Java XML
andJSON

eeeeeeeeeee

ApPress:

Java XML and JSON

Jeff Friesen

Apress’

Java XML and JSON

Jeff Friesen
Dauphin, Manitoba, Canada

ISBN-13 (pbk): 978-1-4842-1915-7 ISBN-13 (electronic): 978-1-4842-1916-4
DOI10.1007/978-1-4842-1916-4

Library of Congress Control Number: 2016943840
Copyright © 2016 by Jeff Friesen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Technical Reviewer: Wallace Jackson

Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, James T. DeWolf,
Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, James Markham,
Susan McDermott, Matthew Moodie, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers

Copy Editor: Mary Behr

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www. springeronline.com. Apress Media, LLCis a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress. com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484219157. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484219157
www.apress.com/source-code/

To Dave, the late Father Lucian, Jane, and Rob.

Contents at a
Glance

About the Authorc.ccccunimmmemmm e ——————— Xiii
About the Technical REVIEWETccusssesmsssnsssssnsssssnsssssnsssssnsssssssssssnnss XV
Acknowledgments........cccccrunsssssmssnmmmmmmssssssssssnsssesssssssssssssnsssessssnns XVii
Introduction........cccvemnmmimmms s ————— Xix
Chapter 1: Introducing XML..........ccccinnisnmnnmmmssssnnnmmsssssssnsssssssnsssssnns 1
Chapter 2: Parsing XML Documents with SAX.........ccccusrvmmmnnnnnnnas 29
Chapter 3: Parsing and Creating XML Documents with DOM 57
Chapter 4: Parsing and Creating XML Documents with StAX....... 75
Chapter 5: Selecting Nodes with XPath.........ccccccmnrrrrnsssnnnnnnnnnnnas 97
Chapter 6: Transforming XML Documents with XSLTcccceeue 119
Chapter 7: Introducing JSONccomsmmmmssnnmsssnsssssnnsssssnssssnssssns 133
Chapter 8: Parsing and Creating JSON Objects with mJson.......... 149
Chapter 9: Parsing and Creating JSON Objects with Gson......... 179

vi

Contents at a Glance
Chapter 10: Extracting JSON Values with JsonPath..............cu.. 223
Appendix A: AnSwers t0 EXEICiSeS ...uuussmssssrsssssssssssnnnsnsssssssssnns 241
INAEX.ciiiiiissnnnnnnnnnrnsssssssssnnnnsnsessssssssssnnnnnnnessssssssnnnnnnnnsesssssssnnnnnnnnnness 279

Contents

About the AULNOFccouremeiiiirrmmrrrressrrr s nnnnns Xiii
About the Technical REVIEWETccerrrreemmmesssssssmsssssssmssssssssnssssnnnnnsssXV
Acknowledgments.......ccccermssssssmssnnsmmsssssssssssssnsssesssssssssssnsnssssssssnns Xvii

LT T] Xix

Chapter 1: Introducing XML..........ccccinmnsnmmmmmmsssnnnsmssssssnssssssssnssssssnns 1

What IS XIML? ...t sas s sn s s sn s 1
Language Features TOUNcccceeeeeerererre e s e sne s e e sns e sne e 3
D 1T o] 3
Elements and ALrDULES ... 5
Character References and CDATA SECHIONS.........cocovrnennmnsnensnssssenssssssesese s 7
NAMESPACESceereecirertee et 8
Comments and Processing INStructions...........ccoeceerercccnnnescncrseeresesee s 13
Well-Formed Documents.........coouvnmnsnmnnnnss s 14
Valid DOCUMENTScccvriiirmieirnnisnss s 15
Document Type Definition.........cocceecrecrcesse s 15
D (I 1= - 21
SUMMANY ...ttt sr e sa s sr s sr s n s sn s snssn s sn e snennennennnnnnnans 28

vii

viii Contents

Chapter 2: Parsing XML Documents with SAX.........cccrnssnnnnnsssnnns 29
WRHAL IS SAX? ... e 29
EXploring the SAX APL........coc s 30

0btaINING @ SAX 2 PAISEY.....ccecereererrerererereressersesessesessesessessssessesessesesssssssessssesssnees 30

Touring XMLReader Methods........cccevererererrereerereererereseressersesessesessesessessssessesenaes 31

Touring the Handler and Resolver INterfaces.........ccoverrvereerereererererererereesereesenens 35
Demonstrating the SAX API.........ocvvrvrverrrrer s sse e 40
Creating a Custom Entity RESOIVErcccovvrrernierenisennese s 49
SUMMANY ... ne s 54
Chapter 3: Parsing and Creating XML Documents with DOM 57
WHAL IS DOMY.....oeeeecre e se s 57
ATree 0f NOUESccccverererireiserise s 58
Exploring the DOM APL.........cocrrcrercerer e 61

Obtaining a DOM Parser/Document BUIldEr...........ccccererenererenescnerenee e 61

Parsing and Creating XML DOCUMENTSccccvrrrenererrnencnerenseeseses e esesessns 63
Demonstrating the DOM API..........coorvrvrrrrerrerer e 67
SUMMAIY ...t r s e 74
Chapter 4: Parsing and Creating XML Documents with StAX....... 75
WHAL IS STAX? ...t 75
EXPIOFNG STAX....ooeiecerrr sttt s 76

Parsing XML DOCUMENTS........coeeeererreeeresreesesesssss s sesssss s sssssesessesssessssnns 77

Creating XML DOCUMENTScueeererreeereriee e se e ses s sesss s sssnns 85
31111 1P 7SS 95
Chapter 5: Selecting Nodes with XPath.........cccccemnirinnssssnsnnnnnnnnnas 97
What IS XPath? ... 97
XPath Language Primer..........cccocverrernssensessesses s ses e e ssssnssnnnas 97

Location Path EXPreSSions........ccccvevereninennnnsie s sss e sesssesssssssssssssassssssssanns 98

GENEral EXPrESSIONSvevvevrerieriertersessesse e sae e ssessessesaesaessesaesasssssasssssssssssssssssssssnses 101

Contents ix

XPath and DOMcoccorieeeerere e 103
Advanced XPath ... 110
Namespace CONEXIS.......ccvrerniernrere e r e 110
Extension Functions and Function ReSOIVErScccvrrvenennriescsenneeseseeeee 111
Variables and Variable ReSOIVErs.............cccocrmniinininissssssssssnas 115
SUMMAIY ...t nn s 118
Chapter 6: Transforming XML Documents with XSLTccceeus 119
WHaL IS XSLT?....cceeercererer et sn e snssn s sn s sn e snesne e 119
EXPIOring the XSLT APL........cccovrvrrerrerrersersessesses e e e e e e e e eas 120
Demonstrating the XSLT APl ... e 123
SUMMAIY ...t n s 132
Chapter 7: Introducing JSONccccimmsssnmmmmsssssnnnmssssssnnsssssnnnnsssss 133
What IS JSON?......cocerererr sttt sn s sn e sn e 133
JSON SYNEAX TOUF ... 134
Demonstrating JSON with JavaScriptccceeveriresessessssee e 137
Validating JSON ODjJECtS......cccovierniirerrcrne e 140
SUMMANY ... 147
Chapter 8: Parsing and Creating JSON Objects with mJson.......... 149
What IS MJSONY.......cerce s 149
Obtaining and USING MUJSON.........cccvererererererieresersssersssessesessesassessssessssessssessensnaes 150
Exploring the JSON CIaSscccvereeriersessessessss e s e seenas 150
Creating JSON ODJECES.......c.ccceerereeeriree e 151
Learning About JSON ODJECES ..o 155
Navigating Json Object Hierarchies..........c.coooeoerrencncninsnencsereecseseseeeseceene 163
Modifying JSON ODJECEScccoererieeerireeeere e s 165
L1221 U0 o OO 170
Customization via FACIOMIEsScccorerurerenirieererecese s 173

SUMMAIY ...t 178

X

Contents
Chapter 9: Parsing and Creating JSON Objects with Gson.......... 179
What IS GSONT? ..ot s 179
Obtaining and USING GSONccceererreerereresesesesssseesesesssesesesss s sesesssssessssssenes 180
EXPIOFNG GSONcovirirertrer sttt e 180
Introducing the GSON Class.........ccceerereerererererereres e ses e res e ree e seesesaesenees 181
Parsing JSON Objects Through Deserializationccccoevrevercerrrersrereeserenennes 183
Creating JSON Objects Through Serialization............ccccecverreverrernrerereresereenenees 190
Learning More ADOUL GSONceccerererrererererererersssersesessesessesessessssessssessesessssenaes 197
SUMMANY ... s nnenis 222
Chapter 10: Extracting JSON Values with JsonPath................... 223
What IS JSONPath?..........ccvieerrcer s 223
Learning the JsonPath Language..........ccccceeveerereenessesssssessnssessessennns 224
Obtaining and Using the JsonPath Librarycccceevvvvrvevrsnsencnnnen, 227
Exploring the JsonPath Librarycccoeverrrsnsssssesssses s 228
Extracting Values from JSON ODjJecCtS........ccovevriernirennerre e 229
Using Predicates 10 Filter Hems..........cccooreerievnccrsscnercce e 232
SUMMANY ...ttt sr s sa s e sa e sn e sn e sn e r e nr e n e n e n s 239
Appendix A: Answers t0 EXErciSesuueeeemmmrrrsssssssssnsnnsssssssssnns 241
Chapter 1: Introducing XML.........ccoeeeeerereneserre s sns e s sesnas 241
Chapter 2: Parsing XML Documents with SAX.........cccccevvrvrrrerrernennne 246
Chapter 3: Parsing and Creating XML Documents with DOM.............. 251
Chapter 4: Parsing and Creating XML Documents with StAX.............. 258
Chapter 5: Selecting Nodes with XPath...........ccccvevrvrvrrrevnsensensennn, 261
Chapter 6: Transforming XML Documents with XSLTccccoccvveeenune 264

Chapter 7: Introducing JSON. ..o 267

Contents

Chapter 8: Parsing and Creating JSON Objects with mJson................
Chapter 9: Parsing and Creating JSON Objects with Gson..................
Chapter 10: Extracting JSON Property Values with JsonPath..............

xi

About the Author

Jeff Friesen is a freelance teacher and
software developer with an emphasis on Java.
In addition to authoring Java I/0O, NIO and NIO.2
(Apress) and Java Threads and the Concurrency
Utilities (Apress), Jeff has written numerous
articles on Java and other technologies

(such as Android) for JavaWorld (JavaWorld. com),
informIT (InformIT.com), Java.net, SitePoint
(SitePoint.com), and other web sites. Jeff can
be contacted via his web site at JavaJeff.ca.
or via his LinkedIn (LinkedIn.com) profile
(www.linkedin.com/in/javajeft).

Xiii

http://www.linkedin.com/in/javajeff

About the Technical
Reviewer

Wallace Jackson has been writing for leading
multimedia publications about his work in new
media content development since the advent
of Multimedia Producer Magazine nearly two
decades ago. He has authored a half-dozen
Android book titles for Apress, including four
titles in the popular Pro Android series. Wallace
received his undergraduate degree in business
economics from the University of California

at Los Angeles and a graduate degree in MIS
design and implementation from the University
of Southern California. He is currently the CEO
of Mind Taffy Design, a new media content
production and digital campaign design and
development agency.

Acknowledgments

Many people assisted me in the development of this book, and | thank them.
| especially thank Steve Anglin for asking me to write it and Mark Powers for
guiding me through the writing process.

xvii

Introduction

XML and (the more popular) JSON let you organize data in textual formats.
This book introduces you to these technologies along with Java APIs for
integrating them into your Java code. This book introduces you to XML and
JSON as of Java 8 update 60.

Chapter 1 introduces XML, where you learn about basic language features
(such as the XML declaration, elements and attributes, and namespaces).
You also learn about well-formed XML documents and how to validate them
via the Document Type Definition and XML Schema grammar languages.

Chapter 2 focuses on Java’s SAX API for parsing XML documents. You learn
how to obtain a SAX 2 parser; you then tour XMLReader methods along with
handler and entity resolver interfaces. Finally, you explore a demonstration
of this APl and learn how to create a custom entity resolver.

Chapter 3 addresses Java’s DOM API for parsing and creating XML
documents. After discovering the various nodes that form a DOM document
tree, you explore the DOM API, where you learn how to obtain a DOM
parser/document builder and how to parse and create XML documents.

Chapter 4 places the spotlight on Java’s StAX API for parsing and creating
XML documents. You learn how to use StAX to parse XML documents with
stream-based and event-based readers, and how to create XML documents
with stream-based and event-based writers.

Moving on, Chapter 5 presents Java’s XPath API for simplifying access to
a DOM tree’s nodes. You receive a primer on the XPath language, learning
about location path expressions and general expressions. You also explore
advanced features starting with namespace contexts.

Chapter 6 completes my coverage of XML by targeting Java’s XSLT API. You
learn about transformer factories and transformers, and much more.

Xix

http://dx.doi.org/10.1007/978-1-4842-1916-4_1
http://dx.doi.org/10.1007/978-1-4842-1916-4_2
http://dx.doi.org/10.1007/978-1-4842-1916-4_3
http://dx.doi.org/10.1007/978-1-4842-1916-4_4
http://dx.doi.org/10.1007/978-1-4842-1916-4_5
http://dx.doi.org/10.1007/978-1-4842-1916-4_6

XX Introduction

Chapter 7 switches gears to JSON. You receive an introduction to JSON,
take a tour of its syntax, explore a demonstration of JSON in a JavaScript
context (because Java doesn’t yet officially support JSON), and learn how to
validate JSON objects in the context of JSON Schema.

You’ll need to work with third-party libraries to parse and create JSON
documents. Chapter 8 introduces you to the mdJson library. After learning
how to obtain and use mdson, you explore the Json class, which is the entry
point for working with mJSon.

Google has released an even more powerful library for parsing and creating
JSON documents. The Gson library is the focus of Chapter 9. In this chapter,
you learn how to parse JSON objects through deserialization, how to create
JSON objects through serialization, and much more.

Chapter 10 completes my coverage of JSON by presenting the JsonPath
API for performing XPath-like operations on JSON documents.

Each chapter ends with assorted exercises that are designed to help you
master the content. Along with long answers and true/false questions,
you must also perform programming exercises. Appendix A provides the
answers and solutions.

Thanks for purchasing this book. | hope you find it helpful in understanding
XML and JSON in a Java context.

— Jeff Friesen
(April, 2016)

Note You can download this book’s source code by pointing your web browser
to www.apress.com/9781484219157 and clicking the Source Code tab
followed by the Download Now link.

http://dx.doi.org/10.1007/978-1-4842-1916-4_7
http://dx.doi.org/10.1007/978-1-4842-1916-4_8
http://dx.doi.org/10.1007/978-1-4842-1916-4_9
http://dx.doi.org/10.1007/978-1-4842-1916-4_10
http://www.apress.com/9781484219157This link isn't active yet, FYI

Chapter

Introducing XML

Applications commonly use XML documents to store and exchange data.
XML defines rules for encoding documents in a format that is both
human-readable and machine-readable. This chapter introduces XML, tours
the XML language features, and discusses well-formed and valid documents.

What Is XML?

XML (eXtensible Markup Language) is a metalanguage (a language used to
describe other languages) for defining vocabularies (custom markup languages),
which is the key to XML’s importance and popularity. XML-based vocabularies
(such as XHTML) let you describe documents in a meaningful way.

XML vocabulary documents are like HTML (see http://en.wikipedia.org/
wiki/HTML) documents in that they are text-based and consist of markup
(encoded descriptions of a document’s logical structure) and content
(document text not interpreted as markup). Markup is evidenced via tags
(angle bracket-delimited syntactic constructs) and each tag has a name.
Furthermore, some tags have attributes (name-value pairs).

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-1916-4_1) contains supplementary material, which is
available to authorized users.

© Jeff Friesen 2016 1
J. Friesen, Java XML and JSON, DOI 10.1007/978-1-4842-1916-4_1

https://en.wikipedia.org/wiki/File_format#File format
https://en.wikipedia.org/wiki/Human-readable_medium#Human-readable medium
https://en.wikipedia.org/wiki/Machine-readable_data#Machine-readable data
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/HTML
http://dx.doi.org/10.1007/978-1-4842-1916-4

2 CHAPTER 1: Introducing XML

Note XML and HTML are descendants of Standard Generalized Markup
Language (SGML), which is the original metalanguage for creating vocabularies.
XML is essentially a restricted form of SGML, while HTML is an application of
SGML. The key difference between XML and HTML is that XML invites you to
create your own vocabularies with its own tags and rules, whereas HTML gives
you a single precreated vocabulary with its own fixed set of tags and rules.
XHTML and other XML-based vocabularies are XML applications. XHTML was
created to be a cleaner implementation of HTML.

If you haven’t previously encountered XML, you might be surprised by its
simplicity and how closely its vocabularies resemble HTML. You don’t need
to be a rocket scientist to learn how to create an XML document. To prove
this to yourself, check out Listing 1-1.

Listing 1-1. XML-Based Recipe for a Grilled Cheese Sandwich

<recipe>
<title>
Grilled Cheese Sandwich
</title>
<ingredients>
<ingredient qty="2">
bread slice
</ingredient>
<ingredient>
cheese slice
</ingredient>
<ingredient qty="2">
margarine pat
</ingredient>
</ingredients>
<instructions>
Place frying pan on element and select medium heat. For each bread
slice, smear one pat of margarine on one side of bread slice. Place cheese
slice between bread slices with margarine-smeared sides away from the
cheese. Place sandwich in frying pan with one margarine-smeared side in
contact with pan. Fry for a couple of minutes and flip. Fry other side for a
minute and serve.
</instructions>
</recipe>

Listing 1-1 presents an XML document that describes a recipe for making
a grilled cheese sandwich. This document is reminiscent of an HTML
document in that it consists of tags, attributes, and content. However, that’s

CHAPTER 1: Introducing XML 3

where the similarity ends. Instead of presenting HTML tags such as <html>,
<head>, , and <p>, this informal recipe language presents its own
<recipe>, <ingredients>, and other tags.

Note Although Listing 1-1’s <title> and </title> tags are also found in
HTML, they differ from their HTML counterparts. Web browsers typically display
the content between these tags in their title bars. In contrast, the content
between Listing 1-1’s <title> and </title> tags might be displayed as a
recipe header, spoken aloud, or presented in some other way, depending on the
application that parses this document.

Language Features Tour

XML provides several language features for use in defining custom markup
languages: XML declaration, elements and attributes, character references
and CDATA sections, namespaces, and comments and processing
instructions. You will learn about these language features in this section.

XML Declaration

An XML document usually begins with the XML declaration, which is special
markup telling an XML parser that the document is XML. The absence of the
XML declaration in Listing 1-1 reveals that this special markup isn’t mandatory.
When the XML declaration is present, nothing can appear before it.

The XML declaration minimally looks like <?xml version="1.0"?> in which
the nonoptional version attribute identifies the version of the XML
specification to which the document conforms. The initial version of this
specification (1.0) was introduced in 1998 and is widely implemented.

Note The World Wide Web Consortium (W3C), which maintains XML, released
version 1.1 in 2004. This version mainly supports the use of line-ending
characters used on EBCDIC platforms (see http://en.wikipedia.org/
wiki/EBCDIC) and the use of scripts and characters that are absent from
Unicode 3.2 (see http://en.wikipedia.org/wiki/Unicode). Unlike
XML 1.0, XML 1.1 isn’t widely implemented and should be used only by those
needing its unique features.

http://en.wikipedia.org/wiki/EBCDIC
http://en.wikipedia.org/wiki/EBCDIC
http://en.wikipedia.org/wiki/Unicode

4 CHAPTER 1: Introducing XML

XML supports Unicode, which means that XML documents consist entirely
of characters taken from the Unicode character set. The document’s
characters are encoded into bytes for storage or transmission, and the
encoding is specified via the XML declaration’s optional encoding attribute.
One common encoding is UTF-8 (see http://en.wikipedia.org/wiki/UTF-8),
which is a variable-length encoding of the Unicode character set. UTF-8 is a
strict superset of ASCII (see http://en.wikipedia.org/wiki/ASCII), which
means that pure ASCII text files are also UTF-8 documents.

Note In the absence of the XML declaration or when the XML declaration’s
encoding attribute isn’t present, an XML parser typically looks for a special
character sequence at the start of a document to determine the document’s
encoding. This character sequence is known as the byte-order-mark (BOM) and
is created by an editor program (such as Microsoft Windows Notepad) when it
saves the document according to UTF-8 or some other encoding. For example,
the hexadecimal sequence EF BB BF signifies UTF-8 as the encoding. Similarly,
FE FF signifies UTF-16 big endian (see https://en.wikipedia.org/
wiki/UTF-16), FF FE signifies UTF-16 little endian, 00 00 FE FF signifies
UTF-32 big endian (see https://en.wikipedia.org/wiki/UTF-32),and
FF FE 00 00 signifies UTF-32 little endian. UTF-8 is assumed when no
BOM is present.

If you’ll never use characters apart from the ASCII character set, you can
probably forget about the encoding attribute. However, when your native
language isn’t English or when you’re called to create XML documents that
include non-ASCII characters, you need to properly specify encoding.

For example, when your document contains ASCII plus characters from

a non-English Western European language (such as ¢, the cedilla used in
French, Portuguese, and other languages), you might want to choose
1S0-8859-1 as the encoding attribute’s value—the document will probably
have a smaller size when encoded in this manner than when encoded with
UTF-8. Listing 1-2 shows you the resulting XML declaration.

Listing 1-2. An Encoded Document Containing Non-ASCIl Characters

<?xml version="1.0" encoding="IS0-8859-1"?>

<movie>
<name>Le Fabuleux Destin d'Amélie Poulain</name>
<language>francais</language>

</movie>

http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UTF-32

CHAPTER 1: Introducing XML 5

The final attribute that can appear in the XML declaration is standalone.

This optional attribute, which is only relevant with DTDs (discussed later),
determines if there are external markup declarations that affect the
information passed from an XML processor (a parser) to the application.

Its value defaults to no, implying that there are, or may be, such declarations.
A yes value indicates that there are no such declarations. For more
information, check out “The standalone pseudo-attribute is only relevant if a
DTD is used” article at (www.xmlplease.com/xml/xmlquotations/standalone).

Elements and Attributes

Following the XML declaration is a hierarchical (tree) structure of elements,
where an element is a portion of the document delimited by a start tag
(such as <name>) and an end tag (such as </name>), or is an empty-element
tag (a standalone tag whose name ends with a forward slash (/), such as
<break/>). Start tags and end tags surround content and possibly other
markup whereas empty-element tags don’t surround anything. Figure 1-1
reveals Listing 1-1’s XML document tree structure.

recipe
Y Y ¢
title ingredients instructions
Y Y Y
ingredient ingredient ingredient

Figure 1-1. Listing 1-1’s tree structure is rooted in the recipe element

As with the HTML document structure, the structure of an XML document

is anchored in a root element (the topmost element). In HTML, the root
element is html (the <html> and </html> tag pair). Unlike in HTML, you can
choose the root element for your XML documents. Figure 1-1 shows the root
element to be recipe.

Unlike the other elements, which have parent elements, recipe has no
parent. Also, recipe and ingredients have child elements: recipe’s children
are title, ingredients, and instructions; and ingredients’ children are
three instances of ingredient. The title, instructions, and ingredient
elements don’t have child elements.

https://www.w3.org/TR/2004/REC-xml-20040204/#dt-extmkpdecl#External Markup Declaration
http://www.xmlplease.com/xml/xmlquotations/standalone

6 CHAPTER 1: Introducing XML

Elements can contain child elements, content, or mixed content (a
combination of child elements and content). Listing 1-2 reveals that

the movie element contains name and language child elements, and also
reveals that each of these child elements contains content (language
contains francais, for example). Listing 1-3 presents another example that
demonstrates mixed content along with child elements and content.

Listing 1-3. Anabstract Element Containing Mixed Content

<?xml version="1.0"?>
<article title="The Rebirth of JavaFX" lang="en">

<abstract>

JavaFX 2 marks a significant milestone in the history of JavaFX. Now

that Sun Microsystems has passed the torch to Oracle, we have seen the
demise of JavaFX Script and the emergence of Java APIs (such as <code-
inline>javafx.application.Application</code-inline>) for interacting with
this technology. This article introduces you to this new flavor of JavaFX,
where you learn about JavaFX 2 architecture and key APIs.

</abstract>

<body>

</body>
</article>

This document’s root element is article, which contains abstract and body
child elements. The abstract element mixes content with a code-inline
element, which contains content. In contrast, the body element is empty.

Note As with Listings 1-1 and 1-2, Listing 1-3 also contains whitespace
(invisible characters such as spaces, tabs, carriage returns, and line feeds). The
XML specification permits whitespace to be added to a document. Whitespace
appearing within content (such as spaces between words) is considered part
of the content. In contrast, the parser typically ignores whitespace appearing
between an end tag and the next start tag. Such whitespace isn’t considered
part of the content.

An XML element’s start tag can contain one or more attributes. For example,
Listing 1-1’s <ingredient> tag has a qty (quantity) attribute and Listing 1-3’s
<article> tag has title and lang attributes. Attributes provide additional
details about elements. For example, gty identifies the amount of an
ingredient that can be added, title identifies an article’s title, and lang
identifies the language in which the article is written (en for English).
Attributes can be optional. For example, when gty isn’t specified, a default
value of 1 is assumed.

CHAPTER 1: Introducing XML 7

Note Element and atiribute names may contain any alphanumeric character
from English or another language, and may also include the underscore (),
hyphen (-), period (.), and colon (:) punctuation characters. The colon should
only be used with namespaces (discussed later in this chapter), and names
cannot contain whitespace.

Character References and CDATA Sections

Certain characters cannot appear literally in the content that appears
between a start tag and an end tag or within an attribute value. For example,
you cannot place a literal < character between a start tag and an end tag
because doing so would confuse an XML parser into thinking that it had
encountered another tag.

One solution to this problem is to replace the literal character with a
character reference, which is a code that represents the character. Character
references are classified as numeric character references or character entity
references:

A numeric character reference refers to a character
via its Unicode code point and adheres to the format
&#tnnnn; (not restricted to four positions) or &#xhhhh;
(not restricted to four positions), where nnnn provides
a decimal representation of the code point and hhhh
provides a hexadecimal representation. For example,
Σ and Σ represent the Greek capital
letter sigma. Although XML mandates that the x in
&#xhhhh; be lowercase, it’s flexible in that the leading
zero is optional in either format and in allowing you to
specify an uppercase or lowercase letter for each h.
As aresult, Σ, Σ, and Σ are also valid
representations of the Greek capital letter sigma.

A character entity reference refers to a character via

the name of an entity (aliased data) that specifies the
desired character as its replacement text. Character
entity references are predefined by XML and have the
format &name;, in which name is the entity’s name. XML
predefines five character entity references: &1t; (<), >
(>), & (&), ' ('), and " ().

Consider <expression>6 < 4</expression>. You could replace the < with
numeric reference <, yielding <expression>6 < 4</expression>,
or better yet with &1t;, yielding <expression>6 &1t; 4</expression>.
The second choice is clearer and easier to remember.

8 CHAPTER 1: Introducing XML

Suppose you want to embed an HTML or XML document within an element.
To make the embedded document acceptable to an XML parser, you would
need to replace each literal < (start of tag) and & (start of entity) character
with its &1t; and 8amp; predefined character entity reference, a tedious and
possibly error-prone undertaking—you might forget to replace one of these
characters. To save you from tedium and potential errors, XML provides an
alternative in the form of a CDATA (character data) section.

A CDATA section is a section of literal HTML or XML markup and content
surrounded by the <![CDATA[prefix and the]]> suffix. You don’t need to

specify predefined character entity references within a CDATA section, as
demonstrated in Listing 1-4.

Listing 1-4. Embedding an XML Document in Another Document’s CDATA Section

<?xml version="1.0"?>
<svg-examples>
<example>
The following Scalable Vector Graphics document describes a blue-
filled and black-stroked rectangle.
<![CDATA[<svg width="100%" height="100%" version="1.1"
xmlns="http://www.w3.0rg/2000/svg">
<rect width="300" height="100"
style="fill:rgb(0,0,255);stroke-width:1; stroke:rgh(0,0,0)"/>
</svg>1]>
</example>
</svg-examples>

Listing 1-4 embeds a Scalable Vector Graphics (SVG; [see
https://en.wikipedia.org/wiki/Scalable Vector Graphics) XML
document within the example element of an SVG examples document.
The SVG document is placed in a CDATA section, obviating the need to
replace all < characters with &1t; predefined character entity references.

Namespaces

It’s common to create XML documents that combine features from different
XML languages. Namespaces are used to prevent name conflicts when
elements and other XML language features appear. Without namespaces, an
XML parser couldn’t distinguish between same-named elements or other
language features that mean different things, such as two same-named
title elements from two different languages.

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics

CHAPTER 1: Introducing XML 9

Note Namespaces aren’t part of XML 1.0. They arrived about a year after this
specification was released. To ensure backward compatibility with XML 1.0,
namespaces take advantage of colon characters, which are legal characters

in XML names. Parsers that don’t recognize namespaces return names that
include colons.

A namespace is a Uniform Resource Identifier (URI)-based container that
helps differentiate XML vocabularies by providing a unique context for its
contained identifiers. The namespace URI is associated with a namespace
prefix (an alias for the URI) by specifying, typically in an XML document’s
root element, either the xmlns attribute by itself (which signifies the default
namespace) or the xmlns:prefix attribute (which signifies the namespace
identified as prefix), and assigning the URI to this attribute.

Note A namespace’s scope starts at the element where it's declared and
applies to all of the element’s content unless overridden by another namespace
declaration with the same prefix name.

When prefix is specified, the prefix and a colon character are prepended to the
name of each element tag that belongs to that namespace (see Listing 1-5).

Listing 1-5. Introducing a Pair of Namespaces

<?xml version="1.0"?>
<h:html xmlns:h="http://www.w3.0rg/1999/xhtml"
xmlns:r="http://www.javajeff.ca/">
<h:head>
<h:title>
Recipe
</h:title>
</h:head>
<h:body>
<r:recipe>
<r:title>
Grilled Cheese Sandwich
</r:title>
<r:ingredients>
<h:ul>
<h:1i>

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics

