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Preface

As we were writing this preface, the COP21 international conference on climate

change was being held in Paris, highlighting the importance of all initiatives to

protect the future of the planet. Forests, and more generally trees, play a key role in

carbon sequestration and greenhouse gas mitigation. Many trees live in strict

symbiosis with ectomycorrhizal fungi that are important for ecosystems’ function-
ing. Some ectomycorrhizal species, such as boletes and truffles, are also famous

because they form edible fructifications, and truffles belonging to the Tuber genus,
the so-called “true truffles,” are gourmet delicacies worldwide. The genus Tuber
includes around 180 species, most of which are naturally distributed in the northern

hemisphere. Some Tuber species, such as Tuber magnatum (the Italian white

truffle), T. melanosporum (the Perigord black truffle), T. aestivum (the Burgundy

truffle), and T. borchii (the bianchetto truffle), are the most economically important

fungi, but other Tuber species are edible and locally appreciated as well. Besides

their economic and culinary importance, many truffle species play a key role in

forest ecosystems, including disturbed forests, where they are often common

ectomycorrhizal symbionts. Moreover, the cultivation of some truffle species

such as T. melanosporum and T. aestivum has spread worldwide in the last two

decades and has diversified crops and incomes for local farmers. In this context,

many books have been written on truffles, but most of them in French and Italian, or

they are focused on a few species or specific aspects.

In this book, we decided to cover much of the taxonomic diversity of the genus

Tuber, in addition to economically important species, and include information

generated from more recent technological innovations (e.g., second-generation

DNA sequencing). The book is divided into five parts and comprises chapters

written by experienced and internationally recognized scientists. The aim is to

provide an inventory of the knowledge on truffle systematics, interactions with

abiotic and biotic environments, strategies for spore dispersal, and biochemistry.

Such multidisciplinary approach provides a unique insight and a better understand-

ing of the truffle ecology and the role these fungi play in natural and managed

ecosystems.
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Chapter 1

General Systematic Position of the Truffles:

Evolutionary Theories

Gregory M. Bonito and Matthew E. Smith

1.1 Introduction

When the “truffle” concept is evoked, what comes to mind may vary greatly

between people and cultural groups. As you read this book, your own concept of

what a truffle is may change, as ours has while discovering and learning about these

exquisite fungi!

In the very broadest sense, truffles are fungi that sequester their spores within

differentiated fruiting structures that are produced below the soil or leaf litter. These

fungi have also been referred to in the past as sequestrate fungi or hypogeous fungi,

depending on the author and the usage. Hypogeous fungi that belong to the phylum

Basidiomycota are sometimes referred to as “false truffles,” a name historically

used to distinguish these truffles from those in the Ascomycota. We regard truffles

as fungi that produce these sequestrate, hypogeous fruiting bodies regardless of

their taxonomic or phylogenetic relationships. However, for the purpose of this

book, we will use the term truffle in reference to the “true truffles” that belong to the

genus Tuber (e.g., Tuber melanosporum Vittad., Tuber magnatum Pico, and related

species). Truffles typically fruit on the forest floor just below the leaf litter or

sometimes within the mineral horizon. As you will read within this book, we know

a lot about the biology and ecology of these organisms, and yet there are still many

questions about truffles that remain unanswered.

Truffles often fruit within the rooting zone of forest plants and exhibit a range of

variable macroscopic characteristics such as color, shape, size, texture, and aroma.
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Microscopic, genomic, and developmental characters also vary widely between

truffle species and truffle lineages. Details regarding the natural ecology of the

majority of truffle species are still missing. Available evidence suggests that truffles

co-diversified with plants and animals and the evolution and distribution of these

fungal, plant, and animal symbionts forms a web that overlaps in time and space.

Truffle speciation and function in ecosystems are tightly linked to their

ectomycorrhizal (ECM) ecology and putative co-diversification with major plant

families including Pineaceae (pines), Fagaceae (oak/beech), Myrtaceae (eucalyp-

tus), and Salicaceae (willows/poplar) and also to adaptations for animal dispersal in

the Northern and Southern Hemispheres. Because most truffles form ECMs and

therefore actively exchange limiting nutrients with plants (truffles usually provide

nitrogen and/or phosphorous whereas plants supply carbohydrates), truffle fungi

play major roles in the functioning of forest soils and ecosystems as well as the

maintenance of Earth’s climate and food webs. On the other hand, human-induced

climate change appears to be having effects on the distribution and fruiting of

truffles and other fungi in Europe and across the globe (Kauserud et al. 2010).

Fungi that form truffle fruiting bodies have evolved independently in at least

13 orders that represent phylogenetically distant fungal lineages (Fig. 1.1) (Smith

and Bonito 2013). While there may be some commonalities among these fungi, they

are quite diverse in their morphology and ecology, and few generalities can be

made about “truffles” at such a coarse level. We do find it interesting that most

truffle fungi appear in lineages considered to be plant root-associated mutualists,

such as ECM fungi that form a mantel covering the external surface of the root tip

and a Hartig net forming laterally between the cortical cells of the root. These

structures can be visualized under a microscope or sometimes even with the aid of a

hand lens. Some truffle fungi form less evident orchid and ectendomycorrhizal

structures, which are only apparent upon staining and visualization under a light

microscope.

1.1.1 Loss of Active Spore Discharge in Truffle Fungi

Strong selection for active spore dispersal in fungi has led the evolution of bio-

physical innovations in forcible spore discharge across the Kingdom. Particularly

noteworthy, spores discharged from ascomycetes such as Podospora curvicolla
(Winter) Niessl can shoot nearly half a meter, and those of Gibberella zeae
(Schwein.) Petch can reach initial accelerations of 8.5� 106 m s�1 during spore

discharge (Yafetto et al. 2008). Such intense force results from a buildup and

release of turgor pressure stored in and released from fungal cells, which are critical

to dispersal and in maintaining gene flow between populations. However, in truffle

fungi that sequester their spores and fruit belowground the ability to actively

discharge spores has been lost. This would seem to be detrimental to truffles, yet

these fungi are extremely diverse and some species are dominant ECM partners in

some ecosystems (Bonito et al. 2011; Smith et al. 2007). Although “self-powered”

4 G.M. Bonito and M.E. Smith



active spore discharge has been lost in truffles, novel “passive” mechanisms for

spore dispersal have arisen in many truffle lineages. In this scenario the fungi have

evolved mechanisms to attract animals through the production of olfactory or visual

attractants (Beever and Lebel 2014), coaxing them into the consumption, release,

and dispersal of truffle spores. There are a great many instances of coevolution of

truffles with mammals in the Northern Hemisphere and with marsupials in the

Southern Hemisphere (Claridge et al. 2014). There is also evidence that some birds

act as truffle dispersers, such as Paurocotylis in New Zealand (Beever and Lebel

2014) and that some insect species could also serve to spread truffle spores (Fogel

and Peck 1975).

1.1.2 Enigmatic Truffles and Remaining Mysteries

With their strong aromas, culinary and economic interest, high diversity, and

importance to plant and animal nutrition, Tuber is a truffle genus that has attracted

Fig. 1.1 Phylogram

showing the distribution of

truffle-forming fungi

throughout the fungal tree

of life. Major fungal orders

(and families in the

Pezizales) that include

truffle taxa are color-coded

blue. Tuberaceae, the
taxonomic family which are

the focus of this book, are

shown in red
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much interest. However, a number of mysteries still remain concerning its evolu-

tion, ecology, and fundamental biology. Mature fruiting bodies of Tuber are

unusual in their distinctive spore morphology, large spore size (relative to many

other truffle fungi), and variable number of spores per ascus. The variable number

of spores per ascus is particularly notable since this feature is atypical among

Pezizales and varies between Tuber species and because the mechanisms for

packaging post-meiotic nuclei and nuclear contents into spores are not well

understood.

Recently, the sexual nature of T. melanosporum and T. magnatum was demon-

strated using multiple molecular markers and population genetic approaches

(Riccioni et al. 2008; Paolocci et al. 2006). Genome sequencing and subsequent

studies support the existence of a bipolar sexual mating system in Tuber (Martin

et al. 2010). In this mating system, there are two idiomorphs, mating loci charac-

terized by large regions of nonhomologous DNA. However, at least some species of

Tuber also produce mitotically produced (asexual) spores that are hypothesized to

function in reproduction or root colonization (Urban et al. 2004; Healy et al. 2013).

At least one (currently undescribed) species of Tuber belonging to the Puberulum

clade is only known from ECMs and masses of these asexual spores (Healy

et al. 2013). Although it is possible that these asexually derived spores function

as conidia to colonize roots and establish new colonies, these spores are small and

abundant and have very thin cell walls, suggesting that instead they may function as

spermatia for sexual outcrossing. Improved understanding of the cues and regula-

tion of sexual reproduction and asexual spore production in Tuber, aided by

population genomic tools, could enable the development of controlled fertilization

processes and selective breeding programs for truffles that have so far not been

possible.

Truffles evolved from epigeous (mushroom) ancestors, but the specific environ-

ments and selective forces leading to truffle evolution in the genus Tuber are not

clear. The belowground fruiting habit is believed to be adaptive for root-associated

fungi, since the spores are produced in closer proximity to roots, but fruiting

belowground helps to buffer against environmental fluctuations while the fruiting

bodies develops. Further, because the majority of a truffle fruiting body is com-

posed of spore mass, truffle fungi presumably shunt a greater proportion of energy

into sexual spore production than do mushroom-producing fungi, which must

partition reproduction resources toward the development of sterile cap and stem

tissues. Several authors have suggested that sequestrate taxa evolve continually due

to chance events, but that sequestrate lineages are selected for when both abiotic

environmental conditions (e.g., drought, frequent fires) and biotic interactions (e.g.,

presence of dispersal agents) are favorable (Albee-Scott 2007; Thiers 1984).

Ancestral biogeographic reconstructions show that Tuber most likely had an

origin in Eurasia (Bonito et al. 2013; Jeandroz et al. 2008). The most complete

phylogenetic treatment of this group indicates that Tuber evolved from a lineage of

epigeous, cup fungi and then diversified in the Northern Hemisphere throughout the

Jurassic and Cretaceous periods (Bonito et al. 2013). What triggered the radiation

and high level of Tuber diversity is still not completely clear.

6 G.M. Bonito and M.E. Smith



In the past, most differences between truffles were considered to be species-

specific and strongly influenced by the maturity of the truffle. While maturity is

definitely an important factor, there is wide inter- and intraspecific variation in

truffle fruiting body shape, size, and aroma and also in the community of bacteria

that constitute the truffle microbiome. Evidence from recent studies suggests that

the endobiotic bacterial community may be a highly influential and previously

underappreciated factor that influences truffle odors and therefore interactions with

other organisms (Splivallo et al. 2015; Splivallo and Ebeler 2015). An understand-

ing of how the genomes of endobacteria interact with their fungal hosts and respond

to their local environment is one of the grand challenges of truffle ecology, newly

invigorated by advances in high-throughput sequencing technologies. Such knowl-

edge will certainly lead to improved strategies for resource management, agricul-

tural production, truffle breeding, and strain development for Tuber species.

1.2 Truffle Phylogeny: The Tuberaceae

The family Tuberaceae currently consists of six genera: Tuber, Choiromyces,
Reddellomyces, Labyrinthomyces, Dingleya, and Southern Hemisphere cup fungi

Nothojafnea. The two Northern Hemisphere genera, Choiromyces and Tuber,
produce sizable and aromatic fruiting bodies that are highly valued in some

European countries. It is interesting that species of Tuber are incredibly diverse

across the Northern Hemisphere, and yet, in contrast, the genus Choiromyces
includes just a few relatively rare but geographically widespread species.

Cup fungi belonging to the genus Nothojafnea have been described from South

America and Australia, but DNA sequences are only available for the South

American species, Nothojafnea thaxteri (E. K. Cash) Gamundı́. N. thaxteri fruits
directly on soil with species of Nothofagus and is presumed to form ECMs.

Molecular analyses indicate that N. thaxteri is phylogenetically nested among

Australasian truffles in the genera of Reddellomyces, Labyrinthomyces, and

Dingleya. Species in these genera are presumed to be ECM on Australasian

Myrtaceae such as Eucalyptus, Corymbia, Melaleuca, and Leptospermum as well

as with species of Acacia, Nothofagus, or perhaps other woody plants. These truffle
genera are broadly distributed and species rich in Australia, but none of the species

are known to have any economic or gastronomic value to humans. Bonito

et al. (2010a) found that at least 10 Tuber species are also present in Australia

and New Zealand, but molecular evidence indicates that these taxa were introduced

by humans. Bonito et al. (2010a) also provided molecular data to show that Tuber
clarei Gilkey is an invalid name erroneously applied to the cosmopolitan and

“pioneer” European truffle, Tuber rapaeodorum Tul. and Tul. More recently,

another Tuber collection collected in Australia and deposited in the Melbourne

herbarium (MEL2063143) as Tuber hiromichii (Imai) Trappe was shown to be

Tuber rapaeodorum (Bonito unpublished data, GenBank accession KP311464).
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1.2.1 Diversity, Ecology, and Distribution of the Genus
Tuber

Recently, Bonito et al. (2013) reassessed the diversity, ecology, and historical

biogeography of the genus Tuber using four genetic loci for inferences (RPP2,

TEF1, and ITS and 28S rDNA). They distinguished 11 major clades within the

genus Tuber. Recent estimates on the number of Tuber species are between 180 and
220 species, some of which are known only from “environmental” DNA sequences

derived from rhizosphere soil. Characteristics of each of the major Tuber clades and
exemplars of each are noted below.

1.2.1.1 Aestivum Clade

The Aestivum clade consists of some of the most morphologically diverse Tuber
species. Tuber aestivum Vittad., the type species of the genus Tuber, is one of the
most widespread and cultivated truffle species and is characterized by a dark warty

peridium and aveolate-reticulated ascospores. Tuber sinoaestivum Zhang and Liu is

an Asian species that is morphologically similar to T. aestivum, but T. sinoaestivum
has ascospores that are more globose and have a shallower reticulum ornamentation

(Zhang et al. 2012). In contrast, Tuber panniferum Tul. and Tul. is morphologically

distinct and characterized by a woolly peridium and very spiny ascospores. Tuber
mesentericum Vittad. is a species complex composed of at least two species of

European truffles (see Chap. 5). Interestingly, the famous and pungent white truffle

species T. magnatum, with its pale-colored and smooth peridium, also appears to

belong within the Aestivum clade despite the fact that it is morphologically quite

distinct. Species in this clade form mycorrhizal associations with diverse hosts

include angiosperms (e.g., Fagaceae, Betulaceae), gymnosperms (i.e., Pinaceae),

and even orchids. The evolutionary history of this clade may be deep and complex.

1.2.1.2 Excavatum Clade

Tuber species belonging in the Excavatum clade are distinguished by having a

cavity within the base of their fruiting bodies. Species in this group tend to have a

thick and hard peridium and generally have 3–5 coarsely reticulated ascospores per

ascus. They are symbionts of angiosperms and are distributed in both Europe and

Asia, but this group has never been documented in North America. Often found in

association with hardwood tree hosts, several species in this group have also been

found as symbionts of orchids (Illyés et al. 2010). The described species that belong

to this clade include Tuber excavatumVittad., Tuber fulgensQuél from Europe, and

Tuber sinoexcavatum Fan and Lee from Asia. This group has not been studied as

extensively as some Tuber clades, yet a number of unique phylogenetic species

were detected by Bonito et al. (2010a) indicating the presence of morphologically
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cryptic species. Truffles in the Excavatum clade can have favorable aromas, but are

not typically consumed by humans, likely because of their thick and hard peridium.

1.2.1.3 Gennadii Clade

An early diverging clade within Tuber species in the Gennadii group are only thus

far known from Europe. Recently, Alvarado et al. (2012) identified two species in

this clade [Tuber gennadii (Chatin) Pat. and Tuber lacunosumMattir.]. The truffles

in this group have only been found in association with the genus Tuberaria
(Cistaceae) suggesting that these species may have very specific host requirements.

Due to the fact that they are relatively rare and restricted in distribution, truffles in

the Gennadii clade are generally not consumed by humans.

1.2.1.4 Gibbosum Clade

Endemic to Pseudotsuga forests of the Pacific Northwest of the USA, truffles in the
Gibbosum clade have a light-colored peridium characterized by microscopic

beaded hyphae emanating from the surface (Bonito et al. 2010b). The four known

species in this group appear to associate exclusively with Pinaceae hosts, particu-

larly Pseudotsuga but also occasionally with Pinus. Because of their economic

value, Tuber gibbosumHarkn. and Tuber oregonense Trappe, Bonito, and Rawl. are
two of the most important species in the Gibbosum clade. These truffles have not

yet been cultivated but in the Pacific Northwest of the USA they are wild harvested

during winter and spring (Lefevre 2013).

1.2.1.5 Japonicum Clade

Kinoshita et al. (2011) recently discovered a new clade of Tuber in Japan. Although
species in this group have not yet been officially described, Kinoshita et al. (2011)

noted that these species have some unique morphological traits, including pale

yellow globose ascospores and fewer spores per ascus than most other Tuber
species (often only 1 spore per ascus). Internal vein patterning within the gleba of

mature truffles in the Japonicum clade tends to be more faint and less conspicuous

than in other Tuber clades giving them the appearance of unripe truffles. This group

is well supported as a monophyletic lineage, but there is still uncertainty regarding

the closest relatives of this group (Bonito et al. 2013). We found no information on

truffles in the Japonicum clade being consumed by humans.
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1.2.1.6 Macrosporum Clade

Truffles in the Macrosporum clade are characterized by the presence of small warts

on the outside surface of the peridium and one-, two-, or three-spored asci with

relatively large (often >60 μm in length) alveolate-reticulate spores. This group

occurs in Asia, Europe, and North America. Tuber glabrum Fan and Feng and

Tuber sinomonosporum Cao and Fan are two new species in the Macrosporum

clade that were recently described from China (Fan et al. 2014). Species in this

clade tend to be associated with either angiosperm or Pinaceae species. The

geographical origin and ancestral host of this clade were not well resolved by

Bonito et al. (2013). Paradoxically, truffles in the genus Paradoxa actually belong

in the Macrosporum clade of Tuber. These truffles contain single large ascospores

within their asci and had previously been difficult to place phylogenetically without

DNA sequence data. Two species in the Macrosporum clade have commercial

value. Tuber macrosporum Vittad. is found across Italy and eastern Europe and

has recently been cultivated in Austria and Hungary (Benucci et al. 2012, 2014).

Tuber canaliculatum Gilkey is one of the larger and more pungent of the North

American Tuber species, and this species has a wide distribution in the Eastern

USA from the mid-Atlantic states (e.g., North Carolina, Maryland, Virginia) to the

upper Midwest (e.g., Michigan) and into Canada. Mycorrhizal synthesis and culti-

vation trials with T. canaliculatum are underway (Benucci et al. 2013).

1.2.1.7 Maculatum Clade

The Maculatum clade produces truffles that have a light-colored peridium with a

smooth to cracked texture. The elliptical ascospores of species in this clade tend to

have alveolate-reticulate ornamentation. Many species in the Maculatum lineage

that have been described from North America and Asia over the past few years and

several additional species remain undescribed (Guevara et al. 2013; Su et al. 2013).

Truffles in the Maculatum clade are generally not as aromatic as other Tuber
species. Aside from New Zealand, where Tuber maculatum Vittad. has been

marketed, species in this clade are not typically consumed by humans but instead

are considered undesirable “contaminants” (Amicucci et al. 2000).

1.2.1.8 Melanosporum Clade

Most species belonging to the Melanosporum clade are characterized by a warty

outer peridium and spiny ascospore ornamentation, although a few species have

spiny-reticulated spores and at least one species (Tuber pseudoexcavatum Wang,

Moreno, Riousset, Manj�on, and Riousset) has spores with alveolate reticulation.

Many of the truffle species in this group have pigmented ascospores, giving their

gleba a dark color when the spores become mature. There is one currently
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undescribed species in the Melanosporum clade that has a light-colored outer

peridium and gleba (Gregory Bonito, personal observation), putatively ancestral

traits that have been fixed in this species. The black truffle T. melanosporum is

perhaps the most cultivated truffle species internationally, and this species is

economically important on several continents. Asian black truffles in the Tuber
indicum Cooke and Massee complex are also harvested from forests on a massive

scale for human consumption, and cultivation trials with this species are underway

in China (Wang 2013).

1.2.1.9 Multimaculatum Clade

Tuber multimaculatum Parladé, Trappe, and Alvarez is known only from a few

collections in Spain (Alvarez et al. 1992) and is the only species belonging to the

Multimaculatum clade. Possibly due to its long branch on the phylogeny, its exact

placement within the genus Tuber is still not resolved. Tuber multimaculatum is

characterized by large ellipsoid ascospores with finely meshed alveolate reticula-

tions. Ascospores are produced in one-spored or two-spored asci that have notable

apical thickenings in the ascus walls. Because of the rarity of this species, its

biology and ecology are not well known.

1.2.1.10 Puberulum Clade

Current data indicate the Puberulum clade has the widest geographic distribution

and the most species of any Tuber clade. Species in this group are distributed across
Europe, Asia, North America, and northern Africa in association with Pinaceae,

angiosperms, or both. One species in the Puberulum clade has also been found on

the roots of native Salix humboldtianaWilld. in South America, suggesting that this

may be the only lineage of Tuber that has naturally spread to South America with

Northern Hemisphere host trees (Bonito et al. 2013). Truffles in the Puberulum

clade tend to produce light-colored truffles that have a smooth to cracked peridium,

and some species in this clade are known to produce prolific mats of mitospores on

soil (Healy et al. 2013). Ascospores of truffles in the Puberulum clade are generally

globose to subglobose and are ornamented with alveolate reticulation. Some spe-

cies in this clade appear to be pioneer ECM species that have been unintentionally

introduced into locations in the Southern Hemisphere where they previously did not

exist (Guerin-Laguette et al. 2013). Such species could be considered as “weedy”

ECM associates. Tuber borchiiVittad. is the most important edible truffle species in

the Puberulum group and has been shown to produce both ECMs with pine and

hardwood species and arbutoid mycorrhizas with Arbutus unedo L. (Lancellotti

et al. 2014). The list of new species in the Puberulum lineage described from Asia

continues to grow, suggesting that there may be many more undescribed taxa in this

group (Fan et al. 2012a, b, c). While most species in the Puberulum clade are

considered to be undesirable for consumption, one recently described species,
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Tuber panzhihuanense Deng and Wang, is reported to have favorable aromatic

attributes and commercial potential (Deng et al. 2013).

1.2.1.11 Rufum Clade

The Rufum clade forms a sister group to the Melanosporum clade, and they share

some morphological characteristics. For instance, most species in the Rufum clade

also have spiny ascospore ornamentation. Some species have a range of spiny-

alveolate reticulation, and Tuber melosporum (Moreno, Dı́ez, and Manj�on)
Alvarado, Moreno, Manj�on, and Dı́ez in the Rufum clade is the only Tuber species
known to have smooth ascospores (Alvarado et al. 2012). The Rufum clade is one

of the most species-diverse clade in the genus Tuber. The peridium of truffles

belonging to Rufum clade varies widely; some species may have a verrucose outer

peridium covered with small warts, whereas others may have a smooth or cracked

peridium. Most species in the Rufum clade have either a faint, unpleasant, or even

noxious aroma and are therefore undesirable for human consumption (Iotti

et al. 2007). One exception is the North American species Tuber lyonii Butters,
which is sometimes referred to as the “pecan truffle” because it is commonly found

with pecan trees (Bonito et al. 2011). This species has a pleasant aroma and is

occasionally harvested and sold in the southeastern USA. Efforts are now underway

to cultivate T. lyonii and to better understand its biology and ecology (see Chap. 8).

1.3 Biogeography of the Tuberaceae

There is much interest in elucidating the biogeographic origin and evolutionary

history of the Tuberaceae. As shown in Fig. 1.2, most of the genera within the

Tuberaceae are distributed either in the Southern Hemisphere (Labyrinthomyces,
Reddellomyces, Dingleya, Nothojafnea) or the Northern Hemisphere

(Choiromyces, Tuber—with the exception of the Puberulum clade), suggesting an

ancient phylogeographic split within the family. Based on the work of Bonito

et al. (2013), Southern Hemisphere lineages of Tuber are more recently diverged

than Northern Hemisphere clades, although the Tuberaceae of Australasia have not

been thoroughly studied. Based on the large number of undescribed species and

blurred generic boundaries, a full systematic revision of the Australasian taxa will

be essential to resolve some of these issues (Bonito, Kovacs, Trappe, unpublished).

The geographic origin of Tuber has been predicted to be either Europe or Asia.

However, even global and multigene datasets assembled by Jeandroz et al. (2008)

and by Bonito et al. (2013) were insufficient in reconstructing the geographic center

of origin for Tuber. Rather than supporting each other, alternate loci mostly gave

incongruent results or poorly resolved the branching order among the different

lineages. This is especially problematic because several lineages are thus far

restricted to only one region (e.g., Japonicum in Asia, Gibbosum in North
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Fig. 1.2 Phylogeny of the Tuberaceae based on ITS rDNA and including all sequence vouchered

species and distinct phylotypes. Major clades are distinguished by color and are named on the left
of the label. Taxon labels are color coded to represent geographic origin of the species: blue for

Europe, red for China, black for North America, and green for Southern Hemisphere
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America), and it is likely that a significant portion of species remains unsampled,

particularly in Asia (Bonito et al. 2013). With an increasing number of Tuber
genomes being sequenced (see Chap. 9), and new species being found and

described, phylogenomic network reconstructions using these data should help to

more clearly define the center of origin, genomic history, and diversification of

Tuber.

1.4 Coevolution and Co-diversification of Tuber with Plant

Hosts and Spore Dispersers

Species in the Tuberaceae are hypothesized to be nutritionally dependent on living

ECM plants in order to complete their lifecycles. Thus far, all known species of

Tuberaceae form ECMs, although some species (e.g., T. aestivum, T. excavatum,
T. melanosporum) may also form mycorrhizal associations with orchids. However,

the factors involved in its establishment and persistence of mycorrhizas by Tuber
are not completely understood. By having an ectotrophic mode of nutrition, species

of Tuber obtain the majority of carbon for maintaining cellular processes and

growth from fixed labile carbon from the living host plant. For instance, 13C tracer

studies indicate that even after deciduous host plants have dropped their leaves,

Tuber mycorrhizas obtain plant carbon and transport these sugars through myce-

lium conduits to developing fruiting bodies (Le Tacon et al. 2013). While the

carbon in truffles may be recently derived, nutrients and other minerals mined out

of soil particles by these fungi can by quite old. For example, most of the soil

nitrogen obtained by T. gibbosum comes from older (10–100 years) organic and

recalcitrant factions (Hobbie and Hogberg 2012).

The strong nutritional dependency of Tuber species on their plant hosts has lead

to coevolution between particular plant and Tuber lineages. Adaptive “host-gener-
alist” or “host-specific” strategies could arise within Tuber, but most species tend to

be host generalists that can associate with multiple genera of plants. Some taxa can

associate with species of angiosperms and Pinaceae, but most species appear to be

either angiosperm associated or Pineaceae associated. We hypothesize that Tuber
and plant host populations co-migrate across landscapes in a mosaic-like fashion.

Following this model, Tuber lineages have putatively migrated with their host

symbionts across and throughout the Northern Hemisphere, but even into South

America with native species of Salix and/or Alnus (Bonito et al. 2013). Similar

coevolution scenarios have been proposed for other interactions, such as pollination

and seed dispersal syndromes. This interplay leads to development of intricate food

webs and fascinating complexity in nature (Maser et al. 1978).
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1.5 Emergence of Tuber Phylogenomics and Molecular

Ecology

As the revolution in DNA sequencing technologies continues, with continued

interest in truffles, Tuber is becoming a model genus for studies of genomics,

species diversity, population structure, symbiosis, and evolution at an increasing

high resolution (Martin et al. 2010; Rubini et al. 2011; Bonito et al. 2013). There are

now genome sequences finished for three Tuber species (T. aestivum, T. magnatum,
and T. melanosporum), and genomes of four additional Tuber species (T. borchii,
Tuber brumale Vittad., T. indicum, and T. lyonii) are currently being assembled. In

total, these taxa represent four of the 11 clades within the genus (Payen et al. 2014;

see Chap. 9). These genomic data will help to resolve questions pertaining to truffle

growth and development, ecological adaptability, center of origin, and evolutionary

history. Molecular tools and understanding arising from these genomic resources

will empower a new generation of truffle growers and researchers to tackle age-old

questions that have made truffles so perplexing for so long. We expected that

genomic approaches will provide streamlined and sensitive protocols for detecting

contamination, diseases, genetic diversity, and geographic origin of target truffle

strains.

In addition, genomes of eight other fungi in the class Pezizomycetes have been

sequenced and are available on the JGI Mycocosm web portal: http://genome.jgi-

psf.org/programs/fungi. These data are already providing new perspectives on the

evolution of Pezizomycetes and helping to clarify the genomic consequences of

different trophic modes in fungi.

1.6 Conclusions

The Tuberaceae continues to be an important family within the Ascomycota for

understanding ECM symbiosis, truffle evolution, and fruiting body production.

As is evident in the chapters that follow, truffle science has entered into

the phylogenomic era. We expect that genomic approaches will bring novel insights

and knowledge on truffle development, symbiosis-related genes, molecular

crosstalk between fungus and host, genome organization and evolution, and con-

sequences of bacteria on fungal growth, function, and development. It is an exciting

time to be studying the biology of Tuber and other truffle fungi.
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