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Preface

This volume contains articles based on presentations at the 11th workshop on
model-oriented data analysis and optimum design (mODa) in Hamminkeln-
Dingden, Germany, during June 2016. The 11th workshop was organized by the
Department of Statistics of the TU Dortmund and supported by the Collaborative
Research Center “Statistical modeling of nonlinear dynamic processes” (SFB 823)
of the German Research Foundation (DFG).

The mODa series of workshops focuses on nonstandard design of experiments
and related analysis of data. The main objectives are:

• To promote new advanced research areas as well as collaboration between
academia and industry.

• Whenever possible, to provide financial support for research in the area of
experimental design and related topics.

• To give junior researchers the opportunity of establishing personal contacts and
working together with leading researchers.

• To bring together scientists from different statistical schools – particular empha-
sis is given to the inclusion of scientists from Central and Eastern Europe.

The mODa series of workshops started at the Wartburg near Eisenach in the
former GDR in 1987 and has continued as a tri-annual series of conferences. The
locations and dates of the former conferences are as follows:

• mODa 1: Eisenach, former GDR, 1987,
• mODa 2: St. Kyrik, Bulgaria, 1990,
• mODa 3: Peterhof, Russia, 1992,
• mODa 4: Spetses, Greece, 1995,
• mODa 5: Luminy, France, 1998,
• mODa 6: Puchberg/Schneeberg, Austria, 2001,
• mODa 7: Heeze, The Netherlands, 2004,
• mODa 8: Almagro, Spain, 2007,
• mODa 9: Bertinoro, Italy, 2010,
• mODa 10: Łagów Lubuski, Poland, 2013.

v



vi Preface

The articles in this volume provide an overview of current topics in research on
experimental design. The topics covered by the papers are:

• designs for treatment combinations (Atkinson; Druilhet; Grömping and Bailey),
• randomisation (Bailey; Ghiglietti; Shao and Rosenberger),
• computer experiments (Curtis and Maruri-Aguilar; Ginsbourger, Baccou, Cheva-

lier and Perales),
• designs for nonlinear regression and generalized linear models (Amo-Salas,

Jiménez-Alcázar and López-Fidalgo; Burclová and Pázman; Cheng, Majumdar
and Yang; Mielke; Radloff and Schwabe),

• designs for dependent data (Deldossi, Osmetti and Tommasi; Gauthier and
Pronzato; Prus and Schwabe),

• designs for functional data (Aletti, May and Tommasi; Zang and Großmann),
• adaptive and sequential designs (Borrotti and Pievatolo; Hainy, Drovandi and

McGree; Knapp; Lane, Wang and Flournoy),
• designs for special fields of application (Bischoff; Fedorov and Xue; Graßhoff,

Holling and Schwabe; Pepelyshev, Staroselskiy and Zhigljavsky),
• foundations of experimental design (Müller and Wynn; Zhigljavsky, Golyandina

and Gillard).

In this time of Big Data, it is often not emphasized in public discourse that
experimental design remains extremely important. The mODa series of workshops
wishes to raise public awareness of the continuing importance of experimental
design. In particular, the papers from various fields of application show that
experimental design is not a mathematical plaything, but is of direct use in the
sciences.

Since the first workshop in Eisenach, optimal design for various situations has
been at the heart of the research covered by mODa. Sequential design is another
long-standing topic in the mODa series. It is clear that computer experiments,
designs for dependent data, and functional data become increasingly feasible. For
causal inference in particular, old-fashioned methods like randomization, blinding,
and orthogonality of factors remain indispensable. In addition to the importance of
the research covered here, we think that the articles in this volume show the beauty
of mathematical statistics, which should not be forgotten.

For the editors, it was a pleasure reading these research results. We would like
to thank the authors for submitting such nice work and for providing revisions in
time, wherever a revision was necessary. Last, but not least, we want to thank the
referees who provided thoughtful and constructive reviews in time, helping to make
this volume a fine addition to any statistician’s bookshelves.

Dortmund, Germany Christine Müller
Joachim Kunert

Anthony Atkinson
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On Applying Optimal Design of Experiments
when Functional Observations Occur

Giacomo Aletti, Caterina May, and Chiara Tommasi

Abstract In this work we study the theory of optimal design of experiments when
functional observations occur. We provide the best estimate for the functional
coefficient in a linear model with functional response and multivariate predictor,
exploiting fully the information provided by both functions and derivatives. We
define different optimality criteria for the estimate of a functional coefficient. Then,
we provide a strong theoretical foundation to prove that the computation of these
optimal designs, in the case of linear models, is the same as in the classical theory,
but a different interpretation needs to be given.

1 Introduction

In many statistical contexts data have a functional nature, since they are realizations
from some continuous process. For this reason functional data analysis is an
interest of many researchers. Reference monographs on problems and methods for
functional data analysis are, for instance, the books of [6, 12] and [7].

Even in the experimental context functional observations can occur in several
situations. In the literature many authors have already dealt with optimal design for
experiments with functional data (see, for instance, [1, 3, 9, 10, 13, 14, 16]). Some-
times the link between the infinite-dimensional space and the finite-dimensional
projection is not fully justified and may unknowingly cause errors. In this work
we offer a theoretical foundation to obtain the best estimates of the functional
coefficients and the optimal designs in the proper infinite-dimensional space, and
its finite-dimensional projection which is used in practice.

When dealing with functional data, derivatives may provide important additional
information. In this paper we focus on a linear model with functional response and
multivariate (or univariate) predictor. In order to estimate the functional coefficient,

G. Aletti (�) • C. Tommasi
Università degli Studi di Milano, Milano, Italy
e-mail: giacomo.aletti@unimi.it; chiara.tommasi@unimi.it

C. May
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2 G. Aletti et al.

we exploit fully the information provided by both functions and derivatives,
obtaining a strong version of the Gauss-Markov theorem in the Sobolev space H1.

Since our goal is precise estimation of the functional coefficients, we define some
optimality criteria to reach this aim. We prove that the computation of the optimal
designs can be obtained as in the classical case, but the meaning of the of A- and
D- criteria cannot be traced back any more to the confidence ellipsoid. Hence we
give the right interpretation of the optimal designs in the functional context.

2 Model Description

We consider a linear regression model where the response y is a random function
which depends on a vector (or scalar) known variable x through a functional
coefficient, which needs to be estimated. Whenever n experiments can be performed
the model can be written in the following form, for t 2 � ,

yi.t/ D f.xi/
Tˇ.t/C "i.t/ i D 1; : : : ; n; (1)

where yi.t/ denote the response curve for the i-th value of the regressor xi; f.xi/

is a p-dimensional vector of known functions; ˇ.t/ is an unknown p-dimensional
functional vector; "ij.t/ is a zero-mean error process. This model is a functional
response model described, for instance, in [7].

In a real world setting, the functions yi.t/ are not directly observed. By a
smoothing procedure from the original data, the investigator can reconstruct both
the functions and their derivatives, obtaining y. f /

i .t/ and y.d/i .t/, respectively. Hence
we can assume that the model for the reconstructed functional data is8<: y. f /

i .t/ D f.xi/
Tˇ.t/C "

. f /
i .t/

y.d/i .t/ D f.xi/
Tˇ0.t/C "

.d/
i .t/

i D 1; : : : ; n; (2)

where all the n couples f". f /
i .t/; ".d/i .t/g are zero-mean identically distributed

processes, each process being independent of all the other processes, with
E.k". f /

ij .t/k2L2 C k".d/ij .t/k2L2 / < 1.

Note that the investigator might reconstruct each function y. f /
i .t/ and its deriva-

tive y.d/i .t/ separately. In this case, the terms of the second equation of (2) are not

the derivative of the terms of the first equation. The particular case when y.d/i .t/ is

obtained deriving y. f /
i .t/ is the most simple situation in model (2) and can be seen

as model (1).
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Let us consider an estimator Ǒ .t/ of ˇ.t/, formed by p random functions in the
Sobolev space H1 D H1.�/. Recall that a function g.t/ is in H1 if g.t/ and its
derivative function g0.t/ belongs to L2. Moreover, H1 is a Hilbert space with inner
product

hg1.t/; g2.t/iH1 D hg1.t/; g2.t/iL2 C hg0
1.t/; g

0
2.t/iL2

D
Z

g1.t/g2.t/dt C
Z

g0
1.t/g

0
2.t/dt; g1.t/; g2.t/ 2 H1:

Definition 1 We define the H1-generalized covariance matrix ˙ Ǒ of Ǒ .t/ as the
p � p matrix whose .l1; l2/-th element is

Eh Ǒ
l1 .t/ � ˇl1 .t/; Ǒ

l2 .t/ � ˇl2 .t/iH1 : (3)

Definition 2 In analogy with classical settings, we define the H1-functional best
linear unbiased estimator (H1-BLUE) as the estimator with minimal (in the sense
of Loewner Partial Order) H1-generalized covariance matrix (3), in the class of the
linear unbiased estimators of ˇ.t/.

Given a couple fy. f /.t/; y.d/.t/g 2 L2 � L2, a linear continuous operator on H1

may be defined as follows

�.h/ D hy. f /; hiL2 C hy.d/; h0iL2 ; 8h 2 H1:

From the Riesz representation theorem, there exists a unique Qy 2 H1 such that

hQy; hiH1 D hy. f /; hiL2 C hy.d/; h0iL2 ; 8h 2 H1: (4)

Definition 3 We call Qy 2 H1 in (4) the Riesz representative of the couple
.y. f /.t/; y.d/.t// 2 L2 � L2.

This definition will be useful to provide a nice expression for the functional OLS
estimator Ǒ .t/. Actually the Riesz representative synthesizes, in some sense, the
information of both y. f /.t/ and y.d/.t/ in H1.

The functional OLS estimator for the model (2) is

Ǒ .t/ D arg min
ˇ.t/

� nX
iD1

ky. f /
i .t/� f.xi/

Tˇ.t/k2L2 C
nX

iD1
ky.d/i .t/ � f.xi/

Tˇ0.t/k2L2
�

D arg min
ˇ.t/

nX
iD1

�
ky. f /

i .t/ � f.xi/
Tˇ.t/k2L2 C ky.d/i .t/ � f.xi/

Tˇ0.t/k2L2
�
:
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The quantity

ky. f /
i .t/ � f.xi/

Tˇ.t/k2L2 C ky.d/i .t/ � f.xi/
Tˇ0.t/k2L2

resembles

kyi.t/ � f.xi/
Tˇ.t/k2H1 ;

because y. f /
i .t/ and y.d/i .t/ reconstruct yi.t/ and its derivative function, respectively.

The functional OLS estimator Ǒ .t/minimizes, in this sense, the sum of the H1-norm
of the unobservable residuals yi.t/ � f.xi/

Tˇ.t/.

3 Infinite and Finite-Dimensional Results

This section contains the fundamental theoretical results for estimation of functional
linear models given in Sect. 2; they can be proved as particular cases of the theorems
contained in [2].

Theorem 1 Given the model in (2),

(a) the functional OLS estimator Ǒ .t/ can be computed by

Ǒ .t/ D .FTF/�1FT Qy.t/; (5)

where Qy.t/ D fQy1.t/; : : : ; Qyn.t/g is the vector whose components are the Riesz
representatives of the replications, and F D Œf.x1/; : : : ; f.xn/�

T is the n � p
design matrix.

(b) The estimator Ǒ .t/ is unbiased and its generalized covariance matrix is

˙ Ǒ D �2.FTF/�1;

where �2 D E.kyi.t/ � f.xi/
Tˇ.t/k2

H1 /.

The functional OLS estimator obtained in Theorem 1 by means of the Riesz
representatives is also the best linear unbiased estimator in the Sobolev space, as
stated in the next theorem, which is a functional version of the well known Gauss-
Markov theorem.

Theorem 2 The functional OLS estimator Ǒ .t/ for the model (2) is a H1-functional
BLUE, when the Riesz representatives of the eigenfunctions of the error terms are
independent.

In a real world context, we work with a finite dimensional subspace S of H1. Let
S D fw1.t/; : : : ;wN.t/g be a base of S . Without loss of generality, we may assume
that hwh.t/;wk.t/iH1 D ık

h, where ık
h is the Kronecker delta symbol, since a Gram-

Schmidt orthonormalization procedure may always be applied. More precisely,
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given any base QS D f Qw1.t/; : : : ; QwN.t/g in H1, the corresponding orthonormal base
is given by:

for k D 1, define w1.t/ D Qw1.t/
kQw1.t/kH1

,

for k � 2, let Owk.t/ D Qwk.t/�Pn�1
hD1h Qwk.t/;wh.t/iH1wh.t/; and wk.t/ D Owk.t/

k Owk.t/kH1
:

With this orthonormalized base, the projection Qy.t/S on S of the Riesz
representative Qy.t/ of the couple fy. f /.t/; y.d/.t/g is given by

Qy.t/S D
NX

kD1
hQy.t/;wk.t/iH1 � wk.t/

D
NX

kD1

�
hy. f /.t/;wk.t/iL2 C hy.d/.t/;w0

k.t/iL2

�
wk.t/;

(6)

where the last equality comes from the definition (4) of the Riesz representative.
Now, if ml D .ml;1; : : : ;ml;n/

T is the l-th row of .FTF/�1FT , then

h Ǒ
l.t/;wk.t/iH1 D

nX
iD1

hml;iyi.t/;wk.t/iH1

D
nX

iD1
ml;ihyi.t/;wk.t/iH1 ; for any k D 1; : : : ;N;

Ǒ
l.t/S D mT

l y.t/S ;

hence Ǒ .t/S D .FTF/�1FTy.t/S .
Let us note that, even if the Riesz representative (4) is implicitly defined, its

projection on S can be easily computed by (6). From a practical point of view,
the statistician can work with the data fy. f /

ij .t/; y
.d/
ij .t/g projected on a finite linear

subspace S and the corresponding OLS estimator Ǒ .t/S is the projection on S of
the obtained H1-OLS estimator Ǒ .t/. As a consequence of Theorem 2, Ǒ .t/S is also
H1-BLUE in S , since it is unbiased and the projection is linear. For the projection,
it is crucial to take a base of S which is orthonormal in H1.

It is straightforward to prove that the estimator (5) becomes

Ǒ .t/ D .FTF/�1FTy. f /.t/;

in two cases: when we do not take into consideration y.d/, or when y.d/ D y0. f /. In
both cases, from the results obtained, Ǒ is an L2-BLUE. To our knowledge, this is
the most common situation considered in the literature.
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4 Optimal Designs

Assume we work in an experimental setup. Therefore, xi, with i D 1; : : : ; n, are
not observed auxiliary variables; they can be freely chosen by an experimenter on
the design space X . The set of experimental conditions fx1; x2; : : : ; xng is called
an exact design. A more general definition is that of a continuous design, as a
probability measure � with support on X (see, for instance, [8]). The choice of
� may be made with the aim of obtaining accurate estimates of the model functional
parameters.

From Theorem 2, Ǒ .t/ given in (5) is the H1-BLUE for the model (2). This
optimal estimator can be further improved by a “clever” choice of the design. By
analogy with the criteria proposed in the finite-dimensional theory (see for instance,
[4, 11, 15]) we define a functional optimal design as a design which minimizes
an appropriate convex function of the generalized covariance matrix ˙ Ǒ given in
Definition 1. In particular, we define the following optimality criteria.

Definition 4 A functional D-optimum design is a design ��
D which minimizes

det.˙ Ǒ ); a functional A-optimum design is a design ��
A which minimizes trace.˙ Ǒ );

a functional E-optimum design is a design ��
E which minimizes the maximum

eigenvalue of ˙ Ǒ .

Observe that Definition 4 may be applied also in the case of functional non-linear
models. When we deal in particular with models (1) or (2), part (b) of Theorem 1
shows that

˙ Ǒ / .FTF/�1;

and, from the definition of continuous design,

FTF /
Z

X
f.x/f.x/Td�.x/:

Hence we have proved that, in the case of models (1) and (2), a functional optimal
design can be computed as in the classical theory.

4.1 Interpretation

We describe here the meaning of the optimality criteria given by Definition 4 in the
functional context. Observe that these interpretations are strongly connected to the
definition of generalized covariance matrix given in Definition 1.



On Applying Optimal Design of Experiments when Functional Observations Occur 7

4.1.1 Functional D-Optimum Designs

Let Ǒ .t/ be an unbiased estimator for a functional parameter ˇ.t/ having H1-genera-
lized covariance matrix˙ Ǒ according to Definition 1. Then, for � in Rp, the equation

�T ˙ Ǒ � � constant (7)

defines an ellipsoid of Rp such that the linear combinations

�T Ǒ .t/ D
pX

iD1
�i

Ǒ
i.t/; (8)

with � in the ellipsoid (7), have H1-generalized variance bounded by the same
arbitrary constant:

˙
�T Ǒ D E.k

pX
iD1

�i
Ǒ
i.t/ �

pX
iD1

�i ˇi.t/k2H1 / � constant:

A functional D-optimum design maximizes the volume of ellipsoid (7) and hence
the estimate of ˇ.t/ is more accurate since the “volume” of linear combinationsPp

iD1 �i
Ǒ
i.t/ with bounded variance is greater.

4.1.2 Functional A-Optimum Designs

A functional A-optimum design minimizes the trace of ˙ Ǒ ; it can be proved that
this is equivalent to minimizingZ

k�k�1
�T ˙ Ǒ � d�:

Observe that �T ˙ Ǒ � is the H1-generalized variance of the linear combinations (8).

In other words, a functional A-optimum design minimizes the mean H1-generalized
variance of the linear combinations

Pp
iD1 �i

Ǒ
i.t/ with coefficients on the unit ball

k�k � 1. We are able to prove that this can be also achieved with coefficients on the
unit sphere k�k D 1.

4.1.3 Functional E-Optimum Designs

Finally, the E-optimality criterion has the following interpretation: a functional
E-optimum design minimizes the maximum H1-generalized variance of the linear
combinations

Pp
iD1 �i

Ǒ
i.t/ with the constraint k�k � 1 or k�k D 1.
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5 Future Developments

The advantages of applying the theory discussed in this paper are shown
in [2] in a real example, where a linear model with functional response
and vectorial predictor is used for an ergonomic problem, as proposed in
[13]. To forecast the motion response of drivers within a car (functional
response), different locations are chosen (experimental conditions). The original,
non-optimal design adopted provides a D-efficiency equal to 0:3396; this
D-efficiency is raised to 0:9779 through a numerical algorithm for optimal designs.

Regression models with functional variables can cover different situations: we
can have functional responses, or functional predictors, or both. In this work we have
considered optimal designs for the case of functional response and non-functional
predictor. A future goal is to develop the theory of optimal designs also for the
scenarios with functional experimental conditions (see also [5]).
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Optimal Designs for Implicit Models

Mariano Amo-Salas, Alfonso Jiménez-Alcázar, and Jesús López-Fidalgo

Abstract In this paper the tools provided by the theory of the optimal design of
experiments are applied to a model where the function is given in implicit form.
This work is motivated by a dosimetry problem, where the dose, the controllable
variable, is expressed as a function of the observed value from the experiment. The
best doses will be computed in order to obtain precise estimators of the parameters
of the model. For that, the inverse function theorem will be used to obtain the Fisher
information matrix. Properly the D-optimal design must be obtained directly on the
dose using the inverse function theorem. Alternatively a fictitious D-optimal design
on the observed values can be obtained in the usual way. Then this design can be
transformed through the model into a design on the doses. Both designs will be
computed and compared for a real example. Moreover, different optimal sequences
and their D-effiencies will be computed as well. Finally, c-optimal designs for the
parameters of the model will be provided.

1 Introduction

This paper is focused on the case of nonlinear models where the explanatory variable
is expressed as a function of the dependent variable or response and this function is
not invertible. That is, we consider the model

y D �.x; �/C "; " � N.0; �/; (1)
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where y is the dependent variable, x is the explanatory variable, � is the vector
of parameters of the model and 	.y; �/ D ��1.x; �/ has a known expression,
but a mathematical expression of �.x; �/ is not available. The challenge of this
situation is to find optimal experimental designs for the explanatory variable when
the expression of the function �.x; �/ is unknown. This situation is presented in
a dosimetry study which will be used as case study in this work. Firstly, the
description of the case study and a general introduction to the theory of Optimal
Experimental Design is given. In Sect. 2 the inverse function theorem is applied to
compute the information matrix. Finally, in Sect. 3 D-optimal designs are computed
and compared for the case study proposed. Moreover, arithmetic and geometric
optimal sequences, c-optimal designs and their D-effiencies are computed.

1.1 Case Study Background

The use of digital radiographs has been a turning point in dosimetry. In particular,
radiochromic films are very popular nowadays because of their near tissue equiva-
lence, weak energy dependence and high spatial resolution. In this area, calibration
is frequently used to determine the right dose. The film is irradiated at known
doses for building a calibration table, which will be used to fit a parametric model,
where the dose plays the role of the dependent variable. The nature of this model is
phenomenological since the darkness of the movie is only known qualitatively. An
adjustment is necessary to filter noise and interpolate the unknown doses.

Ramos-García and Pérez-Azorín [9] used the following procedure. The
radiochromic films were scanned twice. The first scanning was made when a
pack of films arrived and the second 24 h after being irradiated. With the two
recorded images the optical density, netOD, was calculated as the base 10 logarithm
of the ratio between the means of the pixel values before (PV0) and after (PV)
the irradiation. They used patterns formed by 12 squares of 4 � 4 cm2 irradiated
at different doses. This size is assumed enough to ensure the lateral electronic
equilibrium for the beam under consideration. A resolution of 72 pp, without color
correction and with 48-bit pixel depth was used for the measurements. The pixel
values were read at the center of every square. Then, the mean and standard error
were calculated. The authors assumed independent and normally distributed errors
with constant variance as well as we do in this paper.

To adjust the results to the calibration table the following model was used:

netOD D �.D; �/C ";

where D is the dose and the error " will be assumed normally distributed with mean
zero and constant variance, �2. The expression of the function �.D; �/ is unknown
but the mathematical expression of the inverse is known

��1.D; �/ D 	.netOD; �/ D ˛ netOD C ˇ netOD
 ; D 2 Œ0;B�; (2)


