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   Introduction 
   XML and (the more popular) JSON let you organize data in textual formats. 
This book introduces you to these technologies along with Java APIs for 
integrating them into your Java code. This book introduces you to XML and 
JSON as of Java 8 update 60. 

 Chapter   1     introduces XML, where you learn about basic language features 
(such as the XML declaration, elements and attributes, and namespaces). 
You also learn about well-formed XML documents and how to validate them 
via the Document Type Definition and XML Schema grammar languages. 

 Chapter   2     focuses on Java’s SAX API for parsing XML documents. You learn 
how to obtain a SAX 2 parser; you then tour  XMLReader  methods along with 
handler and entity resolver interfaces. Finally, you explore a demonstration 
of this API and learn how to create a custom entity resolver. 

 Chapter   3     addresses Java’s DOM API for parsing and creating XML 
documents. After discovering the various nodes that form a DOM document 
tree, you explore the DOM API, where you learn how to obtain a DOM 
parser/document builder and how to parse and create XML documents. 

 Chapter   4     places the spotlight on Java’s StAX API for parsing and creating 
XML documents. You learn how to use StAX to parse XML documents with 
stream-based and event-based readers, and how to create XML documents 
with stream-based and event-based writers. 

 Moving on, Chapter   5     presents Java’s XPath API for simplifying access to 
a DOM tree’s nodes. You receive a primer on the XPath language, learning 
about location path expressions and general expressions. You also explore 
advanced features starting with namespace contexts. 

 Chapter   6     completes my coverage of XML by targeting Java’s XSLT API. You 
learn about transformer factories and transformers, and much more. 

http://dx.doi.org/10.1007/978-1-4842-1916-4_1
http://dx.doi.org/10.1007/978-1-4842-1916-4_2
http://dx.doi.org/10.1007/978-1-4842-1916-4_3
http://dx.doi.org/10.1007/978-1-4842-1916-4_4
http://dx.doi.org/10.1007/978-1-4842-1916-4_5
http://dx.doi.org/10.1007/978-1-4842-1916-4_6
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 Chapter   7     switches gears to JSON. You receive an introduction to JSON, 
take a tour of its syntax, explore a demonstration of JSON in a JavaScript 
context (because Java doesn’t yet officially support JSON), and learn how to 
validate JSON objects in the context of JSON Schema. 

 You’ll need to work with third-party libraries to parse and create JSON 
documents. Chapter   8     introduces you to the mJson library. After learning 
how to obtain and use mJson, you explore the  Json  class, which is the entry 
point for working with mJSon. 

 Google has released an even more powerful library for parsing and creating 
JSON documents. The Gson library is the focus of Chapter   9    . In this chapter, 
you learn how to parse JSON objects through deserialization, how to create 
JSON objects through serialization, and much more. 

 Chapter   10     completes my coverage of JSON by presenting the JsonPath 
API for performing XPath-like operations on JSON documents. 

 Each chapter ends with assorted exercises that are designed to help you 
master the content. Along with long answers and true/false questions, 
you must also perform programming exercises. Appendix A provides the 
answers and solutions. 

 Thanks for purchasing this book. I hope you find it helpful in understanding 
XML and JSON in a Java context. 

 —Jeff Friesen 
 (April, 2016) 

  

 Note   You can download this book’s source code by pointing your web browser 
to    www.apress.com/9781484219157         and clicking the Source Code tab 
followed by the Download Now link. 

http://dx.doi.org/10.1007/978-1-4842-1916-4_7
http://dx.doi.org/10.1007/978-1-4842-1916-4_8
http://dx.doi.org/10.1007/978-1-4842-1916-4_9
http://dx.doi.org/10.1007/978-1-4842-1916-4_10
http://www.apress.com/9781484219157This link isn't active yet, FYI
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    Chapter 1   
 Introducing XML                          
 Applications commonly use XML documents to store and exchange data. 
XML defines rules for encoding documents in a   format     that is both 
  human-readable     and   machine-readable    . This chapter introduces XML, tours 
the XML language features, and discusses well-formed and valid documents. 

     What Is XML? 
  XML  (eXtensible Markup  Language  ) is a   metalanguage    (a language used to 
describe other languages) for defining  vocabularies  (custom markup languages), 
which is the key to XML’s importance and popularity. XML-based vocabularies 
(such as XHTML) let you describe documents in a meaningful way. 

  XML   vocabulary documents are like HTML (see    http://en.wikipedia.org/
wiki/HTML     ) documents in that they are text-based and consist of  markup  
(encoded descriptions of a document’s logical structure) and  content  
(document text not interpreted as markup). Markup is evidenced via  tags  
(angle bracket-delimited syntactic constructs) and each tag has a name. 
Furthermore, some tags have  attributes  (name-value pairs)   . 

Electronic supplementary material The online version of this chapter 
(doi:  10.1007/978-1-4842-1916-4_1    ) contains supplementary material, which is 
available to authorized users.

https://en.wikipedia.org/wiki/File_format#File format
https://en.wikipedia.org/wiki/Human-readable_medium#Human-readable medium
https://en.wikipedia.org/wiki/Machine-readable_data#Machine-readable data
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/HTML
http://dx.doi.org/10.1007/978-1-4842-1916-4
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  If you haven’t previously encountered XML, you might be surprised by its 
simplicity and how closely its vocabularies resemble HTML. You don’t need 
to be a rocket scientist to learn how to create an XML  document  . To prove 
this to yourself, check out Listing  1-1 . 

                 Listing 1-1.    XML-Based Recipe for a Grilled Cheese Sandwich   

 <recipe> 
    <title> 
       Grilled Cheese Sandwich 
    </title> 
    <ingredients> 
       <ingredient qty="2"> 
          bread slice 
       </ingredient> 
       <ingredient> 
          cheese slice 
       </ingredient> 
       <ingredient qty="2"> 
          margarine pat 
       </ingredient> 
    </ingredients> 
    <instructions> 
       Place frying pan on element and select medium heat. For each bread 
slice, smear one pat of margarine on one side of bread slice. Place cheese 
slice between bread slices with margarine-smeared sides away from the 
cheese. Place sandwich in frying pan with one margarine-smeared side in 
contact with pan. Fry for a couple of minutes and flip. Fry other side for a 
minute and serve. 
    </instructions> 
 </recipe> 

   Listing  1-1  presents an XML document that describes a recipe for making 
a grilled cheese sandwich. This document is reminiscent of an HTML 
document in that it consists of tags, attributes, and content. However, that’s 

 Note   XML and HTML are descendants of   Standard Generalized Markup 
Language (SGML)   , which is the original metalanguage for creating vocabularies. 
XML is essentially a restricted form of SGML, while HTML is an  application  of 
SGML. The key difference between XML and HTML is that XML invites you to 
create your own vocabularies with its own tags and rules, whereas HTML gives 
you a single precreated vocabulary with its own fixed set of tags and rules. 
XHTML and other XML-based vocabularies are  XML applications . XHTML was 
created to be a cleaner implementation of HTML. 
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 Note   Although Listing  1-1 ’s  <title>  and  </title>  tags are also found in 
HTML, they differ from their HTML counterparts. Web browsers typically display 
the content between these tags in their title bars. In contrast, the content 
between Listing  1-1 ’s  <title>  and  </title>  tags might be displayed as a 
recipe header, spoken aloud, or presented in some other way, depending on the 
application that parses this document. 

where the similarity ends. Instead of presenting HTML tags such as  <html> , 
 <head> ,  <img> , and  <p> , this informal recipe language presents its own 
 <recipe> ,  <ingredients> , and other tags. 

       Language Features Tour 
 XML provides several language features for use in defining custom markup 
languages: XML declaration, elements and attributes, character references 
and CDATA sections, namespaces, and comments and processing 
instructions. You will learn about these language features in this section. 

     XML  Declaration   
 An XML document usually begins with the  XML declaration , which is special 
markup telling an XML parser that the document is XML. The absence of the 
XML declaration in Listing  1-1  reveals that this special markup isn’t mandatory. 
When the XML declaration is present, nothing can appear before it. 

 The XML declaration minimally looks like  <?xml version="1.0"?>  in which 
the nonoptional  version  attribute identifies the version of the XML 
specification to which the document conforms. The initial version of this 
specification (1.0) was introduced in 1998 and is widely implemented. 

 Note   The  World Wide Web Consortium (W3C)  , which maintains XML, released 
version 1.1 in 2004. This version mainly supports the use of line-ending 
characters used on EBCDIC platforms (see    http://en.wikipedia.org/
wiki/EBCDIC     ) and the use of scripts and characters that are absent from 
Unicode 3.2 (see    http://en.wikipedia.org/wiki/Unicode     ). Unlike 
XML 1.0, XML 1.1 isn’t widely implemented and should be used only by those 
needing its unique features. 

http://en.wikipedia.org/wiki/EBCDIC
http://en.wikipedia.org/wiki/EBCDIC
http://en.wikipedia.org/wiki/Unicode
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  XML supports Unicode, which means that XML documents consist entirely 
of characters taken from the Unicode character set. The document’s 
characters are encoded into bytes for storage or transmission, and the 
encoding is specified via the XML declaration’s optional  encoding  attribute. 
One common encoding is  UTF-8  (see    http://en.wikipedia.org/wiki/UTF-8     ), 
which is a variable-length encoding of the Unicode character set. UTF-8 is a 
strict superset of ASCII (see    http://en.wikipedia.org/wiki/ASCII     ), which 
means that pure ASCII text files are also UTF-8 documents. 

 Note   In the absence of the XML declaration or when the XML declaration’s 
 encoding  attribute isn’t present, an XML parser typically looks for a special 
character sequence at the start of a document to determine the document’s 
encoding. This character sequence is known as the   byte-order-mark (BOM)    and 
is created by an editor program (such as Microsoft Windows Notepad) when it 
saves the document according to UTF-8 or some other encoding. For example, 
the hexadecimal sequence  EF BB BF  signifies UTF-8 as the encoding. Similarly, 
 FE FF  signifies UTF-16 big endian (see    https://en.wikipedia.org/
wiki/UTF-16     ),  FF FE  signifies UTF-16 little endian,  00 00 FE FF  signifies 
UTF-32 big endian (see    https://en.wikipedia.org/wiki/UTF-32     ), and 
 FF FE 00 00  signifies UTF-32 little endian. UTF-8 is assumed when no 
BOM is present. 

  If you’ll never use characters apart from the ASCII character set, you can 
probably forget about the  encoding  attribute. However, when your native 
language isn’t English or when you’re called to create XML documents that 
include non-ASCII characters, you need to properly specify  encoding . 
For example, when your document contains ASCII plus characters from 
a non-English Western European language (such as ç, the cedilla used in 
French, Portuguese, and other languages), you might want to choose 
 ISO-8859-1  as the  encoding  attribute’s value—the document will probably 
have a smaller size when encoded in this manner than when encoded with 
UTF-8. Listing  1-2  shows you the resulting XML  declaration  . 

       Listing 1-2.    An Encoded Document Containing Non-ASCII Characters   

 <?xml version="1.0" encoding="ISO-8859-1"?> 
 <movie> 
    <name>Le Fabuleux Destin d'Amélie Poulain</name> 
    <language>français</language> 
 </movie> 

http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UTF-32


CHAPTER 1: Introducing XML 5

   The final attribute that can appear in the XML declaration is  standalone . 
This optional attribute, which is only relevant with DTDs (discussed later), 
determines if there are   external markup declarations     that affect the 
information passed from an  XML    processor    (a parser) to the application. 
Its value defaults to  no , implying that there are, or may be, such declarations. 
A  yes  value indicates that there are no such declarations. For more 
information, check out “The standalone pseudo-attribute is only relevant if a 
DTD is used” article  at   (   www.xmlplease.com/xml/xmlquotations/standalone     ).  

     Elements and Attributes 
 Following the XML declaration is a  hierarchical  (tree) structure of  elements  , 
where an  element  is a portion of the document delimited by a  start tag  
(such as  <name> ) and an  end tag  (such as  </name> ), or is an  empty-element 
tag  (a standalone tag whose name ends with a forward slash ( / ), such as 
 <break/> ). Start tags and end tags surround content and possibly other 
markup whereas empty-element tags don’t surround anything. Figure  1-1  
reveals Listing  1-1 ’s XML document  tree structure  .  

  Figure 1-1.    Listing 1-1’s tree structure is rooted in the  recipe  element       

 As with the HTML document structure, the structure of an XML document 
is anchored in a  root element  (the topmost element). In HTML, the root 
element is  html  (the  <html>  and  </html>  tag pair). Unlike in HTML, you can 
choose the root element for your XML documents. Figure  1-1  shows the root 
element to be  recipe . 

 Unlike the other  elements  , which have parent elements,  recipe  has no 
parent. Also,  recipe  and  ingredients  have child elements:  recipe ’s children 
are  title ,  ingredients , and  instructions ; and  ingredients ’ children are 
three instances of  ingredient . The  title ,  instructions , and  ingredient  
elements don’t have child elements. 

 

https://www.w3.org/TR/2004/REC-xml-20040204/#dt-extmkpdecl#External Markup Declaration
http://www.xmlplease.com/xml/xmlquotations/standalone
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 Elements can contain child elements, content, or  mixed content  (a 
combination of child elements and content). Listing  1-2  reveals that 
the  movie  element contains  name  and  language  child elements, and also 
reveals that each of these child elements contains content ( language  
contains  français , for example). Listing  1-3  presents another example that 
demonstrates mixed content along with child elements and content. 

        Listing 1-3.    An  abstract  Element Containing Mixed Content   

 <?xml version="1.0"?> 
 <article title="The Rebirth of JavaFX" lang="en"> 
    <abstract> 
       JavaFX 2 marks a significant milestone in the history of JavaFX. Now 
that Sun Microsystems has passed the torch to Oracle, we have seen the 
demise of JavaFX Script and the emergence of Java APIs (such as <code-
inline>javafx.application.Application</code-inline>) for interacting with 
this technology. This article introduces you to this new flavor of JavaFX, 
where you learn about JavaFX 2 architecture and key APIs. 
    </abstract> 
    <body> 
    </body> 
 </article> 

   This document’s root element is  article , which contains  abstract  and  body  
child  elements  . The  abstract  element mixes content with a  code-inline  
element, which contains content. In contrast, the  body  element is empty. 

  An XML element’s start tag can contain one or more  attributes  . For example, 
Listing  1-1 ’s  <ingredient>  tag has a  qty  (quantity) attribute and Listing  1-3 ’s 
 <article>  tag has  title  and  lang  attributes. Attributes provide additional 
details about elements. For example,  qty  identifies the amount of an 
ingredient that can be added,  title  identifies an article’s title, and  lang  
identifies the language in which the article is written ( en  for English). 
Attributes can be optional. For example, when  qty  isn’t specified, a default 
value of  1  is assumed. 

 Note   As with Listings  1-1  and  1-2 , Listing  1-3  also contains  whitespace  
(invisible characters such as spaces, tabs, carriage returns, and line feeds). The 
XML specification permits whitespace to be added to a document. Whitespace 
appearing within content (such as spaces between words) is considered part 
of the content. In contrast, the parser typically ignores whitespace appearing 
between an end tag and the next start tag. Such whitespace isn’t considered 
part of the content. 
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 Note   Element and attribute names may contain any alphanumeric character 
from English or another language, and may also include the underscore ( _ ), 
hyphen ( - ), period (.), and colon (:) punctuation characters. The colon should 
only be used with namespaces (discussed later in this chapter), and  names 
cannot contain whitespace . 

       Character References and CDATA Sections 
 Certain characters cannot appear literally in the content that appears 
between a start tag and an end tag or within an attribute value. For example, 
you cannot place a literal  <  character between a start tag and an end tag 
because doing so would confuse an XML parser into thinking that it had 
encountered another tag. 

 One solution to this problem is to replace the literal character with a 
 character reference , which is a code that represents the character. Character 
references are classified as numeric character references or character entity 
references:

    A   numeric character reference    refers to a character 
via its Unicode code point and adheres to the format 
 &#  nnnn  ;  (not restricted to four positions) or  &#x  hhhh  ;  
(not restricted to four positions), where  nnnn  provides 
a decimal representation of the code point and  hhhh  
provides a hexadecimal representation. For example, 
 &#0931;  and  &#x03A3;  represent the Greek capital 
letter sigma. Although XML mandates that the  x  in 
 &#x  hhhh  ;  be lowercase, it’s flexible in that the leading 
zero is optional in either format and in allowing you to 
specify an uppercase or lowercase letter for each  h . 
As a result,  &#931; ,  &#x3A3; , and  &#x03a3;  are also valid 
representations of the Greek capital letter sigma.  

   A   character entity reference    refers to a character via 
the name of an  entity  (aliased data) that specifies the 
desired character as its replacement text. Character 
entity references are predefined by XML and have the 
format  &  name  ; , in which  name  is the entity’s name. XML 
predefines five character entity references:  &lt;  ( < ),  &gt;  
( > ),  &amp;  ( & ),  &apos;  ( ' ), and  &quot;  ( " ).    

 Consider  <expression>6 < 4</expression> . You could replace the  <  with 
numeric reference  &#60; , yielding  <expression>6 &#60; 4</expression> , 
or better yet with  &lt; , yielding  <expression>6 &lt; 4</expression> . 
The second choice is clearer and easier to remember. 
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 Suppose you want to embed an HTML or XML document within an element. 
To make the embedded document acceptable to an XML parser, you would 
need to replace each literal  <  (start of tag) and  &  (start of entity) character 
with its  &lt;  and  &amp;  predefined character entity reference, a tedious and 
possibly error-prone undertaking—you might forget to replace one of these 
characters. To save you from tedium and potential errors, XML provides an 
alternative in the form of a  CDATA (character data) section  . 

 A  CDATA section  is a section of literal HTML or XML markup and content 
surrounded by the  <![CDATA[  prefix and the  ]]>  suffix. You don’t need to 
specify predefined character entity references within a  CDATA section  , as 
demonstrated in Listing  1-4 . 

      Listing 1-4.    Embedding an XML Document in Another Document’s CDATA Section   

 <?xml version="1.0"?> 
 <svg-examples> 
    <example> 
        The following Scalable Vector Graphics document describes a blue-

filled and black-stroked rectangle. 
       <![CDATA[<svg width="100%" height="100%" version="1.1" 
            xmlns="http://www.w3.org/2000/svg"> 
          <rect width="300" height="100" 
                style="fill:rgb(0,0,255);stroke-width:1; stroke:rgb(0,0,0)"/> 
       </svg>]]> 
    </example> 
 </svg-examples> 

   Listing  1-4  embeds a Scalable Vector Graphics (SVG; [see 
   https://en.wikipedia.org/wiki/Scalable_Vector_Graphics     ) XML 
document within the  example  element of an SVG examples document. 
The SVG document is placed in a  CDATA  section, obviating the need to 
replace all  <  characters with  &lt;  predefined character entity references.  

     Namespaces 
 It’s common to create XML documents that combine features from different 
XML languages.  Namespaces   are used to prevent name conflicts when 
elements and other XML language features appear. Without namespaces, an 
XML parser couldn’t distinguish between same-named elements or other 
language features that mean different things, such as two same-named 
 title  elements from two different languages. 

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
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 Note   Namespaces aren’t part of XML 1.0. They arrived about a year after this 
specification was released. To ensure backward compatibility with XML 1.0, 
namespaces take advantage of colon characters, which are legal characters 
in XML names. Parsers that don’t recognize namespaces return names that 
include colons. 

  A  namespace  is a  Uniform Resource Identifier (URI)     -based container that 
helps differentiate XML vocabularies by providing a unique context for its 
contained identifiers. The namespace URI is associated with a  namespace  
  prefix    (an alias for the URI) by specifying, typically in an XML document’s 
root element, either the  xmlns  attribute by itself (which signifies the default 
namespace) or the  xmlns:  prefix  attribute (which signifies the namespace 
identified as  prefix ), and assigning the URI to this attribute. 

  When  prefix  is specified, the  prefix   and a colon character are prepended to the 
name of each element tag that belongs to that namespace (see Listing  1-5 ). 

      Listing 1-5.    Introducing a Pair of Namespaces   

 <?xml version="1.0"?> 
 <h:html xmlns:h="http://www.w3.org/1999/xhtml" 
         xmlns:r="http://www.javajeff.ca/"> 
    <h:head> 
       <h:title> 
          Recipe 
       </h:title> 
    </h:head> 
    <h:body> 
    <r:recipe> 
       <r:title> 
          Grilled Cheese Sandwich 
       </r:title> 
       <r:ingredients> 
          <h:ul> 
          <h:li> 

 Note   A namespace’s scope starts at the element where it’s declared and 
applies to all of the element’s content unless overridden by another namespace 
declaration with the same prefix name. 

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics

