapiens would have
extinguished many times since their African origins!

The hypothetical explanation of “adaptive” mechanisms in human prehistory
should be much deeper than that. For instance, in the case of gathering, we can
assume that posterior probabilities for gathering success, and hence of survival,
may be completely defined by the probability of plants availability. In case the
environment is full of available resources (“rich world hypothesis™), the probability
of finding enough plants to eat and make instruments is very high, and prior
probabilities for survival are also high; in the case of low availability, prior prob-
abilities for survival would be lower. Hunting seems to be a much more complex
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activity, whose success and hence the posterior probabilities of survival are less
deterministically affected by the availability of animals in the area. If a social agent
cooperates with another agent, the chances of hunting success are higher, even in
the case of low animal availability, and so on. Availability of technology can also
increase posterior probabilities of survival even in the case of low prior priors due
to scarcity. Therefore, a successful explanation of hunting and gathering survival in
prehistory needs additional factors and dependencies to be able to calculate pos-
terior probabilities of survival (Del Castillo and Barcel6 2013; Barcel6 et al. 2015).

The single most obvious constraint of human action in a particular environment
is population size, especially when the means of production seem to be underde-
veloped (hunting-and-gathering). Many modern computer simulations on human
demography are centered on modeling the particular dependence on annual fertility
tables and adopt a fecundity based model. The odds of conception for any one
mating event can be kept constant for a female agent of a given age, and the
probability of reproduction therefore becomes dependent on the frequency and
timing of the female agent’s mating activity. This allows for realistic fertility
variations as a function of mating behavior frequency (and thus contextual
opportunity in the form of access to male sexual resources) and the variations of
individual agent fecundity over time. An important source of artificial structure
(imposed annual fertility rates) is thus removed from the model, allowing the
simulation’s results to emerge more freely, especially in the very long term. Long
term variations in access to reproductive partners can now have their full effect on
fertility rates. This also opens the door to a much closer modeling of environmental
and social factors affecting fecundity on an individual agent level (Stajich and Hahn
2005; Fletcher et al. 2011; Billari and Prskawetz 2012; Brandenburg et al. 2012;
Eriksson and Manica 2012; Rogers and Kohler 2012; Santow 2012; Koenig et al.
2013; Dyke and MacCluer 2014; Dyble et al. 2015; Guillot et al. 2015; Kaur and
Kaur 2015; Pastor et al. 2015; Bentley et al. 2016; Moya et al. 2016; Bauch and
McElreath 2016; Chan et al. 2016; Rodriguez et al. 2016).

How simple and well adapted to the local carrying capacity is population growth
in a hunting gathering economic system? Whereas the demands of non-human
species on their habitats are fixed and limited, human demands, even during the
most remote period of our past, have been hardly simple and are constantly
evolving. Chapman (1980), Samuels (1982), Read (1998), Costopoulos (2002) have
created social reproduction models based on modern ethnography of hunters and
foragers groups, taking into account the social and political aspects of marriage and
complex way of reproductive tasks scheduling influenced by political and ideo-
logical goals.

Smaldino et al. (2013) investigate the evolution of a population under conditions
of different environmental harshness and in which selection can occur at the level of
the group as well as the level of the individual. The authors focus on the evolution
of a socially learned characteristic related to individuals’ willingness to contribute
to raising the offspring of others within their family group. They find that envi-
ronmental harshness increases the frequency of individuals who make such con-
tributions. However, under the conditions the simulation stipulates, the authors also
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find that environmental variability can allow groups to survive with lower fre-
quencies of helpers.

White (2013, 2014, 2016) has built an Agent Based Model representing a
hunter—gatherer system taking into account parameters such as mortality, fertility,
and mean age. The demographic characteristics of a living population are the result
of numerous human-level interactions and behaviors: persons and households make
decisions about marriage and reproduction based on their individual circumstances
within the context of “global” conditions that exert effects and constraints on all
members of the population (e.g., the physiological factors that govern the length of
the female reproductive span, ecological circumstances that affect the contributions
of children to subsistence, cultural rules affecting marriage behaviors, etc.). The
demographic characteristics of these systems (e.g., population age structure, mean
fertility, mean mortality) emerge through a large number of human level interac-
tions and behaviors related to marriage, reproduction, and mortality. The model has
three main “levels”: person, household, and system. Each agent in the model
represents an individual person who is a discrete entity with a unique identity.
Households are co-residential groupings of persons that form through marriage and
change in size and composition primarily through marriage, reproduction, and
mortality. Social links define relationships between pairs of living persons and are
used to enforce marriage prohibitions. The system of the model is composed of all
persons and households in existence at a given point in time. Methods representing
marriage, reproduction, and death operate at the person and household levels in this
model. Individual persons and households make probabilistic decisions about
reproduction, marriage, and infanticide based on the current dependency ratio of the
household (the ratio of the number of consumers to the number of producers in the
household). Although the base probabilities affecting reproduction and mortality are
set by model-level parameters (i.e., they are the same across the population), the
economic circumstances of individual households affect the behavior of individuals
in those households on a case-by-case, step-by-step basis. The households that form
within the model systems are verifiably consistent with those documented among
ethnographic hunter—gatherers in terms of their size, composition, and develop-
mental cycles. Results of the computational implementation of the model suggest
that changes in family-level economics can be coincident with subsistence inten-
sification contributing to the emergence of social complexity among prehistoric
hunter—gatherers by creating the conditions for a “rich get richer” scenario. Low-
ering the age at which children make a significant contribution to subsistence (e.g.,
through the broadening of the diet to include mass-harvested and “low quality”
foods). This practice could have relaxed constraints on family size polygynous
families economically viable. Positive feedbacks between the productive and
reproductive potentials of larger families produce right-tailed distributions of family
size and “wealth” when the productive age of children is low and polygyny is
incentivized, permitting the emergence of hereditary social distinctions.

Crema (2014) assumes that human groups are characterized by a non-linear
relationship between size and per-capita fitness. Increasing group size has beneficial
effects, but once a certain threshold is exceeded, negative frequency dependence
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will start to predominate leading to a decline in the per-capita fitness. Such a
relationship can potentially have long-term implications in the spatial structure of
human settlements if individuals have the possibility to modify their fitness through
group fission-fusion dynamics. He illustrates the equilibrium properties of these
dynamics by means of an abstract agent-based simulation and discusses its impli-
cation for understanding long-term changes in human settlement pattern. Results
suggest that changes in settlement pattern can originate from internal dynamics
alone if the system is highly integrated and interconnected.

The second part of the problem when trying to couple the social and the envi-
ronmental lies in modeling carrying capacity and the capability of prehistoric
humans, even with inefficient technology to alter and modify it. Demographic and
expansion behaviours of groups are largely influenced by the distribution and
availability of resources. This has been an important domain for research on
computer modeling and much effort is still being invested (Keane et al. 2002; Sept
2007; Seth 2007; Wainwright 2008; Garfinkel et al. 2010; Janssen 2010; Dearing
et al. 2012; Van der Bergh et al. 2013; Ch’ng et al. 2013; Marean et al. 2015;
Millington et al. 2013; Burch et al. 2014; Jones and Richter 2014; Balbo et al. 2014;
Barton et al. 2014; Feola 2014; Bentley and O’Brien 2015; Codding and Bird 2015;
Rammer and Seidl 2015; Rodriguez et al. 2015; Wood et al. 2015; Iwamura et al.
2016; Boumans et al. 2015; Polhill et al. 2016; Sarjoughian et al. 2016). The
problem is that human—nature systems have been traditionally studied separately,
either as human systems constrained by or with input from/output to natural sys-
tems (usually including the physical environment and the corresponding ecosys-
tem), or as natural systems subject to human disturbance. This chasm between
natural and social sciences, along with such unidirectional connections between
natural and human systems, has hindered better understanding of complexity (e.g.,
feedback, nonlinearity and thresholds, heterogeneity, time lags). In the process of
truly coupling human activity and natural environment, computer simulation
approaches allow understanding how human decisions and subsequent actions
would change (at least affect) the structure and function of many natural systems.
Such structural and functional changes would in turn exert influence on human
decisions and actions (An 2012; Widlock et al. 2012; Sarjoughian et al. 2015). In
this sense, Dorward (2014) proposes a ‘livelisystems’ framework of multi-scale,
dynamic change across social and biological systems. This describes how material,
informational and relational assets, asset services and asset pathways interact in
systems with embedded and emergent properties undergoing a variety of structural
transformations. Related characteristics of ‘higher’ (notably human) “livelisystems”
and change processes are identified as the greater relative importance of (a) infor-
mational, relational and extrinsic (as opposed to material and intrinsic) assets,
(b) teleological (as opposed to natural) selection, and (c) innovational (as opposed
to mutational) change. This suggestion provides valuable insights into the real
understanding of 99 % of human history, when survival was only possible through
hunting and gathering.

We may wonder about the unbalanced application of simulation, where the
biological side (as in human evolution) has greatly benefitted from simulation while
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the more “sociological” aspect of archaeological simulation remains a challenge
(Lake 2014; Cegielski and Rogers 2016). To understand the coupling between
human and environmental systems in prehistory, researchers should study human
collective behavior as a consequence of the indirect influence individual agents and
organized populations of agents may have had on other hunter gatherers given that
each one responds to an environment altered by the behavior of other agents. The
general purpose of this way of studying prehistory seems to be the simulation of
potential historical situations in which agents periodically may have modified their
output behavior when they were able to learn to predict how the action at a previous
step modifies the input at the next step. Many individuals can end up near each
other simply because they tend to approach the same localized resource such as
food or a water source. In these circumstances too, the agents’ behavior resulting in
social aggregation has not evolved for that function. Each individual approaches
food or water for eating or drinking, not for social purposes. However, even if it is a
simple by-product of learning nonsocial behaviors, social aggregation can be a
favorable pre-condition for the emergence of social behaviors such as communi-
cation and economic exchange among individuals that happen to find themselves
near each other. In other circumstances, however, social aggregation may not be
simply a by-product of behavior emerged for other purposes but is the result of
behavior which has emerged exactly because it produces spatial aggregation (Lake
2000; Costopoulos 2001; Berman et al. 2004; Goldstone and Ashpole 2004;
Goldstone et al. 2005a, b; Parisi and Nolfi 2005; Janssen and Ostrom 2006; Kalff
et al. 2010; Barton et al. 2011; An 2012; Rounsevell et al. 2012; Ch’ng and Gaffney
2013; Boone and Galvin 2014; Messoudi 2014; Clark and Crabtree 2015).

Related to this debate, in the present book, Saqalli and Baum (Chap. 8) consider
that humans have historically formed complex groups and societies that are bound
to their environment in more or less intense interactions, the imprint of which are
found in landscapes. A society and its evolution can be studied as driven by their
calorie and resource demand and constrained by environmental parameters. Thus,
archaeological/paleo-environmental models can either directly analyze the social
interactions between agents, or use the landscape as a reference plane. In any case,
it is the mutual interdependence of humans and their environment that is in the
focus: environment and natural resources are quickly and directly affected by
human activities and at the same time, humans are directly and rapidly affected by
the availability of natural resources.

However, it is important to take into account that not any measured differences
in survival between individuals through time reflect necessary differences in fitness
Brookfield (2001). Fitness represents an expected outcome, and what actually
happens in small populations differs from expectation because each generation
represents a sample, with an attendant sampling error, of the individuals produced
by the previous generation. The fitness of a population is related only probabilis-
tically to real events; sudden advantageous changes and transformations are usually
lost by chance.

Janssen and Hill (Chap. 3), and Oestmo et al. (Chap. 4) have modelled the
particular way in which human prehistoric behavior can be considered as “adapted”


http://dx.doi.org/10.1007/978-3-319-31481-5_8
http://dx.doi.org/10.1007/978-3-319-31481-5_3
http://dx.doi.org/10.1007/978-3-319-31481-5_4

1 Simulating the Past for Understanding the Present. A Critical Review 19

to environmental conditions (see also Read 2008; Kline and Boyd 2010; Collard
et al. 2011; Kuhn 2012; Wood et al. 2015; Caiado et al. 2016; Martin and Fahrig
2016). In the first case, Janssen and Hill examine how optimal group sizes and
movement frequency are affected by more dispersed or more clumped resource
distributions, when the absolute number of resources in the environment is held
constant. They also examine the effect of targeted camp movement (vs. random) on
the return rate that can be obtained in more patchy environment. The model uses
real measured parameters from a modern foraging society to create an agent-based
model, which subsequently allows simulating a more or less patchy environment in
order to determine how those changes affect optimal group size and mobility. They
conclude that human foragers, by knowing the landscape and the spatial location of
better habitats, and moving to facilitate hunting in those areas, can gain a substantial
advantage from that knowledge. In the other contribution, Oestmo et al., investigate
whether changes in stone tool raw material frequencies in an archaeological
assemblage could be considered a reliable proxy for human forager adaptive
variability. Two different patterns are obtained in their simulated model. First, when
a forager engages in random or wiggle walk, a more clustered environment leads to
lower average raw material richness in the toolkit. As clustering increases, the
forager will on average move longer periods without encountering a source. Due to
this and the fact that the forager use a material at every step, the forager will then
when encountering a source fill up the tool kit to the maximum capacity resulting in
one raw material dominating the make-up of the tool kit in terms of frequency. In
the other pattern, the forager engages in a seeking walk and seeks the closest raw
material sources when the tool kit is empty. In this case, the increased clustering of
raw material sources leads to increased raw material richness. The richness
increases because when the forager seeks the nearest raw material source, and this
nearest raw material source is clustered with other sources, it increases the chance
of encountering other sources in close proximity that in turn could lead to increased
richness.

1.2.3 Rationality Within the Computer. The Myth
of the Stupid Prehistoric Savages

Socio-ecological models make emphasis on physiological motivation, such as
hunger, thirst, fatigue and comfort. In this case agents generate their goals around
some physiological trigger, e.g., getting hungry. If needed, other types of motiva-
tion can be employed, such as safety. This is the case in some of the simulations
presented in this book (notably Virtual Hominines in Chap. 2, and Virtual Hunter
Gatherers in Chaps. 3 and 4) whose intelligence is expressed in the way they look
for the satisfaction of their full stomachs. However, if physiological motivation is
the only source of directness in the computer simulation of human behavior we may
end with undesired, uniform behavior. Trescak et al. (Chap. 14) propose to
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configure motivational modifiers, which affect the decay rate of a given motivation.
For example, a hunger modifier affects the pace in which an agent gets hungry. If
such modifiers are different for every agent—then every individual follows its own
circadian rhythm, executing goals at various time intervals, increasing believability
of the simulated population.

In a sense, even computational agents implemented as biped stomachs can be
considered “rational agents” because they make optimal decisions: they “want” to
survive, and then they need to look for accessible resources. They have been
programmed with the instinctive knowledge that they should hunt animals and
gather for vegetables to acquire food, and therefore they hunt, gather and move
looking for preys and resources. Janssen and Hill (Chap. 3, see also Janssen and
Hill 2014) assume human hunting behavior is consistent with Optimal Foraging
Theory, which is a model of animal behavior. In this way, hunter-gatherer foraging
strategies—optimal group size, movement frequency and average daily return rate
per hunter—are examined as the consequence of environmental factors—differ-
ences in resource distributions—and not because of social or political dispositions.
Rationality here is approached in the sense of biological survival and not in terms of
social reproduction. According to that, there is no difference in the programmed
mind of hominid antecessors and Homo sapiens sapiens!

Human (and even animal) rationality is much more complex than expected and
therefore, it is easy to conclude that deterministic relationships between environ-
mental stress and social change are inadequate (Mithen 1991; Costanza et al. 2007;
Gardner 2012; Polechova and Barton 2015; Bryson 2015). The challenge of a
computer simulation of human behavior is them to assess the impact of culture and
knowledge on decision making behavior (An 2012).

We need to implement a form of intelligence beyond literal rationality if we want
our historical models be credible. Socially intelligent agents (SIAs) should be
defined as agents that do not only from an observer point of view behave socially
but that are able to recognize and identify other agents and establish and maintain
relationships to other agents (Dautenhahn 1998). The process of building SIAs will
always been influenced by what the human as the designer considers “social,” and
conversely, agent tools that are behaving socially can influence human conceptions
of sociality. A cognitive technology (CT) approach toward designing SIAs would
afford an opportunity to study the process of (1) how social agents can constrain
their cognitive and social potential, and (2) how social agent technology and human
(social) cognition can co-evolve and co-adapt and result in new forms of sociality.
Aspects of human social psychology, e.g., storytelling, empathy, embodiment, and
historical and ecological grounding, can contribute to a believable and cognitively
well-balanced design of SIA technology in order to further the relationship between
humans and agent tools.

One of the very first computer simulations of prehistoric hunter gatherers was
that of Robert Reynolds (1986). He explicitly approached the problem of rationality
in hunter-gatherer decision-making in terms of:
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e the ability of each member to collect and process information about the resource
distribution,
the extent to which information is shared among members,
the specific sets of decision available to each member, and
the way in which the individual decisions are integrated to produce a group
decision.

On that basis, Reynolds defined a general approach to programing that can also
be considered as a general program for rationality in social evolution studies. He
calls Cultural algorithm (CA) a specific kind of evolutionary computation frame-
work where there is a knowledge component that is called the belief space in
addition to the population component. The belief space of a cultural algorithm is
divided into distinct categories representing different domains of knowledge that the
population has of the search space. The belief space is updated after each iteration
by the best individuals of the population. The best individuals can be selected using
a fitness function that assesses the performance of each individual in population
much like in genetic algorithms.

Reynolds lists different belief space categories:

e Normative knowledge: A collection of desirable value ranges for the individuals
in the population component—e.g., acceptable behavior for the agents in
population.

e Situational knowledge: Specific examples of important events—e.g.,
successful/unsuccessful solutions

e Temporal knowledge History of the search space—e.g., the temporal patterns of
the search process

e Spatial knowledge Information about the topography of the search space

The “best-fitted” individuals of the population can update the belief space via an
update function. Also, the knowledge categories of the belief space can affect the
population component via an influence function. The influence function can affect
population by altering the genome or the actions of the individuals.

The algorithm has been applied to find the optimum in a dynamic environment
composed of mobile resources. The aim of this approach is to combine different
knowledge sources to direct the decisions of the individual agents in solving
optimization problems. Reynolds and collaborators developed an approach based
on an analogy to the marginal value theorem in foraging theory to guide the
integration of these different knowledge sources to direct the agent population
(Reynolds et al. 20064, b, c, 2008; Reynolds and Peng 2005; Stanley et al. 2014).

Cultural Algorithms were developed by Reynolds as a computational framework
in which to embed social learning in an evolutionary context. Unlike traditional
learning approaches, Cultural Algorithms derive their power from large collections
of interacting agents. Within virtual worlds it is often the case that we wish to
coordinate the behavior of large groups of intelligent agents in an efficient fashion.
Cultural Algorithms are able to perform large-scale group learning within these
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virtual worlds. They have been used to generate socially intelligent controllers and
group social behavior in various simulated environments, both serious and fun.

Given that the study of differences between animal and human behavior
emphasizes human motivation and purposefulness and it affirms that human
behavior is shaped first and foremost by an intention held by the subject, any
historical explanation based only on the idea of “adaptation” seems to be limited
(Stutz 2012). The same criticism is applicable to traditional ‘“rational-choice”
explanation where each agent individually assesses its situation and makes deci-
sions based on a fixed set of condition-action rules (Gulyas 2002). That makes
many agent-based models nothing more than a discrete planning for expressing
descriptions of intended courses of action. It seems as if some designer (be a
computer scientist or a god) needs to know the society before modeling it (Grand
2012).

Humans act supposedly on the grounds of beliefs about world-states that they
contribute to modify, and which will be modified by their actions. Consequently,
the “cause” of any social action that may have occurred in the past lies in the agent
motivations for performing it. Social actions have been defined in terms of pur-
poseful changing of natural and social reality (Leont’ev 1974; Engestrom 1987;
Wobcke 1998; Davydov 1999; Edwards 2000; Bedny and Karwowski 2004;
Feldman and Orlikowski 2011; Thornton et al. 2012). Social actions are
goal-directed processes that must be undertaken to fulfill some need or motivation.
Therefore, they cannot be understood without a frame of reference created by the
corresponding social motivation or intention. Leont’ev, one of the chief architects
of activity theory, described social activity as being composed of subjects, needs,
motivations, goals, actions and operations (or behavior), together with mediating
artifacts (signs, tools, rules, community, and division of labor) (Leont’ev 1974).
A subject is a person or group engaged in an activity. An intention or motivation is
held by the subject and explains activity, giving it a specific direction. Activities are
realized as individual and cooperative actions, and chains and networks of such
actions that are related to each other by the same overall goal and motivation, which
should not be considered as a mere condition for developing activity, but as a real
factor influencing the actual performance of the action itself. A goal-directed action
is under an agent’s control if (1) the goal normally comes about as the result of the
agent’s attempt to perform the action, (2) the goal does not normally come about
except as the result of the agent’s action, and (3) the agent could have not per-
formed the action (Wobcke 1998). For their part, actions consists of chains of
operations, which are well-defined behaviors used as answers to conditions faced
during the performing of an action. Activities are oriented to motivations, that is,
the reasons that are impelling by themselves. Each motivation is an object, material
or ideal, that satisfies a need. Actions are the processes functionally subordinated to
activities; they are directed at specific conscious goals. Actions are realized through
operations that are the result of knowledge or skill, and depend on the conditions
under which the action is being carried out.

Goals, beliefs and intentions are in fact arbitrary interpretations of particular
events (Bratman 1987). A particular course of action may be motivated in many



1 Simulating the Past for Understanding the Present. A Critical Review 23

cases in beliefs, represent the informational state of the agent. Using the term belief
rather than knowledge recognizes that what an agent believes may not necessarily
be true (and in fact may change in the future). These beliefs rest upon theories and
these theories rest in turn on assumptions. Beliefs, the theories on which beliefs rest
and the assumptions upon which theories rest must be valid if the means is to be
considered right. Valid here means true if the belief bears on a representation of the
world; and fair, good, legitimate in the case of should-be beliefs. Determining
which means is right is not a trivial operation. Any belief is associated with reasons,
but these reasons are often invalid for lack of access to relevant information, or
because influenced by cognitive incompetence or of cognitive strategies, or due to
the interference of conflicting goals (Boudon 2003). Correct beliefs result in sen-
sible behavior; incorrect beliefs can cause unpredictable consequence actions.
When we analyze our own behavior we are creating beliefs about our own goals.
Desires represent the motivational state of the agent. They represent objectives or
situations that the agent would like to accomplish or bring about. A goal can be
described as a desire that has been adopted for active pursuit by the agent. Inten-
tions represent the deliberative state of the agent—what the agent has chosen to do.
Intentions are desires to which the agent has to some extent committed.

Nevertheless, the frontier between intentional activity and operational behavior
is blurred, and movements are possible in all directions. Intentions can be trans-
formed in the course of an activity; they are not immutable structures. An activity
can lose its motivation and become an action, and an action can become an
operation when the goal changes. The motivation of some activity may become the
goal of an activity, as a result of which the latter is transformed into some integral
activity. Therefore, it is impossible to make a general classification of what an
activity is, what an action is and so forth, because the definition depends on what
the subject or object in a particular real situation is. The constitutive elements of a
belief cannot be precisely separated in the same way that two actors can be isolated
from one another. Even when we separate one actor from another, the fact that his
or her beliefs depend to a great extent on previously acquired knowledge means that
he/she cannot be completely separated from the environment in which such
knowledge has been acquired.

An additional trouble is that social motivations have their own dynamics, often
contradictory. In other words, social activities are not isolated entities; they are
influenced by other activities and other changes in the environment. People interact,
influence others, reinforce some actions, interfere with others, and even sometimes
prevent the action of other people (Creary 1981). The term contradiction is used to
indicate a misfit within the components of social action, that is, among subjects,
needs, motivations, goals, actions and operations, and even mediating artifacts
(division of labor, rules, institutions, etc.), and produces internal tensions in
apparently irregular qualitative changes, due to the changing predominance of ones
over others. Activities are virtually always in the process of working through
contradictions, which manifest themselves as problems, ruptures, breakdowns,
clashes, etc. They are accentuated by continuous transitions and transformations
between subjects, needs, motivations, goals, behavior, signs, tools, rules,



