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The 2nd conference on Continuous Media
with Microstructure (CMwM2015) was held
on March 2–5, 2015 in Łagów, Poland,
in memory of

Professor Krzysztof Wilmański

who regrettably passed away on 26/08/2012.

We dedicate this book of CMwM2015
contributions to him.



Preface

This book is a collection of papers dedicated to the memory of Prof. Dr. Krzysztof
Wilmański. It contains the written form of many contributions to the 2nd
International Conference on Continuous Media with Microstructure held in Łagów,
Poland, March 2–5, 2015 (Fig. 1).

CMwM2015, also announced as an ECCOMAS Special Interest Conference, was
organized by the Polish Academy of Sciences, Poznan University of Technology,
Berlin University of Technology, and the Polish Association for Computational
Mechanics. Many friends and colleagues of Prof. Krzysztof Wilmański eagerly
accepted the invitation of the conference chairpersons Bettina Albers (at that time:
TU Berlin) and Mieczysław Kuczma (Poznan UT). Professor Krzysztof Wilmański
regrettably passed away on August 26, 2012 but would have celebrated his
75th birthday on March 1, 2015. The 1st conference CMwM took place in Zielona
Góra, Poland, in 2010 to celebrate the 70th birthday of Prof. Wilmański. At this
occasion he received the first part of the book Continuous Media with
Microstructure. That book contains further information about him, especially a
photo, his curriculum, and his publication list (Reference: Albers, B. (ed.):

Fig. 1 Participants of the 2nd International Conference on Continuous Media with Microstructure
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Continuous Media with Microstructure. Collection in Honor of Krzysztof
Wilmanski, Springer, Berlin, Heidelberg, 2010, ISBN 978-3-642-11444-1).

CMwM2015 was a conference with an intimate atmosphere, attended by nearly
40 scientists from Brazil, Czech Republic, Estonia, Georgia, Germany, Italy,
Poland, Russia, and the USA, who gave 35 presentations.

The general lectures were delivered by

• Tadeusz Burczyński on Intelligent optimization of media with microstructure,
• Carlo Giovanni Lai on Measurement of damping ratio spectra in soils from the

exact solution of Kramers-Krönig equations of linear viscoelasticity,
• I-Shih Liu on A mixture theory of porous media and some problems of

poroelasticity,
• Martin Ostoja-Starzewski on Continuum mechanics beyond the second law

of thermodynamics,
• Jörg Schröder on A FE2-homogenization scheme for the analysis of product

properties of two-phase magnetoelectric composites, and
• David M.J. Smeulders on Electrokinetic experiments in porous media for energy

applications.

The contributions to the book concern various aspects of extension of classical
continuum models and of engineering applications of continuum theories. In par-
ticular, the contributions deal with the following subjects:

• continuum mechanics,
• thermodynamics,
• porous and granular media,
• engineering applications.

We would like to kindly thank both the participants of CMwM2015 and the
contributors to the current book for the nice cooperation and for their commitment.
Furthermore, we are grateful for technical work, especially the transformation of
some contributions into LaTeX, by Benedikt Preugschat. Last but not least we
appreciate very much the pleasant collaboration with Springer, especially with
Christoph Baumann who accepted the publication of this book.

Essen Bettina Albers
Poznań Mieczysław Kuczma
October 2015
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Krzysztof Wilmanski (1940–2012)

Ingo Müller

When I first met Krzysztof Wilmanski in 1977 he was one of the bright young
scientists in the Institute of Fundamental Technological Research of the Polish Acad-
emy of Sciences. This was the time of the cold war and it was not altogether easy
for us westerners to meet colleagues from beyond the iron curtain. But among all
people from the east it was still easiest to meet Polish scientists. Because, indeed,
the wise elder scientists at the helm of the Polish Academy—among them Professors
Nowacki, Olszak, Fiszdon, and Sawczuk—held some influence in political circles.
And they knew that good science requires free and easy communication between sci-
entists. Also they believed in mechanics as an essential part of the natural sciences.

Therefore they sent their young mechanicians abroad, to the east and to the west.
Still, it was easier for them go east. Thus, long before I met him, Krzyszt of Wilman-
ski had been in Moscow, where he tried to join Professor Sedov’s research group.
Somehow that did notwork outwell. Hewas disappointed and left after a fewmonths.
Next he went to Baltimore where at the time—in the late 1960s—Professors Trues-
dell and Ericksen conducted a lively group of graduate student and post-doctoral
fellows at the Johns Hopkins University. He was well received there and worked
successfully. Thus in a manner of speaking he finished his scientific education there,
an education which had started in civil engineering.

Strangely, although I had been at Johns Hopkins before Krzysztof and again after
he had left, we never met there. However, we had been exposed to the same unique
scientific atmosphere, created by professors Ericksen and Truesdell at the height of
Rational thermodynamics; and so, —even without actually meeting—, we became
members of a loosely knit group which, much later, some unfriendly person dubbed
the “Johns Hopkins gang”.

I. Müller (B)

Technische Universität Berlin, Straße des 17. Juni, 10623 Berlin, Germany
e-mail: ingo.mueller@alumni.tu-berlin.de

© Springer International Publishing Switzerland 2016
B. Albers and M. Kuczma (eds.), Continuous Media with Microstructure 2,
DOI 10.1007/978-3-319-28241-1_1
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2 I. Müller

After Johns Hopkins Krzysztof went to Iraq. There was a program, haggled out
between the Polish government and some oil-rich left-leaning Arabian states in the
near east, by which Polish professors could obtain a well-paid teaching job—in
Iraq, or Syria, or Libya—for 1 or 2years. So, Krzysztof went to Iraq for 2years.
Scientifically that stay was little fruitful, later he would complain that he met a mix
of ignorance and arrogance in his host faculty. But the jobwas profitablemoney-wise.
And so on a side trip to Saudi Arabia Krzysztof acquired a nice new red BMW.

All of this was before Krzysztof and I met.
When we did meet I was a young professor in Paderborn, Germany, recently

returned from the United States. The occasion was the founding of ISIMM, the
International Society for the Interaction of Mechanics and Mathematics which took
place in Kozubnik in the south of Poland. That society was to further facilitate
scientific relations between the East and the West and many of the grand old men
of mechanics were there. Well, with the exception of the Russians; they feared a
conflict of interest with IUTAM, the International Union of Theoretical and Applied
Mechanics which was the forum for east-west interaction officially recognized by
the Soviet government. But everybody else who was somebody in mechanics and
applied mathematics was present in Kozubnik: Sneddon, Chadwick and Spencer
from Great Britain, Fichera, Graffi and Grioli from Italy, Kirchgässner and Kröner
from Germany, i.e. West Germany. And of course all the Polish tycoons of science
were there. Krzysztof Wilmanski and myself were in the junior crowd, along with
Robin Knops, Costas Dafermos, Carlo Cercignani and many others. Little did we
think at the time that we should in the future become officers of the Society; and yet
that happened: Between the years 2000 and 2004 Krzysztof and I were president and
secretary of ISIMM.

On the last day of the meeting, a Saturday morning, a decrepit Russian-built
bus was to carry the participants back toWarsaw airport. However, the technological
decline of the Eastwas already far advanced and so the buswouldn’t start; an essential
part of the ignition system was broken. Henryk Zorski, Krzysztof Wilmanski and
I myself were watching when the driver gave up his efforts and announced a 3-h
delay, because he had to send to Kattowitz for a spare part. Naively I asked Zorski
whether he thought that the needed part would be available in Kattowitz. “Oh, no”,
said Henryk, always the cynic, “nowhere in Poland but there will be a spare bus.”

Imyselfwas spared the bus ride, becauseKrzysztof offered to takeme in hisBMW.
Looking back I now realize that the long ride in close companionship was to soften
me up, so that I should support Krzysztof’s application for a Humboldt scholarship
which hewas preparing. Really that effort on his part was quite unneccessary. I would
have supported that application anyhow, after all: One member of the Johns Hopkins
gang and the other. But the trip as such was not uneventful. Indeed, the pot holes
of Southern Poland yanked a shock absorber clean out of the body of the BMW.
There was a tremendous noise in the back and when we reached Krakow it became
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imperative to find a workshop—at noon on a Saturday in a socialist economy! I
considered that hopeless. However, Krzysztof was unfazed and thus he proved not
only a keen scientist but also an ingenious organizer of an everyday calamity. He
developed a train of thought by which the dairies of the town of necessity are on
a 24h schedule, —including Saturdays—, that they need lorries for the collection
and distribution of milk and that the lorries, given their state of repair, need a dairy-
owned workshop for repairs. So, we inquired about dairies, found the appertaining
workshop and there was a young mechanic who welded the shock absorber back into
the place where it belonged.

Time had been lost, though, and so Krzysztof regretted that he could not show
me the tomb of Marshall Pilsudski whom he admired very much for having chased
out the Russians from some small eastern part of Poland in 1918, or so, and for a
short while. Krzysztof was a fervent Polish patriot and remained that throughout
his life, even after—much later—he became a German citizen. In fact sometimes
he surprised me with his Polish view of events in German history. Actually, if the
truth were known there seem to be few events in the histories of the two countries
which are viewed in the same light from the two sides of the Polish-German border;
excepting only, of course, Russian attempts for domination.

Anyway, the application for the Humboldt scholarship was successful and so,
early in 1979, Krzysztof showed up in Paderborn. This started a year of intensive
and successful collaboration between the two of us, mostly on shape memory alloys.
And thatwas before anybody else in continuummechanics recognized the importance
of these materials for the understanding of large deformations in solids. So, when I
moved to Berlin in that same year, Krzysztof came with me and we continued our
work. For me and, I believe, for Krzysztof as well this was a highly satisfactory
period of joint learning and research, which we would have liked to continue. But
politics intervened, cold war politics.

As some of you may know, the Humboldt foundation gives stipends for no more
than 1year. But, upon application this period can be extended for up to another year.
So, naturally Krzysztof and I applied and we got the extension. But cold war tactics
was against us. Krzysztof was in trouble with the Polish authorities when he applied
for keeping his passport. At that time the official communist doctrine about Germany,
dictated by the Russians, was that there were three Germanies: West Germany, DDR
andWestberlin. So Krzysztof in joining me in Berlin had violated the rules laid down
in his passport which allowed him to visitWest Germany only. He had to be punished
and he was not allowed to stay on in Berlin. Friends back in Paderborn offered him
an office but, although they meant well, they worked on different subjects. So our
collaboration suffered; all of this was in the days before e-mail which might have
helped us a lot.

And so began Krzysztof’s veritable scientific odyssey in Germany and between
Germany and Poland: Paderborn, Berlin, Warsaw, Berlin, Hamburg, Berlin, Essen.
This odyssey lasted 14years instead of the requisite ten. During his Warsaw period
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the two of us organized a Euromech conference on shape memory in Jabłonna near
Warsaw. InHamburgKrzysztof became an expert on plasticity, in Essen he developed
an improved theory of porous and granular media and in the end in Berlin, at the
Weierstrass Institute, he concentrated his research efforts on wave propagation in
soils, in close collaborationwith civil engineers:Wet soils for off-shorewind turbines
and dry soils for tunneling.

Ahigh point in his itinerant life, perhaps,wasKrzysztof’s invitation to a year’s stay
at theWissenschaftskolleg Berlin. That august institution—the Institute of Advanced
Studies—had heretofore never invited natural scientists—it thrives on political and
social “sciences”. However, in 1984 I got the unexpected possibility to invite two per-
sons from the natural sciences and theywereRonaldRivlin andKrzysztofWilmanski.
The three of us spent at least 1day a week together in intensive discussion.

This was the timewhen a disaster concerning the stability of rheological fluids had
overwhelmedRationalThermodynamics, the theory ofColemanandNoll:According
to that theory the free energy should have amaximum in equilibriumwhen everybody
in thermodynamics knew for a century that it has to have a minimum. Rivlin was
overjoyed, because he disliked Coleman and Noll for their close association with
Truesdell. I myself did not care much, since I worked on Extended Thermodynamics
which was untouched by the disaster. And Krzysztof suggested that we look into the
problem and perhaps understand its reason. So we studied the papers by Dunn and
Fosdick and by Joseph on fluids of nth grade and we came to the conclusion that it
is not legitimate to approximate the constitutive functional of the history of some
field by a few time derivatives of the field at the present time. The procedure leads to
instability. Rivlin did not appreciate the result since it cast doubt on the usefulness of
the Rivlin-Ericksen tensors, with which he was strongly associated. And Fosdick—
when asked—was also unenthusiastic, because he maintained that stability would
miraculously reappear far from equilibrium; a clear case of wishful thinking. So
Krzysztof and I were frustrated; we did write a paper and published it in Rheologica
Acta to show that the free energy indeed has a minimum in equilibrium as it should
be. And there was some interest, —at least we received a lot of reprint requests. But
the paper did not really catch on. And, if the truth were known, our arguments lacked
the systematic clarity necessary to be convincing. Indeed the problem of a proper
thermodynamic theory of non-Newtonian fluids remains unsolved to this day.

Years later, when Roger Fosdick celebrated his 60th birthday, Krzysztof and I
addressed the problemagain from thepoint of viewof the kinetic theoryof rheological
fluids. Somewhat maliciously we offered that study for Roger’s Festschrift. But then
it turned out that neither of us could attend the anniversary meeting and so our paper
remained unpublished except as a preprint report of the Weierstrass Institute.

So let me pull our main conclusion out of oblivion in this present eulogy for
Krzysztof: Considering a solution of Hookean dumbells—a standard model of
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rheology—we derived a differential equation between the deviatoric stress and the
deviatoric velocity gradient, viz.1

(
1 + 1

2

ζ

λ

δ

δt

)
t<pq> = η0

(
1 + ηs

η0

1

2

ζ

λ

δ

δt

)
∂u<p

∂xq>

(1)

λ is the elastic constant of the dumbell spring. ζ is the Stokes friction coefficient of
a dumbell mass in the solvent and ηs is the viscosity of the solvent. η0 is defined as
ηs + 5

6nkT ζ

λ
with n as the number density of dumbells. The equation is known as the

Giesekus equation in rheology, but our derivation was marginally more systematic
than Giesekus’s so that there was a tiny little bit of originality.

All the coefficients are positive so that in regard to stability the equation is fine:
If the velocity gradient vanishes, the stress will exponentially approach zero and if
the stress vanishes, the velocity gradient relaxes to zero.

So far so good. The argument, —based on reliable molecular considerations—,
shows us what the constitutive relation between the stress and the velocity gradient
should look like in a rheological fluid. And this does not have the form assumed by
Rational thermodynamics. Indeed, in Rational Thermodynamics the stress should be
alone on the left-hand-side and it should be given by the velocity gradient and its
time derivatives. Such a form may be obtained by shifting the operator 1 + 1

2
ζ

λ
δ
δt

from the numerator on the left-hand-side to the denominator of the right-hand-side
and then approximating it—rather daringly—as follows

1

1 + 1
2

ζ

λ
δ
δt

≈ 1 − 1

2

ζ

λ

δ

δt
. (2)

In this manner we obtain

t<i j> ≈ η0

(
1 +

(
ηs

η0
− 1

)
1

2

ζ

λ

δ

δt

)
∂u<i

∂x j>
. (3)

Now, however, this equation leads to instability. Indeed, if the stress vanishes, the
velocity gradient grows exponentially (!) which makes no sense. Thus Krzysztof
and I showed in our paper where the instability comes from and how it should be
avoided. The fallacy lies in the daring approximation which is inherent in the a priori
assumption that the stress should be determined by the velocity gradient and its rate
of change.

1The complicated time derivatives are Oldroyt derivatives. But for the present brief review we may
consider it as just an ordinary time derivative.
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Later, —due to the demands of subsequent jobs—Krzysztof left that interesting
field and turned to more practical tasks, primarily in wave propagation in porous
media as mentioned before. The primary objective was diagnostic, viz. the diagnosis
of hidden irregularities in soils. For thiswork hefinally found a secure and stimulating
environment in theWeierstrass Institute in Berlin, where he spent the 10years before
his retirement in 2005.
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But that was by no means the end of his scientific career. Krzysztof’s passion for
science and academia did not allow him to stay idle. So he accepted an appointment
at the newly founded University of Zielona Góra in Poland where he spent the last
years of his life in scientific research, teaching and administration. The faculty in
Zielona Góra was lucky to have him, a man of vast experience gathered in many
countries in a lifetime devoted to science.

At the end—still working and publishing and full of enthusiasm and energy—he
had to succumb to the perfidious sudden attack of the disease that threatens all of us.

I have mourned him, and I am sure we all did, those of us who knew him.

Berlin, 05.05.2015 Ingo Müller
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Virtual Power and Pseudobalance
Equations for Generalized Continua

Gianpietro Del Piero

Abstract In this paper the balance equations of linear and angular momentum are
deduced from some regularity properties of the systemof contact actions and from the
law of action and reaction. This approach provides a simple and unifying formulation
of the theories of non polar and polar continua. It also allows for a direct deduction
of the classical plate and beam theories as special Cosserat continua, obtained by
dimensional reduction induced by appropriate geometrical constraints.

Deduction of Balance Equations

1. The traditional, generally accepted approach to Continuum Mechanics is based
on Euler’s balance laws of linear and angular momentum. During the second half
of the past century, this approach was revisited a number of times. In 1963, W.
Noll showed that the Euler laws are in fact a consequence of the postulate of the
indifference of power [12]. Later, Gurtin and Martins [9] and S̆ilhavý [14, 15]
came to the conclusion that the same laws, until then regarded as balance equations
between distance and contact actions, are in fact regularity assumptions on the
system of the contact actions alone.
This conclusion also originated from an idea of Noll. In [13] he showed that, if a
system of contact actions is skew-symmetric,1 it is also additive on the boundaries
of disjoint sets.2 If this is the case, the contact action over the boundary of a part
Π of the body, which may also be seen as a volume action,

1This assumption corresponds to Newton’s law of action and reaction.
2That is, if Π and Π ′ are disjoint sets with a portion S of boundary in common and if Q(S) =
−Q(−S) is the contact action interchanged across S, the contact action on ∂(Π ∪ Π ′) is the sum
of the contact actions on ∂Π and on ∂Π ′.
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F(Π) = −Q(∂Π), (1)

is additive on disjoint sets.3 In the presence of sufficient regularity, a surface
density s can be associated with Q and a volume density b† can be associated
with F , and the preceding equation can be given the form

∫
Π

b†(x) dV = −
∫

∂Π

s(x, ∂Π) dA. (2)

A system of contact actions which admits both surface and volume densities is
called a Cauchy flux, and Eq. (2) is called a pseudobalance equation. The reason
for the name is that, though it looks like a balance equation, this is not a balance
equation, but only an identity between two different representations of the same
contact action.
The pseudobalance equation is all what is needed to prove the dependence of
s(x, ∂Π) on the normal n to ∂Π at x ,4 and the linearity of this dependence.5 That
is, to prove that there is a linear transformation on the vectors, the Cauchy stress
tensor T , such that

s = T n. (3)

Thus, rather than a consequence of the balance of linear momentum, the exis-
tence of the Cauchy tensor is a property enjoyed by all sufficiently regular skew-
symmetric systems of contact actions. This reduces the importance of the role
played by the Euler balance laws, which are usually considered as a fundamental
postulate of mechanics. Indeed, to define a classical continuum it becomes con-
venient to take as primitive the concept of external power, which is an integral
involving the inner products of the external actions of contact s and at distance b
by a field v of virtual velocities6

Pext (Π, v) =
∫

Π

b · v dV +
∫

∂Π

s · v dA. (4)

In particular, a rigid virtual velocity field is a vector field of the form

v(x) = a + � × x, (5)

3The minus sign on the right is just matter of convenience.
4The dependence of s on the normal was conjectured by Cauchy, and was currently called the
Cauchy postulate. Only in 1959 Noll proved that this conjecture is true, under the assumption that
the internal actions have a local character [11]. Since then, the Cauchy postulate has become the
Noll theorem.
5This is the tetrahedron theorem of Cauchy.
6Alternatively, one can take as primitives the concept of virtual velocity and the existence of two
types of actions, distance and contact.
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with a and� arbitrary constant vector fields. Assuming the indifference of power
under rigid virtual velocity fields,

Pext (Π, a) = 0, Pext (Π,� × x) = 0, (6)

the balance laws of Euler
∫

Π

b dV +
∫

∂Π

s dA = 0,
∫

Π

x × b dV +
∫

∂Π

x × s dA = 0, (7)

easily follow. With the aid of the relation (3) and of the divergence theorem,
the surface integral in (4) can be transformed into a volume integral, called the
internal power

Pint (Π, v) =
∫

Π

(
(b + div T ) · v + T · ∇v

)
dV . (8)

The indifference conditions (6) applied to this integral yield the local forms of
the balance equations

divT + b = 0, T = T T . (9)

Equating the two expressions (4), (8) of the power, the equation of virtual power

Pext (Π, v) = Pint (Π, v) (10)

is obtained.This is not an equationbetween twodifferent powers, as it is frequently
asserted,7 but only an identity between two different expressions of the same
power.
Substituting the local forms (9) into the internal power (8), a reduced form for
the power is obtained

Pred(Π, v) =
∫

Π

T · ∇vS dV . (11)

This reduced form characterizes T as the unique active internal action present
in a classical continuum, and ∇vS as the corresponding generalized deformation
velocity.

2. The framework introduced above is easily extended to the generalized continua. A
generalized continuum is a continuum whose description involves a finite array
{ξα} of primary variables (state variables), which can be scalar, vectorial, or
tensorial. Coupled with dual variables βα, σα of the same tensorial nature (bulk
and surface external actions), they determine the external power8

7In fact, on this assumption is based of the “method of virtual power” developed by Germain [7, 8]
and others.
8Here and in the following, repeated indices are summed.
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Pext (Π, v, να) =
∫

Π

(b · v + βα · να) dV +
∫

∂Π

(s · v + σα · να) dA, (12)

in which the να are the virtual velocities of the state variables. If the contact
actions σα are Cauchy fluxes, each of them has its own pseudobalance equation

∫
∂Π

σα(x, ∂Π) dA = −
∫

Ω

βα†(x) dV, (13)

and from it, with the aid of Noll’s and Cauchy’s theorems, follows the existence
of a linear transformation Σα such that

σα = Σαn. (14)

The divergence theorem then allows the passage from the external to the internal
power

Pint (Π, v, να) =
∫

Π

(
(b + div T ) · v + T · ∇v + (βα + divΣα) · να + Σα · ∇να

)
dV,

(15)

from which the balance equations are deduced imposing the indifference to rigid
virtual velocity fields. But, unlike in classical continua, the rigid virtual velocities
are not uniquely defined, since their definition depends on the physical nature
of the state variables. In what follows, we consider two classes of generalized
continua, polar and non-polar, with different definitions of rigid virtual velocities.
In a non-polar continuum, the state variables describe rearrangements of matter
at the microscopic level. A rigid virtual velocity involves no rearrangements, that
is, the corresponding virtual velocities να are zero. Therefore, the indifference
conditions are

Pext (Π, a, 0) = 0, Pext (Π, W x, 0) = 0, (16)

where W is the skew-symmetric tensor associated with the rotation vector � ,
defined by the relation

Wa = � × a, (17)

for all vectors a. In a polar continuum, the state variables introduce further degrees
of freedom for the deformation. Then a rigid rotation is a simultaneous rotation of
themacroscopic deformation and of the state variable. In the case of tensorial vari-
ables,9 the virtual velocities να are tensor fields, and the appropriate indifference
conditions are

Pext (Π, a, 0) = 0, Pext (Π, W x, W ) = 0. (18)

9This case includes the micromorphic continua [6] and, in particular, the micropolar continua, also
called Cosserat continua.
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Thus, the polar and non-polar continua have the same translational indifference
condition, but different rotational indifference conditions.

3. An example of a non-polar continuum is met in the theory of gradient plasticity.
This theory is based on the Kröner-Lee decomposition

∇ f = Fe F p, (19)

according to which the macroscopic deformation gradient ∇ f is supposed to be
the composition of a microscopic rearrangement F p and of the local deformation
Fe necessary to restore the macroscopic deformation ∇ f . This decomposition
defines a generalized continuum described by a single state variable, the tensor
F p. For it, the relation (14) has the form

S = Tn, (20)

where the second-order tensor S is the contact action associated with F p and
the third-order tensor T is the corresponding internal action. Denoting by L p the
virtual velocity of F p, the external and internal powers take the form

Pext (Π, v, L p) =
∫

Π

(b · v + B · L p) dV +
∫

∂Π

(s · v + S · L p) dA,

Pint (Π, v, L p) =
∫

Π

(
(b + divT ) · v + T · ∇v

+(B + divT) · L p + T · ∇L p
)
dV . (21)

The indifference conditions (16) yield the same restrictions (9) of the classical
continuum, and therefore the reduced form of the internal power is

Pred(Π, v, L p) =
∫

Π

(
T · ∇vS + (B + divT) · L p + T · ∇L p

)
dV . (22)

In plasticity it assumed that the Cauchy stress T is a function of the elastic part
Fe of the decomposition (19). From this decomposition follows the relation

∇v = Le + L p (23)

between the corresponding virtual velocities. Thus, the reduced power takes the
form

Pred(Π, v, L p) =
∫

Π

(
T · De + T p · L p + T · ∇L p

)
dV, (24)

where De is the symmetric part of Le and T p is the plastic stress

T p = T + B + divT. (25)
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The last equation and the balance equation (9)1 are the differential equations of
the equilibrium problem of gradient plasticity.10 The formulation of the prob-
lem is completed by a set of constitutive equations between the internal actions
T, T p, T and the corresponding generalized deformations, and by appropriate
boundary conditions.

4. In a polar continuum, quite frequently the state variables are supposed to be
vectorial, and in this case they are called the directors. The number of the directors
depends on the nature of the continuum. For example, the liquid crystals have
just one director, in crystal plasticity the number of the directors coincides with
the number of the slip planes, and a micromorphic continuuum is characterized
by a triple of linearly independent directors. Just as the macroscopic deformation
of the body is described locally by the deformation gradient ∇ f , the microscopic
deformation of amicromorphic continuuum is described by a second-order tensor
Fm , the microscopic deformation gradient. Thus, at each point of the continuum
the microdeformation has the same geometric structure of the macrodeformation
undergone by the whole body.11

In the microdeformation, the directors dα are mapped into the vectors Fmdα .
Denoting by

να = Lmdα (26)

the corresponding virtual velocity, substituting into (12), and setting

B = βα ⊗ dα, S = σα ⊗ dα, (27)

the external and internal powers (21) are re-obtained, with Lm in place of L p.
With the indifference conditions (18), the balance laws are

divT + b = 0, T + T m = (T + T m)T , T m = B + divT. (28)

That is, the symmetry of the Cauchy stress T required by the balance laws (9) of
the non-polar continua is now replaced by the symmetry of the tensor T + T m .
As a consequence, in the integrand function of (21)2 one has

T · ∇v + (B + divT) · Lm = T S · ∇vS + T W · ∇vW + T m · Lm

= T S · ∇vS − T mW · ∇vW + T m · Lm = T S · ∇vS + T m · Lm ,

(29)

10We emphasize that (25) is a consequence of the pseudobalance equation (13) and not a new
balance equation. In the literature, it is named balance of micromomentum, microforce balance,
equilibrium equation for the macrostress tensor, and is presented, at least tacitly, as a new axiom
of mechanics.
11Ericksen and Truesdell [5], Mindlin [10] and Eringen [6].
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where
Lm = Lm − ∇vW (30)

is the virtual velocity of the directors with respect to the body already deformed
by the macroscopic deformation. The reduced power then takes the form

Pred(Π, v, Lm) =
∫

Π

(
T S · ∇vS + T m · Lm + T · ∇Lm

)
dV . (31)

For amicromorphic continuum, the differential equations of the equilibriumprob-
lem are (9)1 and (28)3, and the constitutive equations are relations between the
internal actions T S, T m,T and the generalized deformations∇vS,Lm,∇Lm . The
Cauchy stress is not symmetric, and its skew-symmetric part T W does not appear
in the expression of the power. It plays the role of a reaction, determined by the
relation (28)2, T W = −T mW .

5. 12In amicromorphic continuum, the deformation of the directorsmay be subject to
geometrical constraints. For example, the micropolar continua are micromorphic
continua for which the only deformation allowed to the orthonormal triple of
directors is a rigid rotation, variable from point to point. Thus, if RmU m is the
polar decomposition of Fm , the constraint acting on a micropolar continuum is

Fm = Rm, U m = I. (32)

In this case the virtual velocity Lm reduces to its skew-symmetric part W m , and
in the external power we have

B · Lm = BW · W m = c · ω, S · Lm = SW · W m = m · ω, (33)

with ω, c/2 and m/2 the vectors associated with W m , BW and SW by the relation
(17)

W ma = ω × a, BW a = 1

2
c × a, SW a = 1

2
m × a. (34)

The external power then takes the form

Pext (Π, v, ω) =
∫

Π

(
b · v + c · ω

)
dV +

∫
∂Π

(
s · v + m · ω

)
dA, (35)

with ω the vectorial measure of the virtual rotation of the directors, and c and
m the volume couple and the surface couple. If s and m are Cauchy fluxes, they
have the representations

12For reasons of brevity, from here on most of the statements are given without comments and
proofs. More detailed treatments can be found in the paper [2] and in the forthcoming lecture notes
[4]. For plate and beam theories, see [3].
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s = T n, m = Mn, (36)

with T the Cauchy stress and M the couple stress tensor. With the aid of the
divergence theorem one obtains the internal power

Pint (Π, v, ω) =
∫

Π

(
(b +divT ) · v+ T · ∇v+ (c +divM) · ω+ M · ∇ω

)
dV .

(37)
The indifference conditions now give

divT + b = 0, divM + c + 2t = 0, (38)

with t the vector associated with the skew-symmetric part of T . Substitution into
Eq. (37) yields the reduced form

Pred(Π, v, ω) =
∫

Π

(
T S · ∇vS − 2 t · ϕ + M · ∇ω

)
dV, (39)

where

ϕ = ω − 1

2
curl v (40)

is the vector measure of the relative rotation W m −∇vW . The equilibrium problem
now consists of the differential equations (38), of constitutive equations relating
the internal actions T S, t and M with the generalized deformations ∇vS, ϕ and
∇ω, and of a set of boundary conditions.
The constrained Cosserat continua are obtained by imposing the supplementary
constraint

ω = 1

2
curl v, (41)

which requires that the relative rotation ϕ be zero.13 For such continua the indif-
ference conditions still have the form (38), and the reduced power is

Pred(Π, v) =
∫

Π

(
T S · ∇vS + 1

2
M · ∇curl v

)
dV . (42)

Here, T S and M are the only active internal actions. The rotation ω formally dis-
appears from the list of the geometric variables, though its effects are still present
in the product M ·∇curl v.14 As a consequence, t is not anymore an active internal
action, and therefore it is not anymore determined by a constitutive equation. In

13This constraint corresponds to the Cauchy-Born hypothesis, according to which the directors
follow the macroscopic deformation.
14The presence of a microstructure which does not appear explicitly in the expression of the power
characterizes this continuum as a continuum with latent microstructure [1].
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the equilibrium problem, t is eliminated from the differential equations (38) with
the aid of the identity

divT W = −curl t, (43)

thanks to which the two equations merge in the single, higher-order equation

divT S + 1

2
curl (divM + c) + b = 0. (44)

Of course, the boundary conditions must be re-formulated accordingly.

6. Other geometrical constraints lead to dimensional reduction, providing thereby
the classical theories of plates and beams, viewed as two- and one-dimensional
Cosserat continua. Assume that the body in its reference configuration has a cylin-
drical shape, and let {e, eα} be an orthonormal triple of vectors, with e directed
as the axis of the cylinder. The constraint

v(x) = v3(x1, x2) e, ω(x) = ωα(x1, x2) eα, α ∈ {1, 2}, (45)

allows for a virtual velocity v parallel to e and for a virtual rotation ω about an
axis orthogonal to e. It also requires that both v and ω be constant in the direction
e. Under these constraints, the external power (35) reduces to

Pext (Γ, v3, ωα) =
∫

Γ

(b3v3 + cαωα) dA +
∫

∂Γ

(s3v3 + mαωα) d�, (46)

where the volume element Π is replaced by its perpendicular projection Γ in the
direction e, and d� is the line element on the boundary line ∂Γ .
In the relations (36), by effect of the constraints, the stress tensor Ti j degenerates
into the vector of the internal shearing forces Qα , and the couple-stress tensor
Mi j degenerates into the 2 × 2 tensor of the internal moments Mαβ

s3 = Qαnα, mα = Mαβnβ. (47)

Then the internal power becomes

Pint (Γ, v3, ωα) =
∫

Γ

(
(q + Qα,α)v3 + Qαv3,α

+(cα + Mαβ,β)ωα + Mαβωα,β

)
dA, (48)

with the component b3 of the body force now viewed as a transverse load q. The
indifference conditions (18) provide the balance equations

Qα,α + q = 0, Mαβ,β + cα + eαβ Qβ = 0, (49)


