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Preface

A module is extending (or CS, C1) if every complement submodule is a direct
summand or, equivalently, every submodule is essential in a direct summand. The
terms extending and lifting (dual to extending) were firstly used by Harada and
Oshiro ([Har82], [Oshi84]).

The importance of extending modules and rings in Ring and Module Theory,
and more generally in Algebra, became obvious in the 1990’s, but not exclusively,
through the impact of the publication of monographs of S.H. Mohammed and
B.J. Müller [MM90] and of N.V. Dung, D.V. Huynh, P.F. Smith, and R. Wis-
bauer [DHSW94]. Since that time there has been a continuing interest in such
rings and modules and their various generalizations which arose not only directly
from the study of CS concept, but also from work concerning the dual notion
to extending, namely, lifting. Many results obtained for extending modules and
rings were transfered to lifting modules and rings [CLVW06]. At a first glance, the
extending and generalized extending concepts appear to be too similar to expect
many differences in their application to the structure theory of rings and modules.
However, we have shown many “surprising” differences, as we indicate throughout
this monograph. To this end, we classified generalized extending modules into two
groups. The first group consists of generalized extending modules such that either
for every submodule or a kind of special submodules, there exists a direct sum-
mand with the property that the direct sum of the aforementioned submodule with
the direct summand is essentially contained in the module (inner type generaliza-
tion). The second group consists of generalizations of extending modules which are
based on a technical condition like a homomorphism into a direct summand or an
equivalence relation in the lattice of submodules, etc. (outer type generalization).
We also apply our former equivalence relation idea to the dual extending case. We
believe that this last application will foster research on dual extending modules
and related classes of modules, which in turn, will greatly broaden the scope of
the theory.

The purpose of this monograph is to give an up-to-date presentation of known
as well as new results on generalized extending modules and some complementary
results on extending matrix rings, and also to provide standard background mate-
rial, but with somewhat selective topics, on Ring and Module Theory. A number
of open research problems are listed at the end of the book to generate interest

xi
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in research on generalized extending and related duals. Each section includes ex-
ercises of varying degrees of difficulty for graduate students. To keep the book to
a reasonable length, some results have been included as exercises in various sec-
tions and appropriate references have been included in remarks at the end of each
chapters. We are very thankful to Patrick F. Smith and Gary F. Birkenmeier for
encouragement and constructive comments and suggestions for improvements.

We are thankful to our colleagues who helped by proof-reading various parts
of the book and provided technical advise, among them Yeliz Kara, Uğur Yücel,
Ramazan Yaşar, Talha Arıkan, Hacer İlhan, Hatice Zeybek, Esma Dirican, Nazife
Erkurşun Özcan, Aslı Pekcan, Sema Yayla, Mesut Şahin, and Seçil Tokgöz.

The errors that still may remain in the book are our own fault.

We are also thankful to Thomas Hempfling, Anna Mätzener, Sylvia Lotro-
vsky, Sarah Annette Goob, and the other staff at Springer Birkhäuser who have
been so helpful with our book project.

Ankara, TURKEY Adnan Tercan
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Introduction

The first chapter covers introductory material to parts of ring and module theory.
We deal with standard, yet somewhat selective background topics. We hope that
the chapter will prove useful for a general audience. We add numerous exercises
that provide supplementary results. The chapter does not contain all of the aspects
(e.g., category-theoretical concepts) on rings and modules, being too narrowly
focused for this, but it could serve as a basis for independent study in rings and
modules following a basic introduction to modern algebra.

Chapter 2 deals with certain type of modules, including those possessing the
C2 and C3 properties, the summand intersection property (SIP), and the summand
sum property (SSP) conditions. The first two sections present basic properties of
complement submodules and relative injective modules which are used in the rest
of the book. Section 3 introduces lifting submodules. Here, given two modules A
and X over a ring R, we say that a submodule N of A is a lifting submodule for
X in A if for any ϕ ∈ HomR(N,X) there exists θ ∈ HomR(A,X) such that the
restriction of θ on N is equal to ϕ. So, we build up the class

LiftX(A) = {N : N ≤ A and N is a lifting submodule for X in A}.

For instance, any direct summand of A belongs to LiftX(A). This new class
of submodules is examined in detail. Section 4 introduces the notion of ejectivity
and the class EliftX(A), which are interesting in their own right. We say that X is
A-ejective if, for eachK ≤ A and each homomorphism ϕ : K → X there exist a ho-
momorphism θ : A → X and an essential submodule E ofK such that θ(x) = ϕ(x)
for all x ∈ E. In this case, K is said to be an elifting submodule for X in A. So we
set EliftX(A) = {K : K ≤ A and K is an elifting submodule for X in A}. This
class is also examined in detail. The last section looks at module properties which
eventually give direct summands. Especially, C2 and C3 properties are character-
ized in terms of lifting submodules.

Chapter 3 collects several results on extending modules and rings and contin-
uous, quasi-continuous modules which cannot be found in other monographs. The
direct sum of two extending modules need not be extending, so Section 1 exam-
ines when a direct sum of an arbitrary number of extending modules is again an
extending module. The section ends with a look at the rational hull and members

xiii



xiv Introduction

of some distinguished class of submodules of an extending module which enjoy the
extending property.

Section 2 mainly concerns extending modules over commutative domains,
but also somewhat generalized versions of the main result to the noncommutative
setting. To this end we give a fundamental decomposition theorem on extending
modules which states that a torsion-free extending module over a commutative
domain is a finite direct sum of injective modules and uniform modules. We apply
this fact to obtain more information about extending modules over Dedekind do-
mains or principal ideal domains. Moreover, we show that any nonsingular reduced
extending module over a commutative ring with only a finite number of minimal
prime ideals has a finite uniform dimension; and any nonsingular extending mod-
ule over a semiprime Goldie ring is a finite direct sum of injective modules and
uniform modules.

Section 3 considers generalized triangular matrix (also called formal tri-
angular matrix) CS-rings and the split null extension (also called trivial exten-
sion) CS-rings. Chapter 3 ends with a section on the notions of continuous and
quasi-continuous modules; in particular, it is shown that continuous and quasi-
continuous modules can be characterized in terms of lifting homomorphisms from
certain submodules to the module itself.

The opening section of Chapter 4 introduces class of a generalized extend-
ing modules which are called weak CS-modules. A module A is weak CS if every
semisimple submodule of A is essential in a direct summand. Any direct sum of a
semisimple submodule and an injective module is a weak CS-module, but such a
module is not, in general, a CS-module, even over a Dedekind domain. Moreover,
over a Dedekind domain, every module with finite uniform dimension is a weak
CS-module. In fact, weak CS-modules share some of the properties of CS-modules.
For example, if a weak CS-module satisfies the ascending chain condition on essen-
tial submodules, then it is a direct sum of a semisimple module and a Noetherian
module.

Section 2 introduces C11-modules. A module A satisfies C11 (or is a C11-
module) if every (complement) submodule has a complement which is a direct
summand of A. Any direct sum of modules with C11 satisfies C11. Furthermore,
a module A satisfies C11 if and only if A = Z2(A) ⊕ K for some (nonsingular)
submodule K of A and Z2(A) and K both satisfy C11. This result shows that the
study of modules with property C11 reduces to the case of Goldie torsion modules
and nonsingular modules. In contrast to extending modules, direct summands of a
C11-module need not be C11, in general. The following example is quite interesting
in its own right. Let S = R[x, y, z] and R = S/Ss, where s = x2+y2+z2−1. Then
the R-module A = R⊕R⊕R satisfies C11 but contains an indecomposable direct
summand K with uniform dimension 2 and K does not satisfy C11. For instance,
K corresponds to regular sections of the tangent bundle of the real 2-sphere S2.

However, it is shown in Section 3 that the C11 condition with a conditional
direct summand property ensure that C11 is inherited by direct summands. This
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section also provides a decomposition into uniform submodules for C11-modules
that satisfy chain conditions on left annihilators or essential submodules.

In Section 4, we continue the study of structural properties of C11-modules
and connections between the C11 condition and various other generalizations of
CS condition. A module A is FI-extending if every fully invariant submodule of
A is essential in a direct summand of A [BCFG01], [BMR02], [BPR02]. Since the
C11 property lies strictly between the CS and FI-extending properties, it is natural
to seek conditions which ensure that a C11-module is CS, or that a FI-extending
module is C11. Such conditions are given in this section.

The focus in Section 5 is on extensions of C11-rings and modules. We study
the transference of the C11 condition from a given ring or module to various ring
or module extensions. In particular, we show that if R is a right C11-ring (i.e., RR

is a C11-module), then the ring of column finite matrices of size Γ over R, the ring
of m-by-m upper triangular matrices over R, and any right essential overring T of
R are all right C11-rings. We also provide necessary and sufficient conditions under
which the generalized triangular matrix ring is a right C11-ring. For a module A,
we prove that all essential extensions of A satisfying C11 are essential extensions
of C11-modules constructed from A and certain subsets of idempotent elements of
the ring of endomorphisms of the injective hull of A. Finally, we prove that if A
is a C11-module, then so is its rational hull.

Section 6 introduces a framework which encompasses most of the generaliza-
tions of the CS property and allows us to target specific sets of submodules of a
module for application of the CS property. Let ∅ �= C ⊆ L(A), where L(A) de-
notes the set of submodules of A. We say A is C-extending if for each X ∈ C there
exists a direct summand D of A such that X is essential in D. This concept was
introduced by Oshiro in [Oshi83] with slightly different terminology and notation.
Oshiro assumes that C is closed under isomorphisms and essential extensions. In
[DS98], the authors introduce type 1 χ-extending and type 2 χ-extending modules,
where χ is a class of modules containing the zero submodule and closed under iso-
morphisms. In contrast to [Oshi83] and [DS98], we do not implicitly assume that
C is closed under isomorphisms or essential extensions. Our investigation focuses
on the behavior of C-extending modules with respect to direct sums and direct
summands. We obtain various well-known results about extending modules and
generalizations as corollaries of our results.

In Section 7 we continue our investigation on C-extending modules with
respect to essential extensions. This section explains how to construct essential
extensions of a module A which are C-extending by using a set of representatives
of an equivalence relation γC on {e = e2 ∈ EE(A)}, where EE(A) denotes the
endomorphisms of the injective hull of A; and characterize when the rational hull
of A is C-extending in terms of such a set of representatives. The section ends
with several well-known types of C-extending conditions transfer from the module
to its rational hull.
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Section 8 concerns P I-extending rings. A ring R is right PI-extending if every
projection invariant right ideal of R is essential in a direct summand of R. This
section provides the transfer of the P I-extending condition from ring R to its
various ring extensions. More specifically, one derives when a generalized upper
triangular matrix is right P I-extending. The last section of Chapter 4 looks at
weak version of the C11 property. A module A is weak C11 if every semisimple
submodule has a complement which is a direct summand of A. Weak C11-modules
are a proper generalization of both C11-modules and weak CS-modules.

The first section of Chapter 5 concerns the class of C12-modules. This class
properly contains the class of C11-modules. A module A satisfies C12 if, for every
submodule N of A, there exist a direct summand K of A and a monomorphism α :
N → K such that α(N) is an essential submodule ofK. This section presents struc-
tural properties of C12-modules and relationships with the other generalized ex-
tending conditions. The section ends with results on a weak version ofC12-modules.

Section 2 looks at modules A such that every homomorphism from a com-
plement submodule of A to A can be lifted to A. Although such modules share
some of the properties of CS-modules, it is shown that they form a substantially
bigger class.

Section 3 focuses on the class of CLS-modules, which is another proper gen-
eralization of the class of extending modules. A module A is CLS if every z-closed
submodule of A is a direct summand of A. Here, if N is a submodule of A, we say
that N is z-closed if Z(A/N) = 0, i.e., A/N is nonsingular.

In Section 4, we defined a module A to be G-extending (or Goldie extending)
if for each submodule X of A there exists a direct summand D of A such that
X ∩D is essential in both X and D. We develop several characterizations of the
G-extending condition and we locate the G-extending condition with respect to
several generalizations of the extending condition. Moreover, we obtain various
conditions for a direct sum of G-extending modules to be G-extending or for a
direct summand of a G-extending module to be G-extending. Our results enable
us to obtain a characterization of the G-extending Abelian groups.

Uniform modules are often considered to be fundamental objects in the struc-
ture theory of various classes of modules, e.g., the class of modules with finite
uniform dimension, or the class of extending modules. Hence, for a given class,
solving the following problems is important.

(1) Determine conditions which force a module from a given class to be a direct
sum of uniform submodules.

(2) Determine when a direct sum of uniform modules is in a given class.

Section 5 begins with results providing answers to the first problem and
continues with solutions to the second problem, where the given class of modules
is the G-extending class. Section 5 finishes with results on G-extending essential
extensions of a module.



Introduction xvii

Section 6 looks at the G-extending condition under various ring extensions.
Amongst other results, it shows that if RR is G-extending and S is a right essential
overring, then SR and SS are G-extending.

Section 7 is mainly devoted to the characterization of G-extending modules
over Dedekind domains and principal ideal domains. Furthermore, the finite di-
rect sums and direct summands of G-extending modules over such domains are
examined.

In Section 8, we obtain a characterization of the right G-extending generalized
triangular matrix rings. This result and its corollaries improve and generalize the
existing results on right extending generalized triangular matrix rings. Connections
to operator theory and a characterization of the class of right extending right SI-
rings are also established.

Chapter 6 is devoted to dual Goldie and ec-complement versions of the ex-
tending property. It is well known that lifting modules are dual to extending
modules and there are many works on this subject in the literature.

Section 1 introduces Goldie∗-supplemented modules, which are dual to Goldie
extending modules. We investigate this new class of modules and the class of H-
supplemented modules. These classes are located among various well-known classes
of modules related to the class of lifting modules.

Section 2 deals with the classes of Goldie-rad-supplemented and rad-H-sup-
plemented modules which are based on the β∗∗ equivalence relation. A mod-
ule A is Goldie-rad-supplemented if for every submodule N of A, there exists
a rad-supplement submodule S in A such that Nβ∗∗S. A module A is rad-H-
supplemented if for every submodule N of A, there exists a direct summand D
of A such that Nβ∗∗D. Section 3 concerns ECS and EC11-modules as weaker
forms of extending and C11-modules, respectively. A module A is an ECS-module
if every ec-complement submodule of A is a direct summand. A module A is an
EC11-module if every ec-submodule of A has a complement which is a direct sum-
mand. Here, given a submodule N of A, we say that N is an ec-complement if N
is a complement in A that contains essentially a cyclic submodule.

Chapter 7 formulates a number of open problems and questions. We think
that our problems are legitimate and will provide a basis for further research which
will in turn greatly broaden the scope of the theory. Here we should mention
recent developments on the latticial counterparts of conditions Ci (i = 1, 2, 3) and
C1j (j = 1, 2) for modules and applications to Grothendieck categories, module
categories equipped with a torsion theory [AIT16].

The book ends with an Appendix. Since we do not treat in detail the rings
of quotients in the previous chapters, it is better to construct these kind of rings
for graduate students in mathematics. We believe that this appendix will allow to
build a bridge between our theory and notions treated in the monograph [BPR13].
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N The set of positive integers

Z The ring of integers

Zn or Z/Zn (n > 1) The ring of integers modulo n

Z(p∞) The Prüfer p-group∏
Z The Specker group
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R The field of real numbers

C The field of complex numbers
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Chapter 1

Introducing Modules

In this chapter we introduce modules, explore some of their general properties and
then go on to look at particular types of modules. Why are modules so important?
There are two basic reasons. In the first place, the concept of a module is a very
general one and examples abound, including some very familiar ones. Secondly, the
theory of rings is intimately connected with that of modules and it is inconceivable
to try to study the former without some reference to the latter. Without further
ado let us begin with the definition of a module.

1.1 Modules

Let A be an Abelian group with binary operation +. Let EndA denote the collec-
tion of endomorphisms θ of A, i.e., θ : A→ A satisfies

θ(a+ b) = θ(a) + θ(b) (a, b ∈ A).

Define addition and multiplication in EndA by

(θ + φ)(a) = θ(a) + φ(a)

(θφ)(a) = θ(φ(a))

for all θ, φ ∈ EndA, a ∈ A. With these definitions it can be checked that EndA is
a ring, called the ring of endomorphisms of A, with zero element the zero mapping
zA : A → A given by zA(a) = 0 (a ∈ A) and identity element the identity mapping
iA : A → A given by iA(a) = a (a ∈ A). For example, suppose that A is an infinite
cyclic group generated by an element a. For each n ∈ Z define θn ∈ EndA by
θn(ka) = nka (k ∈ Z). It is easy to verify that

(i) EndA = {θn : n ∈ Z}, and
(ii) θn + θm = θn+m and θnθm = θnm (n,m ∈ Z).
Thus the mapping f : Z → EndA defined by f(n) = θn (n ∈ Z) is a ring isomor-
phism, i.e., EndA ∼= Z.
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2 Chapter 1. Introducing Modules

Now let R be a ring. Throughout, without further notice, R will always denote
a ring with identity 1. An Abelian group A is called a left R-module if there
exists a homomorphism f : R → EndA. In particular, f satisfies f(1) = iA. A
homomorphism f : R → EndA is sometimes called a representation of R as a ring
of endomorphisms of A. In particular, A is a left (EndA)-module.

Let A be a left R-module and f : R → EndA the associated homomorphism.
Given any elements r ∈ R and a ∈ A we define the “product” ra as

ra = f(r)(a).

Note the following elementary properties:

(i) ra ∈ A,

(ii) r(a1 + a2) = ra1 + ra2,

(iii) (r1 + r2)a = r1a+ r2a, (1.1)

(iv) (r1r2)a = r1(r2a), and

(v) 1a = a

for all a, a1, a2 ∈ A and r, r1, r2 ∈ R. Conversely, suppose that A is an Abelian
group and R a ring for which the product ra can be defined for all r ∈ R, a ∈ A,
in such a way that (1.1) holds. For each r in R define θr ∈ EndA by θr(a) = ra
(a ∈ A). Define g : R → EndA by g(r) = θr (r ∈ R). Then g is clearly a
homomorphism and thus A is a left R-module. To summarise, an Abelian group
A is a left R-module if and only if the product ra can be defined for all r ∈ R and
a ∈ A that (1.1) holds.

The product in the last paragraph is very reminiscent of something so fa-
miliar, namely, the product of a vector by a scalar in a vector space, and for this
reason we shall refer to it as multiplication by a scalar. In fact it is now clear that
if R is a field, then left R-modules are precisely vector spaces over R. On the other
hand, every Abelian group A is a Z-module with multiplication by scalars given by

na =

⎧⎨⎩
a+ · · ·+ a (n times), if n ∈ N,
0, if n = 0,
(−a) + · · ·+ (−a) (n times), if −n ∈ N,

for all a ∈ A. Vector spaces and Abelian groups are good examples of modules
to keep in mind, and it will be helpful to consider, each time a new definition is
introduced in the sequel, what it means for these two classes of examples. Indeed
a great deal of what follows is motivated by them.

Before proceeding any further, let us make several remarks. Given a left
R-module A, we know that there is a homomorphism f : R → EndA but of
course in general there may be many such homomorphisms. For example, if h
is an endomorphism of R then fh : R → EndA is a homomorphism. For each
homomorphism from R to EndA there is a corresponding multiplication by scalars
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defined as above, so that, in general A will have many such products. However,
the important thing to remember is that A has one such product and we tend
to forget that it has others. Secondly, if S is a subring of R, then by considering
the appropriate restriction of f we see at once that A is a left S-module. More
generally, if T is a ring and g : T → R a homomorphism, then A is a left T -module.
Thus the same Abelian group A will be a left module for many different rings.

If A is a left R-module, then there is a homomorphism f : R → EndA and
as always in this kind of situations we are interested in how much information
about R is lost under this homomorphism. The normal way to measure this loss is
by considering the kernel ker f of f , which is a very important ideal as far as the
module A is concerned. The ideal ker f is called the annihilator of A in R, and is
denoted by annRA. Why is it given this name? Recall that

annRA = {r ∈ R : f(r) = zA} = {r ∈ R : ra = 0 (a ∈ A)},

so that each element r in annRA “annihilates” each element a in A in the sense
that ra = 0. Now let I be an ideal of R such that I ⊆ annRA. Then f : R → EndA
induces a homomorphism f1 : R/I → EndA so that A is a non-trivial left (R/I)-
module. Note further that in terms of the multiplication by scalars defined above
we have

(r + I)a = ra (r ∈ R, a ∈ A).

Borrowing from the language of representation theory, a left R-module A is called
faithful if annRA = 0, i.e., with the above notation f : R → EndA is a monomor-
phism, and so a faithful representation of R.

Right modules can be defined in analogy with left modules. An Abelian group
A is called a right R-module if there exists an anti-homomorphism g : R → EndA.
This just means that g preserves addition and

g(r1r2) = g(r2)g(r1)

for all r1, r2 ∈ R. In practice this allows one to define the product ar for all a ∈ A,
r ∈ R so that the analogous properties to (1.1) are satisfied. If S and T are rings,
then by a left S-, right T -bimodule is meant an Abelian group A such that A is a
left S-module, a right T -module, and

s(at) = (sa)t

for all a ∈ A, s ∈ S and t ∈ T . We often denote the fact that an Abelian group is
a left R-module, a right R-module, or a left S-, right T -bimodule simply by

RA, AR, SAT ,

respectively. Let S and T be subrings of a ring R and I an ideal of R. Then I is a
left S-, right T -bimodule, i.e., SIT , and in particular RRR. Moreover, left ideals of
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R are leftR-modules and right ideals ofR are rightR-modules, where in all of these
cases the product by a scalar on either side is given by the multiplication of R.

Let n ∈ N and Mn(R) denote the ring consisting of all n× n matrices with
entries in R, addition and multiplication of matrices being given by the usual rules.
If R is a field, then the ring Mn(R) is familiar. In the sequel matrix rings over
rings other than fields will be considered in various places. At this point merely
note that RMn(R)R. For, if m ∈ Mn(R) is a matrix with (i, j)th entry mij for
1 ≤ i, j ≤ n and r ∈ R, define rm and mr to be the matrices with (i, j)th entry
rmij and mijr for 1 ≤ i, j ≤ n, respectively, and check that RMn(R)R.

Now we introduce a method of producing modules from given ones. Let Λ
be any non-empty index set (i.e., Λ is just a set of labels). Let R be a ring and
Aλ (λ ∈ Λ) a collection of left R-modules. The direct product A =

∏
λ∈Λ Aλ is

defined as follows. The set A consists of all lists {aλ}, where aλ ∈ Aλ (λ ∈ Λ),
and addition and multiplication by a scalar are defined by

{aλ}+ {bλ} = {aλ + bλ},
and

r{aλ} = {raλ},
for all aλ, bλ ∈ Aλ (λ ∈ Λ), r ∈ R. It is not hard to check that A is also a left
R-module. For each λ ∈ Λ the module Aλ is called a direct factor of A. In the
special case when there exists RC such that Aλ = C (λ ∈ Λ), then A is written
as CΛ. Perhaps it is worth spelling out what this definition means when Λ is a
finite set. Suppose that k is a positive integer and Ai is a left R-module for each
1 ≤ i ≤ k (so we are taking Λ = {1, . . . , k}). Then

A = {(a1, . . . , ak) : ai ∈ Ai (1 ≤ i ≤ k)},
with equality, addition, and multiplication being given by the rules:

(a1, . . . , ak) = (b1, . . . , bk) if and only if ai = bi (1 ≤ i ≤ k),

(a1, . . . , ak) + (b1, . . . , bk) = (a1 + b1, . . . , ak + bk), and

r(a1, . . . , ak) = (ra1, . . . , rak),

for all ai, bi ∈ Ai (1 ≤ i ≤ k) and r ∈ R. In case Ai = C (1 ≤ i ≤ k), A is written
as Ck.

Let Rλ (λ ∈ Λ) be a non-empty collection of rings and R =
∏

λ∈ΛRλ their
direct product as Z-modules. The Z-module R can be given the structure of a ring
by defining multiplication as

{rλ} · {sλ} = {rλsλ}
for all rλ, sλ ∈ Rλ (λ ∈ Λ). The ring R is called the direct product of the rings Rλ

(λ ∈ Λ). Note that R has zero element {0λ} and identity element {1λ}, where 0λ
is the zero and 1λ the identity of Rλ (λ ∈ Λ).
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Notation. The symbol 0 will have a number of different roles in the sequel. For
example, 0 will denote the zero element of a ring or of a module. In addition, the
subset {0} of a ring or module will also be denoted by 0. No confusion should arise
since the context should make it clear which meaning to attach to 0.

Exercises

1.1. Given RA, prove that

(i) 0a = 0 and r0 = 0 for all a ∈ A and r ∈ R,

(ii) (−r)a = −(ra) = r(−a) for all r ∈ R, a ∈ A, and

(iii) r(na) = n(ra) for all r ∈ R, n ∈ Z, and a ∈ A.

1.2. Let R be a commutative ring (i.e., rs = sr for all r, s ∈ R) and A an Abelian
group. Prove that the following statements are equivalent:

(i) A is a left R-module,

(ii) A is a right R-module,

(iii) A is a left R-, right R-bimodule.

(In this case A is called simply an R-module.)

1.3. Prove that if RA, then RAZ.

1.4. Let I be an ideal of a ring R and A a left (R/I)-module. Prove that

(i) A is a left R-module such that I ⊆ annRA, and

(ii) annR/IA = (annRA)/I.
Given RB, deduce that B is a faithful left (R/I)-module if and only if I =
annRB.

1.5. Give an example of a ring R and a subring S of R such that S is not a left
R-module. Give an example of a ring T for which there exists a left T -module A
which is not a right T -module.

1.6. Let R and S be rings and RAS . Let T denote the set of “matrices”of the form[
r a
0 s

]
,

where r ∈ R, a ∈ A, and s ∈ S. Define[
r a
0 s

]
=

[
r′ a′

0 s′

]
if r = r′, a = a′, and s = s′,[

r a
0 s

]
+

[
r′ a′

0 s′

]
=

[
r + r′ a+ a′

0 s+ s′

]
and[

r a
0 s

] [
r′ a′

0 s′

]
=

[
rr′ ra′ + as′

0 ss′

]
,
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for all r, r′ ∈ R, s, s′ ∈ S, and a, a′ ∈ A. Prove that with respect to these definitions
T is a ring. The ring T is usually denoted by[

R A
0 S

]
.

1.7. Let R be a ring and RAR. Prove that the set of “matrices”[
r a
0 r

]
,

where r ∈ R and a ∈ A, forms a ring which is usually denoted by⎡⎣R A
�

0 R

⎤⎦ .

Further, prove that if R is a commutative ring and A is an R-module, then the
ring ⎡⎣R A

�
0 R

⎤⎦
is also commutative.

1.2 Homomorphisms

Recall that in the theory of vector spaces the key idea is that of a linear mapping.
The corresponding concept in module theory is called a homomorphism, and this
will be defined next. Let RA and RB. A mapping θ : A → B is called an R-
homomorphism (or simply a homomorphism when there is no ambiguity about
the ring being considered) provided

θ(a1 + a2) = θ(a1) + θ(a2), and

θ(ra) = rθ(a)

for all a, a1, a2 ∈ A, r ∈ R. The first of these properties shows that θ is an Abelian
group homomorphism in particular, and thus we know at once from the properties
of such homomorphisms that

(i) θ(0A) = 0B,

(ii) θ(−a) = −θ(a), and

(iii) θ(na) = nθ(a),

(1.2)

for all a ∈ A, n ∈ Z, where 0A, 0B denote the zero elements of A and B, re-
spectively. In particular, (1.2) shows that Z-homomorphisms are precisely Abelian
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group homomorphisms. Moreover, (1.2) also gives that if a1 and a2 are elements of
A such that θ(a1) = θ(a2), then θ(a1 − a2) = 0B. The kernel ker θ and the image
im θ of θ are defined as follows:

ker θ = {a ∈ A : θ(a) = 0B},
and

im θ = {θ(a) : a ∈ A}.

The homomorphism θ is called a monomorphism provided it is one-to-one, i.e.,
θ(a1) �= θ(a2) for all a1 �= a2 in A, equivalently ker θ = {0A}. On the other hand,
θ is called an epimorphism provided it is onto, i.e., for each element b in B there
exists an element a in A such that b = θ(a), equivalently B = im θ. If there is
an epimorphism θ : A → B, then B is sometimes called a homomorphic image
of A. The mapping θ is called an isomorphism if it is both a monomorphism and
an epimorphism, and in this case A and B are called isomorphic, B is called an
isomorphic copy of A, and we write A ∼= B. If θ : A→ B is an isomorphism, then
θ is a bijection in particular, and hence has an inverse mapping θ−1 : B → A,
which is also an R-homomorphism, as a moment’s thought will show. If θ : A → B
is a monomorphism, then θ induces an isomorphism A ∼= im θ, and for this reason
θ will sometimes be called an embedding and we say that A is embedded in B.

Given Abelian groups A,B, the collection of all Z-homomorphisms θ : A → B
will be denoted by Hom(A,B). If θ, φ ∈ Hom(A,B) then their sum θ + φ is the
mapping from A to B defined by

(θ + φ)(a) = θ(a) + φ(a) (a ∈ A).

It is easy to check that with this definition of addition Hom(A,B) is an Abelian
group. The zero of the group Hom(A,B) is the mapping which maps each element
of A to the zero of B, and will also be denoted by 0. Now suppose that RA and RB.
Then it can be checked that the collection HomR(A,B) of all R-homomorphisms
θ : A→ B is a subgroup of Hom(A,B). Note that in this notation HomZ(A,B) =
Hom(A,B). Sometimes HomR(A,B), or even Hom(A,B), is a left or right R-
module, as the following result shows (see also Exercises 1.9 and 1.24).

Proposition 1.1. Let A be a right R-module and B an Abelian group. Then
Hom(A,B) is a left R-module.

Proof. Given r ∈ R and θ ∈ Hom(A,B), define the mapping r.θ : A → B by

(r.θ)(a) = θ(ar) (a ∈ A).

Then r.θ ∈ Hom(A,B). If r1, r2 ∈ R and θ ∈ Hom(A,B) then, for any a ∈ A,

[(r1 + r2).θ](a) = θ(a(r1 + r2)) = θ(ar1 + ar2) = θ(ar1) + θ(ar2)

= (r1.θ)(a) + (r2.θ)(a) = (r1.θ + r2.θ)(a).



8 Chapter 1. Introducing Modules

It follows that (r1 + r2).θ = r1.θ + r2.θ and hence (1.1)(iii) is satisfied. The re-
maining properties in (1.1) can be verified in a similar way for this product, and
it follows that Hom(A,B) is a left R-module. �

For any RA, a homomorphism θ : A → A is called an R-endomorphism (or
simply endomorphism) of A. Denote the collection of all R-endomorphisms of A
by EndR(A). Note that

EndZ(A) = EndA and EndR(A) = HomR(A,A).

Moreover, EndR(A) is a subring of EndA. An endomorphism θ of A is called an
automorphism provided it is a bijection, i.e., automorphisms are endomorphisms
which are also isomorphisms.

Given left R-modules A,B,C,D, let θ ∈ HomR(A,B), φ ∈ HomR(B,C) and
ψ ∈ HomR(C,D). Define φθ : A → C by

φθ(a) = φ(θ(a)) (a ∈ A).

It can easily be checked that φθ ∈ HomR(A,C) and that ψ(φθ) = (ψφ)θ, so
that the mapping ψ(φθ) is simply written ψφθ. There is a Z-homomorphism θ� :
HomR(C,A) → HomR(C,B), defined by

θ�(α) = θα (α ∈ HomR(C,A));

likewise, there is a Z-homomorphism θ� : HomR(B,C) → HomR(A,C) defined by

θ�(β) = βθ (β ∈ HomR(B,C)).

Let Aλ (λ ∈ Λ) be a non-empty collection of left R-modules and A their direct
product

∏
λ∈ΛAλ. For each μ ∈ Λ there exists an R-epimorphism πμ : A → Aμ

(called the canonical or natural projection) defined by

πμ({aλ}) = aμ

for all aλ ∈ Aλ (λ ∈ Λ). The mapping πμ is sometimes called the μ-projection. On
the other hand, for each ν ∈ Λ and b ∈ Aν let ιλ(b) denote the element {bλ} of A
defined by bλ = b if λ = ν and bλ = 0 otherwise. Then ιν is an R-monomorphism
(called the canonical or natural injection) for each ν ∈ Λ. Note that

(i) πμιν = 0 for all μ �= ν in Λ, and

(ii) πμιμ = iAμ (μ ∈ Λ).

In this context, in the sequel any mappings πμ and ιμ introduced without comment
should be understood to be these R-homomorphisms.

Given left R-modules A,B,C, to say that

A
θ−→ B

φ−→ C
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is an exact sequence means that θ and φ are R-homomorphisms such that

im θ = kerφ.

Note, in particular, that if A = 0, then φ is a monomorphism and if C = 0 then
θ is an epimorphism. More generally, an exact sequence consists of a collection of
left R-modules An (n ∈ Z) and R-homomorphisms θn : An → An+1 such that
im θn = ker θn+1 (n ∈ Z) and this is denoted by

· · · −→ A−2
θ−2−→ A−1

θ−1−→ A0
θ0−→ A1

θ1−→ A2
θ2−→ · · · exact. (1.3)

If Am = 0 for all m ≥ n+ 1, then (1.3) is written

· · · −→ A−2
θ−2−→ A−1

θ−1−→ A0
θ0−→ A1

θ1−→ · · · −→ An
θn−→ 0 exact.

An exact sequence

0 −→ A
θ−→ B

φ−→ C −→ 0 (1.4)

is called a short exact sequence. A short exact sequence (1.4) it is said to split or
to be split exact provided there exists ψ ∈ HomR(C,B) such that φψ = iC .

A set-up of the type

A

α

��

θ �� B

β

��

C
φ

�� D

where A,B,C,D are all left R-modules and θ, φ, α, β R-homomorphisms is called
a diagram of R-modules. The diagram is said to commute or to be commutative
provided βθ = φα. Using such diagrams as building blocks, bigger diagrams of
R-modules can be produced, e.g.,

B′

β′

��

φ′
�� C′

γ′

��

�� 0 exact

A

α

��

θ �� B

β

��

φ
�� C

γ

��

�� 0 exact

A′′

��

θ′′
�� B′′

��

φ′′
�� C′′

��

�� 0

0 0 0

exact exact exact

(1.5)

where A, B, C, B′, C′, A′′, B′′, C′′ are left R-modules and α, β, γ, β′, γ′, θ, φ, φ′,
θ′′, φ′′ R-homomorphisms. To say that such a bigger diagram commutes is to mean


