THE EXPERT’S VOICE® IN OPEN SOURCE

The Definitive
Guide to
MongoDB

A complete guide to dealing with Big Data
using MongoDB

Third Edition

David Hows
Peter Membrey
Felco Plugge
Tim Hawkins

ApPress’

The Definitive Guide
to MongoDB

David Hows
Peter Membrey
Eelco Plugge
Tim Hawkins

APIess®

The Definitive Guide to MongoDB: A complete guide to dealing with Big Data using MongoDB
Copyright © 2015 by David Hows, Peter Membrey, Eelco Plugge, Tim Hawkins

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1183-0
ISBN-13 (electronic): 978-1-4842-1182-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Michelle Lowman

Technical Reviewer: Stephen Steneker

Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,
Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers

Copy Editor: Mary Bearden

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers
at www.apress.com/9781484211830. For detailed information about how to locate your book’s source

code, go to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484211830
www.apress.com/source-code/

For Dr. Rocky Chan, for going the extra mile and always being there when I need him.
I hope one day I can properly thank him for his support.

—Peter Membrey
To my uncle, Luut, who introduced me to the vast and
ever-challenging world of IT. Thank you.
—Eelco Plugge

Contents at a Glance

About the Authors........ccmmmmmmme s ———————————— Xix
About the Technical ReVIEWEFcsvcsssssmssssssssmssssmsssssssssssssmssssssssssssssssssssnsssassnsass Xxi
About the Contributor ... ———————— Xxiii
Acknowledgments........cccuiuisssnsnsnnmmmmmsssssssssssnnnnnesssssssssnsnnnnssessssssssnnnnnnnnnsssssssnnnnnns XXV
Introduction.........cccccemnsmism s ———————=—_——_ Xxvii
Chapter 1: Introduction to MongoDB...........ccccccmmmnssnnmnmmsssssnnmssssssssmssssssssssssssssssnss 1
Chapter 2: Installing MongoDB...........ccocccmmmmnsmmnmmmsssssnmmmssssssnmsssssssnesssssnssssssssnsns 17
Chapter 3: The Data Modelcccimnnmmmmmmmnsnnnmmmssssnmmmsssssmmsssssnmssssssnesssnsnn 33
Chapter 4: Working with Dataccccussemmmmmmemmmmmmsssnmmmssssmmsssssmssssmssnnm 49
Chapter 5: GridFS.........cccccvunmmmmmmnmssnsnmmmsssmmmmssssnmmssssnssass s sansns 91
Chapter 6: PHP and MongoDBcccoceemmmmmsnsnmmsssssssmsssssssssssssssssssssssssssssssnnnss 103
Chapter 7: Python and MongoDB...........cccciunnmemnmmmssnnnmmssssssssmssssssssssssssssssssssnnns 147
Chapter 8: Advanced QUENIeScccurrusssmsnmmssssnsnssssssnsnssssssnnnssssssnnssssssnnnnsssssnnnnss 181
Chapter 9: Database Administrationccccccmnnnmmnnmnmssnnmss———————— 209
Chapter 10: Optimization.......cccseeemmmmmmmmmmssss s ————————— 249
Chapter 11: Replicationcccuusseemmmmmnmmmmssssssssssmnmssssssssssssssssssssssssssssssssssesssnns 285
Chapter 12: Sharding......ccusseerrrmsssssnmmsssssssmmsssssssmsssssssssssssssssssssssnsssssssannssssssnnnnss 315
INdeX..iiiiiirri e ———————————————=————— 337

Contents

AhoUt the AUTNOLS......ccoueeeeiiirreeeirrneeaerrsensr s r s s annnas s nannnsssnnnnnnnsnnnnnnns Xix

About the Technical REVIEWETccurmrrrmmmmmnsssssssmmsssssnssssssssssssssssssssssssssnsssnnnnssssssss XXI

About the Contributorcccccmssemmmssnsmsssnsmsssnsmssssssssssnssssnsssssnsssssnnssssnnssssnnssssnnnnns Xxiii
Acknowledgments........cccccuuiissmnmmmnmmmmmmsssssssssssnnmmmssssssssssssnnsseesssssssssnsnnnnessssssssnnnnnns XXV
INtroduCtionccuiieemmissnnmsssnnmsssnnssssnnmsssnnnssssnnsssannsssnnnnssannsssannesssnnesssnnnssnnnnnsnnnnssnns Xxvii
Chapter 1: Introduction to MongoDB...........cccusemmsssmsmsssnsssssnsssssnsssssnsssssnsssssanssssanss 1
Reviewing the MongoDB Phil0SOPNY........cccvceerrirenrnsesesesesssse e sse s sessesse e ssnsensens 1
Using the Right Tool for the Right JODcceorcrriererc et se e s sae e s e se e e sas e saenenaes 1
Lacking Innate Support for TranSACLIONSccccververeerererere e rer e ree e e rsesesseres e saesesaesessesessesassessenenas 3

B ST 01Ty o 10T T T 0 3
Adopting a Nonrelational APProOaChcoveeercerrcere et sae e ae e sae e s sa e sae e s 6
Opting for Performance VS. FEAtUIES..........cceerereriererrereseresereeres e ssesessesessesessesassessesessssessssessessssessssesaes 6
Running the Database ANYWRETE..........ccceeevererererrereesersesersesersesssessssessssessssessessssessessssesssssssssessssessssssaes 7
Fitting Everything TOQEther ... s 7
Generating or Creating @ KBY.......ccvviecerirnnicsirinss s ses st s se s s se s se s sssesssssss s 8
USING KEYS @N0 VAIUES.......cccoreceereerrcriserre e sss e sss e sn s s s se s e sas e s s s s s e snesnssessssessaesnsnsnas 8
IMplementing COlECHONS ... e e e e e p s 9
Understanding Dat@hases..........ccccveerreriicnnnne s s sa e s s sessesss e ssssesnsnesnas 9
Reviewing the Feature List...........cccovvrvrcrnncscr s 9

L LT I -] PO 10
Using Document-0riented Storage (BSON).........ovocoeeerrcecrerrcesirene e 10
Supporting DYNAMIC QUEKIESoueucecrerereeereresreeseses e se e se s s sesne s 11
INAEXiNG YOUF DOCUMENTScvvcceeececereee et nenn s 11
Leveraging GeoSPatial INUBXESccocecrerurireririreenesee e s 12

CONTENTS

Profiling QUEKIES ...cveveeereerererserersesessesessesassessesessesessesesssssssessesessssessessssessssessssesasssssessssesassessesesssssnssnansens 12
Updating Information In Place (Memory Mapped Database Only).........ccccovverererererieressersenessssesesenens 12
Y (o T J 2314 L0 13
T o [[ors LTy [0 D - LRSS 13
IMmplementing SRAIINGcccveverrerre e sa s s a e ae e s e e sae e e e ae e saenesaenannens 14
Using Map and Reduce FUNCIONScccviiirinencncnene s sse s s saesas e sassasssssssssssssssnns 14
The Aggregation FIAMEWOIK ..o ses s se s e s st sassassas st s sasssssassasssnses 14
(6] 1 5 (=11 S S S SSSS 15
ViSiting the WEDSIE ... 15
Cutting and Pasting MONGODB COUE............coceermrerenererreeerereseese e se s 15
Finding SoIUtioNS 0N GOOGIE GIOUPS......ccourureerrrereererssseeseses e s e e se s s e e e s s s e e ssssssssesssnnas 15
Finding Solutions on Stack OVEIrfIOW ... s 15
Leveraging the JIRA Tracking SYSIBM ... 15
Chatting with the MONgODB DEVEIOPEIS........ccceueureerererecrereseese et sesssness 16
SUMMEAIY ...ttt n s ae e s e s ae e s sae e e Re e e e ese e nae e n e nnnnnnnas 16
Chapter 2: Installing MongoDB...........ccccusmmmsmmmssmmsssmmsssmsssmssssss s s snssssnssnsnss 17
ChOO0SING YOUF VEISIONccveeieeeesereesesessnsssessssessesessesssssssesssssssessssessssssssssssssssssssssssnsasens 17
Understanding the Version NUMDEIScvcceeirencnincesers e ssssssssessssssssesssssssssssssssenes 18
Installing MongoDB on YOUr SYSTEM........cccvererernncrr e see e ses s sas e nes 18
Installing MongoDB UNAEE LINUX......ccciiviriririnenenesese e sse s sse e ssesssssssssssssssssssssssssasssssasssssssssssssssnns 18
Installing MongoDB under WINOWS.........cccverirerineninene e sse e ssssssssesssssssssssssssssssssssssssssssssssnns 20
Running MONQGODB..........ccciiiiirirer s sn s sn e nnen e nan 20
Lo (T 0T (T OO RSRRSRN 21
Surveying the InStallation LAYOULccoceerereercrereccsrse e 21
Using the MongoDB Shell ..o s 22
Installing Additional DIVENS.........cccccerierenrrrerensrsesessessesesse s e sessessesessessssessesssssssessssens 23
INSEAIlING the PHP DIIVENcccouieecceercccrerrse e s se s ss s s s e s sssesssssssssssssnsenes 24
Confirming That Your PHP Installation WOIKScccovienennnencnirsssesesssssesessssssesessssssssesessssssessssssens 27
INStalling the PYtNON DIVcoeuicceeiceecsrsssecs s ss s ss s sesnssn s 29
Confirming That Your PyMongo Installation WOrKScccoevenennnesenennssesesssssesesessssssesessssssesessssens 31
E3 1111 1P 32

viii

CONTENTS

Chapter 3: The Data Modelccccmmmmmmmmmmmmmmssssssnnmmmmmmmsssssssssemssssssssssssnsnns 33

Designing the Databasecccvcverrrsnsnsen s 33
Drilling Down 0N COIIECTIONS........cccieerrerrrerreeee e s s e s r s ae e ne e ne e snsnnnnens 34
USING DOCUMENTS.......ccvicreccc et a s e bt s a e e e e s n e ne e ne e nnennnnnas 36
Creating the _id FIeld ...t n e srsnenn s 38

BUIING INABXESccuerererirerer sttt sn s s n s sn e n e nn e n e nan 39
Impacting Performance With INAEXES..........cccoceurrierrrrnecrrr e 39

Implementing Geospatial INdeXiNg........cccooeverererernrr e 40
Querying Geospatial INfOrmMatioNccocvcererrerre e e e sae e aesesaenesaenanaens 4

Pluggable Storage ENginescccoeeiernncsnscnsssresss s s e s snesessens 46

Using MongoDB in the Real World...........cocoeeeececeeeceece e 46

E3 1111 0P 2SS 47

Chapter 4: Working with Datacccccvmmmmmmmssssssmmmmmmmmssssssssnssesssssssssmmmm.s 49

Navigating Your Databases.........c.ccvvrrerrerrersersensessensessessesses s sessessesssssssssssssssssasssssssssssens 49
Viewing Available Databases and COllECTIONSccovvererrereerererere s e re s see e seesesaesenaes 49

Inserting Data into COIIECLIONSccocceeeeriernire e 50

Querying for DAtccccvrrrierrirerr e 52
USing the DOt NOTALION........cccouiueccrereecre e p s 53
Using the Sort, Limit, and SKip FUNCLIONS.........c.ccrirrinriercccrerer e sesaesasaens 54
Working with Capped Collections, Natural Order, and $natural............cccoceveverererererererererererereresererenenes 55
Retrieving @ Single DOCUMENT ...t 57
Using the Aggregation COMMANGScoeeeeerrrrnenerrnsesese e se s se s s 57
Working with Conditional OPerators........c..cccecerrescrerneseseresesse s ses s ssssns 60
Leveraging Regular EXPreSSIONSccccerreiererrrrssesesesssssesesssesssessssssssessaes 68

UPdating Data..........ccceererererererere s sae s sae e s saesassa e s a e saesa e sa e sn e sn e naennennen 68
Updating With UPAALE()ecceeerererere ettt s s ee e s e e s e s sae e sae e sae e saesae e sae e saenesaenanaens 69
Implementing an Upsert with the save() COMMAaNcccccveererrcererrere e seseesesaerenaens 69
Updating Information AUtOMALICalIYccceeeereerererererr et re e e rae e ae e sae e saenanaens 69
Removing EIements from @n AITAYcccceererererererseressersesersesessesssessssessesesssssssessssessssessesessssssassasaens 73

ix

CONTENTS

Specifying the Position 0f @ MatChed ArTay..........ccevvevereriererierenrereesesesesesesessssessesessesessesassessssessesesaes 74
(011 TTe 00 T=T - 103 75
Modifying and Returning a Document Atomically...........ccoceverinennnennnnnere s sesseeseens 77
Processing Data in BUIKccocvcvcrircencinser s sns e 77
Executing BUlK OPEIations...........cccourueecrererencrisisecse e 78
Evaluating the QUIPUL ..o 79
Renaming @ COHECHIONcoccvveeererer e 80
DL 1= (14T D 81
Referencing @ Databasec.ccvcvverrerrensenser s 82
Referencing Data ManUAIIY ... 82
Referencing Data With DBRET ... s 83
Implementing Index-Related FUNCLIONSc.ccoeerierenicrnse e sre s 85
Surveying Index-Related COMMANGScccovrereenererrnesesrrse e se e ssssesnns 87
E3 1111 1P 2 89
Chapter 5: GridFS.........cccccuunmmmmmmnisnnnmmmsssnmmmssssnmmssssn s s sansns 91
Filling in SOme BACKGrOUNGccocvverververserserses s sesses e ses e e s s s sssssssnsssssnssnssnes 91
Working With GrdFS.........cccecicrrsrsr s sn s sn e sn e nnenn 92
Getting Started with the Command-Line TOOIS..........cccecerrrrrernrnnr e 92
USING The _it KBY....eoeeerrrreecrirreeere s esesss e sss s ss e sesss e s s s nsssassssnsssnsnnes 93
WOrKing With FIIENAMEScccouireererrrriesesesssesesessse e sesss s sas s sssnns 93
THE Fle’S LENGEN ...ttt 94
WOrKing With CHUNK SiZES........ccceeereirienesisssesesessssssesessssssssessssssssessssssssessnns 94
Tracking the UPload DAte............ccceerrriienerrsrnenesirne e sss s s e ssssssssessssssssssssssssssssssnns 95
HASNING YOUF FIlES ...ucvevieecerisreecsesse s sss e s e se s sss e s s s s sesssssssssssessssssssassssnsnsenes 95
Looking Under MongoDB’s HOOd............ccocrriierninsee s e s s e seesnens 95
Using the Search COMMANG...........cccevriereriernrererererereres e saesesseses e sessesas e saesesassessesassesassessesesassesasansens 96
D] oSSR 97
Retrieving Files from MONQODB ..o e ssesaesaesaesassaesaesassaessssasssssenns 97

SUMMING UP MONQOTIIES ..eeveereererereeerresereseseresessssessesessesessesassessesessssssssssssesassessssessssassesassesssnessenssnes 98

CONTENTS

Exploiting the POWer of PYthON ... 98
Connecting 10 the DAADASEcccereererereererreeer s 99
ACCESSING The WOIHS ... nrnnns 99

Putting Files into MONGODB...........cccnninmns e 99

Retrieving Files from GridFS ... e 100

DEIELING FIlES.....cceeererreieierrsersese s r s nn e en s 100

E3 1111 1P 7 101

Chapter 6: PHP and MongoDBcccuceemmssssmmsssnsssssnsssssssssssssssssnsssssnsssssnnssssnnssss 103

Comparing Documents in MongoDB and PHP ... 103

MONQGODB CIASSES........cecerrererrersersrssessesssssessssse s e s ses e s sessrsses e s snsssssssssssnssnssnsssssssssssssnsans 105
Connecting and DiSCONNECLINGccvirrrierniererere s s r e sr e r e 105
INSEItING DALAccccciicii e ————————————— 107

[(4T (1T g D L LTSS 109
Returning a Single DOCUMENL..........coeeirireecrrree s nas 109
Listing All DOCUMENLESccoeeircriecrcccr et s e s et s st a e s s e sa e e s 110

USing QUErY OPEIAtOrScccceeererrerrrerissesse s sse e sse s sss e e sn s sae e sns e sne s nns 111
Querying for Specific INFOrMALION..........covcerer e e ra e e e 111
Sorting, Limiting, and SKipping HEMScccevererierrererereerereesesesesersssessesessesessesessessssessssssssssssesassens 112
Counting the Number of Matching RESUIS........ccverrerererererrrere e seree e res e ssesesaesesaesessesassesassenes 114
Grouping Data with the Aggregation FrameWOrKccccecvvererrererereseresesseressersesessesessesessesessessssenes 114
Specifying the INdeX With HINT...........cceoerercesre v sse s sesae e sas e saesesaesesaesanaens 115
Refining Queries with Conditional OPErators...........cocverrrererrererrereerereserereseressessesessesessesessesassessesees 116
Determining Whether a Field Has @ VAIUEccccceeevererereriereercree s sessesessesasessesessssessssessesassessssenes 122
REGUIAT EXPIESSIONS ... ccverereererereererseserserersesssessesessesssssssssessssessssessessssesssssssssessssessssessessssssssessssesseneres 123

Modifying Data With PHP.........cocr et nnnnns 124
UPdating Vid UPATE()eeeeeererreceririeecre e se s 124
Saving Time with Update Operatorsccccoeeierniennncnnsse e se e ssssessssessssessesssnens 126
Upserting Data With SAVE()ccceeerrererericrncre st sn s s s sa s s re s 133
Modifying @ Document ATOMICAIIYcccceerrierercrererr e sa s s r s 134

xi

CONTENTS

Processing Data in BUIKcoveeiiiiennscnessscses s sss s snsesnas 136
Executing BUlK OPErations..........cccceeeerueenererrnnenessssssse e s sesesss s ssssssssssssssssssssssssssssssssssssasnns 137
Evaluating the QUIPUL ... 138

DL (<] (14T D R 139

DBRET ..ot nn e r e n e nennennennan 141
Retrieving the INfOrmation............cocrnncc s 142

GridFS and the PHP DIVE...........coeeiicernseresincre s s s sssse s 143
(0] £ 10 TP 143
Adding More Metadata to STored FileScccovreeererirencserirseseris e 144
REtriBVING FIlES......veeeeeteecrerise e a e nannn e 144
DEIBLING DALA ..o a e e s e s e s e e ne e ne e e e 145

E3 U] P2 7 146

Chapter 7: Python and MongoDB...........cccccunsmemmmmmsssnnmmssssssnmssssssssssssssssnssssssnnns 147

Working with Documents in Python ... 147

USing PYMONQGO MOGUIEScoceereererrereersessesse e ssessessessessssssssssssssssssssssnssnssssssssssssssssnsans 148

Connecting and DiSCONNECLING..........ccccerrmrerrsserenrsesesse e sns s e s 148

INSErting Data........cccorieire e —————————— 149

Finding YOUr Dataccocvcirirircirce s se e sn e s e snssns e e 150
Finding a Single DOCUMENT..........ccoi e e p e 151
Finding Multiple DOCUMENTS.........ccoecieiierrer et sa s e s e p e e r e 152
USING DOt NOTALION........ccueeeieicccre s p e e e e p e p e 153
RetUrNING FIElUScoveeeere e s e e p e e e 153
Simplifying Queries with sort(), limit(), and SKip()......ccervrerererernierniernsre e sessesesaens 154
AgGregating QUEKIESccoceererecre e se s e s e se s e e s ne R se e n e nnnn s 155
Specifying an Index With RiNt()coveeererr e 158
Refining Queries with Conditional OPerators..........cceeierniernncrnnene s 159
Conducting Searches with Regular EXPreSSionscocococererencseressnesesesssesesesssee s sesesessssesens 165

Modifying the Data...........ccoviererinierrresre e 166
UPAAting YOUF DALA......ccccveeeceerireeerireecre e e e s nannssnnnas 166
MOGIfIEr OPBIATOIS.....ccceveeeeecerieceer e s e e s s se s ne s e nn e e nes 167

xii

CONTENTS

Replacing Documents with replace_0ne().......ccocvvreriririnnnnnnre e 172
Modifying @ Document ALOMICAIIYccceverererinenene e sr e e sa e sa e sa e sa e 172
Putting the Parameters 10 WOrk.........c.cocovvnnnnninnnnnsssssssssssssss 173
Processing Data in BUIKcccvceverirsncesser e se s s sn e snssnanns 174
Executing BUlK OPErations..........ccccoeereercririniencsisiee s se s ss s ss s sessssssnens 174
Deleting DAta..........cccceeeereeerieresinerre e nn s 175
Creating a Link Between Two DOCUMENTS........cccccveererennicrsse e 176
Retrieving the INformation.........c.cocvvvnnnnnn i ——————— 178
1111 11T SRS 179
Chapter 8: Advanced QUENIeSuccerrrssssnsssrssssnssssssssnsssssssssnnssssssnnnsssssnnnssssssnnnnss 181
TEXE SEAICH......eie e ——————————— 181
Text Search Costs and Limitations..........c.covvvnnnnnnnnssssssssss s 182
USING TEXE SBAICHc.ceeeecerirccir st nenne e 182
Text Indexes in Other LANGUAGES.........coceerurueerererreenesesseesesesssss e seses s sessssssssessssssssssssssssssssssans 187
Compound Indexing With TEXE INAEXEScueeeeerererencrirneesere e enas 187
The Aggregation FrameWOrK.........cccccveeerserenessessssssessssessesssesssssssessssesssssssessssssssnsssens 189
Using the $group COMMAN ... s e e s e se s s e e s sss e e s ssssasesssssssnens 190
Using the $limit OPEIator............cceeeceurirereerrere st s e s se e s sss e e s sssseneessssanens 192
Using the $Match OPErator............coceurirercererererecrere e s s se e s s e ss s sa e sssnens 193
USing the $S0rt OPEIALONccurerecrererereeertre et s e s s e sssse e s sss e e s s e e e assssnens 194
Using the SUNWINA OPErator.........cocceureeercecrerecee et s e ss e s sss e s e s ssanens 196
USing the $SKIP OPEIALOFcccrurereueererereesrereressasareresesssseresesssssesessssssesesessssssesessssssesensssssssensassssens 198
USINg the $OUL OPEIALOT..........cccueurereecertrereeererere e a e s e s e s s s e e s asa e e s s e e e anssanens 199
Using the $I00KUP OPEIALON..........ccoceeeururereeerereressaeereresessseresesssssesessssssesesessssssesesssssesensssssesensassssens 200
T T0 20T LH T SR 202
HOW MAPREAUCE WOTKS......coueeeerierierieriesiene e sse s sre s e sae s sas s saesaesassssssesassassssssssassssssssssnsenes 202
Setting Up TeSting DOCUMENES.......ccovrereererererestreresersssersssessesessessssesasessssesssssssssassessssesssnesssssssesassens 202
Working wWith Map FUNCHIONSccoiiercrr st se s sa s se s e e sa s e sa s sa s sn s 203
AdvanCed MAPREUUCEcce ettt a e e e e e b e e se e e e e e e e e e sa e nn e e s 205
Debugging MAPREAUCEceeuerirererererere e sa e sa e s e s e s a e sa e e sa e e e e e e e e e e e sa e sa e e e nne s 207
1111 11 SRS 208

CONTENTS

Chapter 9: Database Administrationcccnneemmmmmmsessssss 209

Using AdminiStrative TOOISccceeeerererresersersesse e sse e ssesss e ssessessesnssnesnesnssnssnsssansnns 209
mongo, the MoNGODB CONSOIE...........ccceerierrriereserre s sss s se s se e s e s sese e se s sessessssesssnenns 210
Using Third-Party Administration TOOIS...........ccoevrennenncnncrs e 210

Backing Up the MongoDB SErVerccocvervrrrsernes s e sss e e e e s s snsnns 210
Creating @ BACKUPD 107 ... s nes s nnns 210
Backing Up @ Single Database.........c.coceceeererrrienesinrnesesirisesese s ses s sessssssssesssssssssnnns 213
Backing Up @ Single COBCLION...........ccceeererreecreriseeserise e enns 213

Digging Deeper into BACKUPSccvververierierserrinserres s ses e s e ses e sesses e ssssassassasssssnns 213

Restoring Individual Databases or Collections..........ccccveerirrrriennsc s 214
Restoring a Single Database ... ———— 215
Restoring a Single COlECLION.........cccieceierr e s r e 215

Automating BaACKUPSccceereerrereeree e ssesse e s ssessssnessesnesne s sne s s sasssssnssnssnssnssnssnesnn s 216
USiNG @ LOCAI DALASTOIE........coceuieecererieccreris e s e nnns 216
Using a Remote (Cloud-Based) DAtastorecccceceererereneresenesesesssesesesssesesssssse s sssesessssssens 218

Backing Up Large Databasescccvvrvrnrrnnnsersi s ses e e e ssnnns 219
Using a Hidden Secondary Server for BaCKUPSccoeeerererererrereesereserereseressessesessesessesessessssessenens 219
Creating Snapshots with a Journaling FileSyStemccoverrvrerrerrerere e ree s 220
Disk Layout to Use with VoIUME MaNAQErSccceuerereererereriererrereesereesersesessesssessssessesessssessessssessssenes 223

Importing Data into MONGODB ..o snenre e 223

Exporting Data from MongoDB............ccooeeeerecerere e 225

Securing Your Data by Restricting Access to a MongoDB Server..........cccoevvrverrernennnns 226

Protecting Your Server with Authentication..........c.ccoceevverrnniccninssnccrr e 226
Adding an AdMIN USEEcouieiicrcccresese e se s e s s s s sas e s se s e s s saesesnennsnas 227
Enabling AUthentiCation...........ccoecieciecrerr e e e e 227
Authenticating in the moNgo CONSOIE............cceveererienrerrerr e r e e enas 228
MONGODB USEI ROIESccuieercrrecrresesie e sn s s s s e n s p e s se e e sn s n e e 230
Changing a User’s Credentials............ccuiernernscnesess e sesss s e ssesessssessssnssessssesssnesns 231

xiv

CONTENTS

Adding @ REAU-0NIY USEIccceueereerereerereresersssessssessesessessssessssessssesssssssessssesssssssssssssssssessssesssssssssssses 232
D] Y1 T T W UL OSSR 233
Using Authenticated Connections in @ PHP AppliCation..........ccccveverererererseressessssessesessssessesessessssenes 234
MANAQJING SEIVEISceereririerserse s se s e s e e sr e s nn s sn e sn s sn s sn e e s nnssnennennnnans 234
STAMLING @ SEIVEK ...ttt e r e e n e e p s 234
Getting the SErver’s VEISION ... ss s s enas 237
Getting the SErver’s STAtUS...... ..o 237
SRULEING DOWN @ SEIVET.......ceeeeeeieecrer et ns e s s e p e 240
Using MongoDB LOG FilES.......cccuceeerrierenseresenessesesesessessesessessssessessssessessssessssssssssnsens 241
Validating and Repairing Your Data..........ccccceeverenereenesssse e ses s ses e s s snssnens 241
LT o b UL LT = TR - 241
Validating @ Single COlIECHIONcvcvciirirencsi s 242
Repairing Collection Validation FAUIS ... 243
Repairing a Collection’s Data FileS ... 244
Compacting a Collection’s Data Files ... 244
Upgrading MONGODBcoeiererececre e sse e sse e ssesnessesaessesssssssnssnesnssnssnsssssnssnsssnnsnns 245
Rolling Upgrade 0f MONQODB...........cooiirreriecseseseese s es e s s sesssss s e sssssssessssssssesssssssssnns 246
Monitoring MONQODB..........ccccieeierererre e 246
Using MongoDB Cloud Manager...........ccoucereerrrerrenesesnssessesessessssessssssesssssssessssesssssssens 247
11111 112 SRRSO 248
Chapter 10: Optimization.........ccurmmrnnnnsnnnmmnsesnnnssssesss s —————— 249
Optimizing Your Server Hardware for Performancecccoceeeeevecesessessessenssssennnnns 249
Understanding MongoDB’s Storage ENgines..........cueesenmnemenmssssssmnssssssssssssssens 249
Understanding MongoDB Memory Use Under MMAPVcoreeereveennesessessesnennenns 250
Understanding Working Set Size in MIMAPVT ... rersssesesesessesessesessssessessssessenenns 250
Understanding MongoDB Memory Use Under WiredTigercccoeeeeeereeseesessessensennnnns 251
CompresSion iN WIrEATIGEcucoceeeereecreriee s e s e s ne e nnnnas 251
Choosing the Right Database Server Hardwareocoorrenennnnnencsssesesesse e 252

XV

CONTENTS

Evaluating Query Performance............coccevverennennsesessssesssss s s ssesesssssssssnes 252
The MONGODB PrOfiler.........ccoeuieeirerecirireeeres e 253
Analyzing a Specific Query With eXplain()ccoeeeererrenererrreserr e 257
Using the Profiler and explain() to Optimize @ QUEIY........ccovcerrrererrerre e 258

ManAQINg INUEXESccerverrerierierrerserer st se e se e se s e s e s e e e sn e sn e e e snesnesnesnenans 264
LiSTING INAEXES...ccveereerereererererersesersesersesessesssessssessesesassassesassesassessesessssesssssssessssessesesssnsssssansesansersenenes 265
Creating @ SiIMPIE INAEX......ccovcererererererereres e rre s rse s raeresserassesaesesaesesaesesaesassesassesaesesassesassassesansesseneres 265
Creating a Compound INAEXovvemrirrmnnsini s 266

Three-Step Compound Indexes By A. Jesse Jiryu Davis........cccoevereereersersessessessensennns 267
(=0 oSS 267
RANGE QUETY ...ttt e st e e s e A s e b e e Re e e e s ae e e sennn e e e s 267
Equality PIUS RANGE QUETY.......c.ouecerereeeeriresecst s se s sn s ss s nn s 269
Digression: How MongoDB Cho0S€es an INAEXccceererniernrcnnnesesesesssse s sessssessessssessssesns 271
Equality, Range QUErY, @nd SOM............cocoruiuiiecrireec s 272
FiNal MELNOU.........cciiiiiiciii s 275

Specifying INdeX OPLiONS........cccveerieresrrers e e 275
Creating an Index in the Background with {background:true}...........ccooeeeerrcesnnsesesenneseserereeeens 275
Creating an Index with a Unique Key {UniQUE:TIUE}oceeeeerececrreecr et 276
Creating Sparse Indexes With {SPArSE:trUe}ccceerrercrnnieneserre e 276
Creating Partial INAEXES........ccvuverererrreeeriree e s e nansn s nnes 277
L 0= 277
TEXt SEArCH INUEXES......ccciereiieee e 278
Dropping @n INAEXcccoveveeecrerireererse s s e e e s sse e e s se s e nensnnnnnnes 278
Reindexing @ COHBCHIONccoueueeeerreccrtr e e 279

Using hint() to Force Using a SPecific INAEXccverererrrrrrsnerses s sessessessenns 279

USING INAEX FIILEIS.....coeeeeeceeee et snesnesr e sn e sn e sn e sn e n e sn s sn e nn e nnnnns 280

Optimizing the Storage of SMall ObJECES........c.ccovrrrerrrrerrse s 283

E3 1111 P2 7R 284

xvi

CONTENTS

Chapter 11: Replicationcccunmmmmmmmmmmmmmmmmmsssssssnnmmmssssssssssnnsssssssssssssssnns 289

Spelling Out MongoDB’s Replication GOAlSc.ccoceeerererseresensesesensesss e sesessesensens 286
IMProving SCalabilityccccevieririccrecr e s 286
Improving Durability/Reli@bilityc.ccccerimienninnrner e s sas s seens 286
Providing ISOIAtONcocvvinininisisisiii s ———————————— 287

Replication Fundamentals............ccccvvrversnsnnnsinss s s snssnesnenns 287
WhEL IS @ PHIMAIY? ...t et 288
What IS @ SECONAAIY?........ccoeereeecerirecer et p e e p e nnnnans 288
WHAL IS @N ATDITEI? ... 288

Drilling Down 0N the OPlog........ccoeerverierieriensererserrerser s ss e e e e e snssnssassnsnns 289

Implementing @ Replica Set ... s 290
Creating @ REpliCa SEL ..o e e 291
Getting a Replica Set Member Up and RUNNING..........cccoveericrnncnnscresinssnse e ses s e snssenns 292
Adding a Server t0 @ RepliCa Set.......ccccveerierninrrre e 293
AddiNg @n ArDITEE ... ————————————— 299
Replica Set ChaiNiNg........cccccercrireieniresere e e n s r e e e e e sn s p s 300
Managing RepliCa SetS........ccuviiiieiicrre s p e 300
Configuring the Options for Replica Set MEMDETSccoverrrcrcrresrerre e 306
Connecting to a Replica Set from Your Applicationcccoerrevnccscsrerrer s 308

T2 T 04T o S 313

E3 1111 1P 7 313

Chapter 12: Sharding.......ccussemmmmissssmmmmsssssnmmsssssnmmsssssmmssssssnmmsssssnessssnnsssnnm 315

Exploring the Need for Shardingc.ccocvvrvrinrennnsnser e eens 315

Partitioning Horizontal and Vertical Data............c.cccccvercersssessesses s 316
Partitioning Data Vertically ... sn s 316
Partitioning Data HOrizontallycceoieenicncncncscse e sn e 317

Analyzing a Simple Sharding SCeNArioccccceverererere s s 317

xvii

CONTENTS

Implementing Sharding with MoNgODB............ccoceeiernnenrse s 318
Setting Up a Sharding Configurationc.cveecenrenennnesscssse s sessssnns 321
Determining HOW YOU're CONNECLEMccovrveecrirrrecrirenec e sss s ssssnnns 328
Listing the Status of @ Sharded CIUSTEN ..o 328
Using Replica Sets to Implement Shardsc.ooceeerncicnnnescscrseesess e 329

T = 12T T 330

Hashed Shard KEYS ... e s e s e s s s s snssnsnnns 332

Tag SNAMAINGoeeeeiecerere s ea e s re e a e n e e nnnn s 332

Adding More Config SEIVEIS........cuverererereerereereesae e sse e sassse e ssssassassasssssassasssssassasans 335

BT 111 12 SRS 336

1T - 337

xviii

About the Authors

David Hows is an Honors graduate from the University of Woolongong

in NSW, Australia. He got his start in computing trying to drive more
performance out of his family PC without spending a fortune. This led

to a career in IT, where David has worked as a Systems Administrator,
Performance Engineer, Software Developer, Solutions Architect, and
Database Engineer. David has tried in vain for many years to play soccer well,
and his coffee mug reads “Grumble Bum.”

Peter Membrey is a Chartered IT Fellow with over 15 years of experience
using Linux and Open Source solutions to solve problems in the real
world. An RHCE since the age of 17, he has also had the honor of working
for Red Hat and writing several books covering Open Source solutions.
He holds a master's degree in IT (Information Security) from the
University of Liverpool and is currently an EngD candidate at the Hong
Kong Polytechnic University, where his research interests include time
synchronization, cloud computing, big data, and security. He lives in
Hong Kong with his wonderful wife Sarah and son Kaydyn.

Xix

ABOUT THE AUTHORS

Eelco Plugge is a techie who works and lives in the Netherlands. Currently
working as an engineer in the mobile device management-industry
where he spends most of his time analyzing logs, configs and errors, he
previously worked as a data encryption specialist at McAfee and held
a handful of IT/system engineering jobs. Eelco is the author of various
books on MongoDB and Load Balancing, a skilled troubleshooter and
holds a casual interest in IT security-related subjects complementing his
MSc in IT Security.

Eelco is a father of two, and any leisure time left is spent behind the
screen or sporadically reading a book. Interested in science and nature’s
oddities, currency trading (FX), programming, security and sushi.

Tim Hawkins produced one of the world’s first online classifieds portals in 1993, loot.com, before moving on
to run engineering for many of Yahoo EU’s non-media-based properties, such as search, local search, mail,
messenger, and its social networking products. He is currently managing a large offshore team for a major
US eTailer, developing and deploying next-gen eCommerce applications. Loves hats, hates complexity.

XX

About the Technical Reviewer

Stephen Steneker (aka Stennie) is an experienced full stack software
developer, consultant, and instructor. Stephen has a long history working
for Australian technology startups including founding technical roles at
Yahoo! Australia & NZ, HomeScreen Entertainment, and Grox. He holds a
BSc (Computer Science) from the University of British Columbia.

In his current role as a Technical Services Engineer for MongoDB,
Inc., Stephen provides support, consulting, and training for MongoDB. He
frequently speaks at user groups and conferences, and is the founder and
wrangler for the Sydney MongoDB User Group (http://www.meetup.com/
SydneyMUG/).

You can find him on Twitter, StackOverflow, or Github as @stennie.

XXi

http://www.meetup.com/SydneyMUG/
http://www.meetup.com/SydneyMUG/

About the Contributor

A.Jesse Jiryu Davis is a Staff Engineer at MongoDB in New York City,
specializing in C, Python, and asynchronous I/0. He is the lead developer
of the MongoDB C Driver, author of Motor, and a contributor to Python,
PyMongo, and Tornado. He is the co-author with Guido van Rossum of the
chapter “A Web Crawler With asyncio Coroutines” in 500 Lines or Less, the
fourth book in the Architecture of Open Source Applications series.

xxiii

Acknowledgments

My thanks to all members of the MongoDB team, past and present. Without them we would not be here, and
the way people think about the storage of data would be radically different. I would like to pay extra special
thanks to my colleagues at the MongoDB team in Sydney, as without them I would not be here today.

—David Hows

Writing a book is always a team effort. Even when there is just a single author, there are many people
working behind the scenes to pull everything together. With that in mind I want to thank everyone in the
MongoDB community and everyone at Apress for all their hard work, patience, and support. Thanks go to
Dave and Eelco for really driving the Third Edition home.

I'd also like to thank Dou Yi, a PhD student also at the Hong Kong Polytechnic University (who is
focusing on security and cryptographic based research), for helping to keep me sane and (patiently)
explaining mathematical concepts that I really should have grasped a long time ago. She has saved me hours
of banging my head against a very robust brick wall.

Special thanks go to Dr. Rocky Chang for agreeing to supervise my EngD studies and for introducing
me to the world of Internet Measurement (which includes time synchronization). His continued support,
patience and understanding are greatly appreciated.

—Peter Membrey
To the 9gag community, without whom this book would have been finished months ago.
—Eelco Plugge

I would like to acknowledge the members of the mongodb-user and mongodb-dev mail lists for putting up
with my endless questions.

—Tim Hawkins

XXV

Introduction

I am a relative latecomer to the world of databases, starting with MySQL in 2006. This followed the logical
course for any computer science undergraduate, leading me to develop on a full LAMP stack backed

by rudimentary tables. At the time I thought little about the complexities of what went into SQL table
management. However, as time has gone on, I have seen the need to store more and more heterogeneous
data and how a simple schema can grow and morph over time as life takes its toll on systems.

My first introduction to MongoDB was in 2011, when Peter Membrey suggested that instead of a 0 context
table of 30 key and 30 value rows, I simply use a MongoDB instance to store data. And like all developers faced
with a new technology I scoffed and did what I had originally planned. It wasn’t until I was halfway through
writing the code to use my horrible monstrosity that Peter insisted I try MongoDB, and I haven’t looked back
since. Like all newcomers from SQL-land, I was awed by the ability of this system to simply accept whatever
data I threw at it and then return it based on whatever criteria I asked. I am still hooked.

Our Approach

And now, in this book, Peter, Eelco Plugge, Tim Hawkins, and I have the goal of presenting you with the same
experiences we had in learning the product: teaching you how you can put MongoDB to use for yourself,
while keeping things simple and clear. Each chapter presents an individual sample database, so you can read
the book in a modular or linear fashion; it’s entirely your choice. This means you can skip a certain chapter if
you like, without breaking your example databases.

Throughout the book, you will find example commands followed by their output. Both appear in a
fixed-width “code” font, with the commands also in boldface to distinguish them from the resulting output.
In most chapters, you will also come across tips, warnings, and notes that contain useful, and sometimes
vital, information.

—David Hows

xxvii

CHAPTER 1

Introduction to MongoDB

Imagine a world where using a database is so simple that you soon forget you're even using it. Imagine a
world where speed and scalability just work, and there’s no need for complicated configuration or set up.
Imagine being able to focus only on the task at hand, get things done, and then—just for a change—leave
work on time. That might sound a bit fanciful, but MongoDB promises to help you accomplish all these
things (and more).

MongoDB (derived from the word humongous) is a relatively new breed of database that has no concept
of tables, schemas, SQL, or rows. It doesn’t have transactions, ACID compliance, joins, foreign keys, or many
of the other features that tend to cause headaches in the early hours of the morning. In short, MongoDB
is a very different database than you're probably used to, especially if you've used a relational database
management system (RDBMS) in the past. In fact, you might even be shaking your head in wonder at the
lack of so-called “standard” features.

Fear not! In the following pages, you will learn about MongoDB'’s background and guiding principles
and why the MongoDB team made the design decisions it did. We'll also take a whistle-stop tour of
MongoDB's feature list, providing just enough detail to ensure that you’ll be completely hooked on this topic
for the rest of the book.

We'll start by looking at the philosophy and ideas behind the creation of MongoDB, as well as some
of the interesting and somewhat controversial design decisions. We’ll explore the concept of document-
oriented databases, how they fit together, and what their strengths and weaknesses are. We'll also explore
JavaScript Object Notation and examine how it applies to MongoDB. To wrap things up, we’ll step through
some of the notable features of MongoDB.

Reviewing the MongoDB Philosophy

Like all projects, MongoDB has a set of design philosophies that help guide its development. In this section,
we’ll review some of the database’s founding principles.

Using the Right Tool for the Right Job

The most important of the philosophies that underpin MongoDB is the notion that one size does not fit all.
For many years, traditional relational (SQL) databases (MongoDB is a document-oriented database) have
been used for storing content of all types. It didn’t matter whether the data were a good fit for the relational
model (which is used in all RDBMS databases, such as MySQL, PostgresSQL, SQLite, Oracle, MS SQL Server,
and so on); the data were stuffed in there anyway. Part of the reason for this is that, generally speaking,

it’s much easier (and more secure) to read and write to a database than it is to write to a file system. If you
pick up any book that teaches PHP, such as PHP for Absolute Beginners 2nd edition, by Jason Lengstorf and
Thomas Blom Hansen (Apress, 2014), you'll probably discover almost right away that the database is used

CHAPTER 1 © INTRODUCTION TO MONGODB

to store information, not the file system. It’s just so much easier to do things that way. And while using a
database as a storage bin works, developers always have to work against the flow. It’s usually obvious when
we're not using the database the way it was intended; anyone who has ever tried to store information with
even slightly complex data and had to set up several tables and then try to pull them all together knows what
we're talking about!

The MongoDB team decided that it wasn’t going to create another database that tries to do everything
for everyone. Instead, the team wanted to create a database that worked with documents rather than rows
and that was blindingly fast, massively scalable, and easy to use. To do this, the team had to leave some
features behind, which means that MongoDB is not an ideal candidate for certain situations. For example,
its lack of transaction support means that you wouldn’t want to use MongoDB to write an accounting
application. That said, MongoDB might be perfect for part of the aforementioned application (such as
storing complex data). That’s not a problem, though, because there is no reason why you can’t use a
traditional RDBMS for the accounting components and MongoDB for the document storage. Such hybrid
solutions are quite common, and you can see them in production apps such as the one used for the New
York Times website

Once you're comfortable with the idea that MongoDB may not solve all your problems, you will
discover that there are certain problems that MongoDB is a perfect fit for resolving, such as analytics (think
areal-time Google Analytics for your website) and complex data structures (for example, blog posts and
comments). If you're still not convinced that MongoDB is a serious database tool, feel free to skip ahead to
the “Reviewing the Feature List” section, where you will find an impressive list of features for MongoDB.

Note The lack of transactions and other traditional database features doesn’t mean that MongoDB is
unstable or that it cannot be used for managing important data.

Another key concept behind MongoDB'’s design is that there should always be more than one copy of
the database. If a single database should fail, then it can simply be restored from the other servers. Because
MongoDB aims to be as fast as possible, it takes some shortcuts that make it more difficult to recover from
a crash. The developers believe that most serious crashes are likely to remove an entire computer from
service anyway; this means that even if the database were perfectly restored, it would still not be usable.
Remember: MongoDB does not try to be everything to everyone. But for many purposes (such as building a
web application), MongoDB can be an awesome tool for implementing your solution.

So now you know where MongoDB is coming from. It’s not trying to be the best at everything, and
it readily acknowledges that it’s not for everyone. However, for those who choose to use it, MongoDB
provides a rich document-oriented database that’s optimized for speed and scalability. It can also run nearly
anywhere you might want to run it. MongoDB’s website includes downloads for Linux, Mac OS, Windows,
and Solaris.

MongoDB succeeds at all these goals, and this is why using MongoDB (at least for us) is somewhat
dream-like. You don’t have to worry about squeezing your data into a table—just put the data together, and
then pass them to MongoDB for handling.

Consider this real-world example. A recent application that co-author Peter Membrey worked on
needed to store a set of eBay search results. There could be any number of results (up to 100 of them), and
he needed an easy way to associate the results with the users in his database. Had Peter been using MySQL,
he would have had to design a table to store the data, write the code to store his results, and then write more
code to piece it all back together again. This is a fairly common scenario and one most developers face on
a regular basis. Normally, we just get on with it; however, for this project, he was using MongoDB, so things
went a bit differently.

CHAPTER 1 © INTRODUCTION TO MONGODB

Specifically, he added this line of code:

request['ebay results'] = ebay results array
collection.save(request)

In this example, request is Peter’s document, ebay_results is the key, and ebay_result_array contains
the results from eBay. The second line saves the changes. When he accesses this document in the future, he
will have the eBay results in exactly the same format as before. He doesn’t need any SQL; he doesn’t need to
perform any conversions; nor does he need to create any new tables or write any special code—MongoDB
just worked. It got out of the way, he finished his work early, and he got to go home on time.

Lacking Innate Support for Transactions

Here’s another important design decision by MongoDB developers: The database does not include
transactional semantics (the element that offers guarantees about data consistency and storage). This
is a solid tradeoff based on MongoDB'’s goal of being simple, fast, and scalable. Once you leave those
heavyweight features at the door, it becomes much easier to scale horizontally.

Normally with a traditional RDBMS, you improve performance by buying a bigger, more powerful
machine. This is scaling vertically, but you can only take it so far. With horizontal scaling, rather than having
one big machine, you have lots of less powerful small machines. Historically, clusters of servers like this were
excellent for load-balancing websites, but databases had always been a problem because of internal design
limitations.

You might think this missing support constitutes a deal-breaker; however, many people forget that one
of the most popular table types in MySQL (MYISAM—which also happens to be the default) doesn’t support
transactions either. This fact hasn’t stopped MySQL from becoming and remaining the dominant open
source database for well over a decade. As with most choices when developing solutions, using MongoDB is
going to be a matter of personal preference and whether the tradeoffs fit your project.

Note MongoDB offers durability when used in tandem with at least two data-bearing servers as part of a
three-node cluster. This is the recommended minimum for production deployments. MongoDB also supports
the concept of “write concerns.” This is where a given number of nodes can be made to confirm the write was
successful, giving a stronger guarantee that the data are safely stored.

Single server durability is ensured since version 1.8 of MongoDB with a transaction log. This log is
append only and is flushed to disk every 100 milliseconds.

JSON and MongoDB

JSON (JavaScript Object Notation) is more than a great way to exchange data; it’s also a nice way to store
data. An RDBMS is highly structured, with multiple files (tables) that store the individual pieces. MongoDB,
on the other hand, stores everything together in a single document. MongoDB is like JSON in this way,

and this model provides a rich and expressive way of storing data. Moreover, JSON effectively describes all
the content in a given document, so there is no need to specify the structure of the document in advance.
JSON is effectively schemaless (that is, it doesn’t require a schema), because documents can be updated
individually or changed independently of any other documents. As an added bonus, JSON also provides
excellent performance by keeping all of the related data in one place.

CHAPTER 1 © INTRODUCTION TO MONGODB

MongoDB doesn’t actually use JSON to store the data; rather, it uses an open data format developed
by the MongoDB team called BSON (pronounced Bee-Son), which is short for binary JSON. For the most
part, using BSON instead of JSON won'’t change how you work with your data. BSON makes MongoDB even
faster by making it much easier for a computer to process and search documents. BSON also adds a couple
of features that aren’t available in standard JSON, including a number of extended types for numeric data
(such as int32 and int64) and support for handling binary data. We’'ll look at BSON in more depth in “Using
Document-Oriented Storage (BSON),” later in this chapter.

The original specification for JSON can be found in RFC 7159, and it was written by Douglas Crockford.
JSON allows complex data structures to be represented in a simple, human-readable text format that is
generally considered to be much easier to read and understand than XML. Like XML, JSON was envisaged
as a way to exchange data between a web client (such as a browser) and web applications. When combined
with the rich way that it can describe objects, its simplicity has made it the exchange format of choice for the
majority of developers.

You might wonder what is meant here by complex data structures. Historically, data were exchanged
using the comma-separated values x(CSV) format (indeed, this approach remains very common today). CSV
is a simple text format that separates rows with a new line and fields with a comma. For example, a CSV file
might look like this:

Membrey, Peter, +852 1234 5678
Thielen, Wouter, +81 1234 5678

Someone can look at this information and see quite quickly what information is being communicated.
Or maybe not—is that number in the third column a phone number or a fax number? It might even be the
number for a pager. To avoid this ambiguity, CSV files often have a header field, in which the first row defines
what comes in the file. The following snippet takes the previous example one step further:

Lastname, Firstname, Phone Number
Membrey, Peter, +852 1234 5678
Thielen, Wouter, +81 1234 5678

Okay, that’s a bit better. But now assume some people in the CSV file have more than one phone
number. You could add another field for an office phone number, but you face a new set of issues if you want
several office phone numbers. And you face yet another set of issues if you also want to incorporate multiple
e-mail addresses. Most people have more than one, and these addresses can’t usually be neatly defined
as either home or work. Suddenly, CSV starts to show its limitations. CSV files are only good for storing
data that are flat and don’t have repeating values. Similarly, it’s not uncommon for several CSV files to be
provided, each with the separate bits of information. These files are then combined (usually in an RDBMS)
to create the whole picture. As an example, a large retail company may receive sales data in the form of CSV
files from each of its stores at the end of each day. These files must be combined before the company can see
how it performed on a given day. This process is not exactly straightforward, and it certainly increases the
chances of a mistake as the number of required files grows.

XML largely solves this problem, but using XML for most things is a bit like using a sledgehammer
to crack a nut: it works, but it feels like overkill. The reason for this is that XML is not only designed for
machines to read (whereas JSON is designed for humans), but it is also highly extensible. Rather than define
a particular data format, XML defines how you define a data format. This can be useful when you need to
exchange complex and highly structured data; however, for simple data exchange, it often results in too
much work. Indeed, this scenario is the source of the phrase “XML hell”

CHAPTER 1 © INTRODUCTION TO MONGODB

JSON provides a happy medium. Unlike CSV, it can store structured content; but unlike XML, JSON
makes the content easy to understand and simple to use. Let’s revisit the previous example; however, this
time we used JSON rather than CSV:

{
"firstname": "Peter",
"lastname": "Membrey",
"phone_numbers": [
"+852 1234 5678",
"+44 1234 565 555"
]
}

In this version of the example, each JSON object (or document) contains all the information needed to
understand it. If you look at phone_numbers, you can see that it contains a list of different numbers. This list
can be as large as you want. You could also be more specific about the type of number being recorded, as in
this example:

{
"firstname": "Peter",
"lastname": "Membrey",
"numbers": [
{
"phone": "+852 1234 5678"
1
{
"fax": "+44 1234 565 555"
}
]
}

This version of the example improves on things a bit more. Now you can clearly see what each number
is for. JSON is extremely expressive, and, although it’s quite easy to write JSON from scratch, it is usually
generated automatically in software. For example, Python includes a module called (somewhat predictably)
json that takes existing Python objects and automatically converts them to JSON. Because JSON is
supported and used on so many platforms, it is an ideal choice for exchanging data.

When you add items such as the list of phone numbers, you are actually creating what is known as
an embedded document. This happens whenever you add complex content such as a list (or array, to use
the term favored in JSON). Generally speaking, there is also a logical distinction. For example, a Person
document might have several Address documents embedded inside it. Similarly, an Invoice document
might have numerous LineItem documents embedded inside it. Of course, the embedded Address
document could also have its own embedded document that contains phone numbers, for example.

Whether you choose to embed a particular document is determined when you decide how to store your
information. This is usually referred to as schema design. It might seem odd to refer to schema design when
MongoDB is considered a schemaless database. However, while MongoDB doesn’t force you to create a
schema or enforce one that you create, you do still need to think about how your data fit together. We’ll look
at this in more depth in Chapter 3.

http://dx.doi.org/10.1007/978-1-4842-1182-3_3

CHAPTER 1 © INTRODUCTION TO MONGODB

Adopting a Nonrelational Approach

Improving performance with a relational database is usually straightforward: you buy a bigger, faster server.
And this works great until you reach the point where there isn’t a bigger server available to buy. At that point,
the only option is to spread out to two servers. This might sound easy, but it is a stumbling block for most
databases. For example, PostgreSQL can’t run a single database on two servers, where both servers can both
read and write data (often referred to as an active/active cluster), and MySQL can only do it with a special
add-on package. And although Oracle can do this with its impressive Real Application Clusters (RAC)
architecture, you can expect to take out a mortgage if you want to use that solution—implementing a
RAC-based solution requires multiple servers, shared storage, and several software licenses.

You might wonder why having an active/active cluster on two databases is so difficult. When you query
your database, the database has to find all the relevant data and link them all together. RDBMS solutions
feature many ingenious ways to improve performance, but they all rely on having a complete picture of the
data available. And this is where you hit a wall: this approach simply doesn’t work when half the data are on
another server.

Of course you might have a small database that simply gets lots of requests, so you just need to share
the workload. Unfortunately, here you hit another wall. You need to ensure that data written to the first
server are available to the second server. And you face additional issues if updates are made on two separate
masters simultaneously. For example, you need to determine which update is the correct one. Another
problem you can encounter is if someone queries the second server for information that has just been
written to the first server, but that information hasn’t been updated yet on the second server. When you
consider all these issues, it becomes easy to see why the Oracle solution is so expensive—these problems are
extremely hard to address.

MongoDB solves the active/active cluster problems in a very clever way—it avoids them completely.
Recall that MongoDB stores data in BSON documents, so the data are self-contained. That is, although
similar documents are stored together, individual documents aren’t made up of relationships. This means
that everything you need is all in one place. Because queries in MongoDB look for specific keys and values
in a document, this information can be easily spread across as many servers as you have available. Each
server checks the content it has and returns the result. This effectively allows almost linear scalability and
performance.

Admittedly, MongoDB does not offer master/master replication, in which two separate servers can
both accept write requests. However, it does have sharding, which allows data to be partitioned across
multiple machines, with each machine responsible for updating different parts of the dataset. The benefit of
a sharded cluster is that additional shards can be added to increase resource capacity in your deployment
without any changes to your application code. Nonsharded database deployments are limited to vertical
scaling: you can add more RAM/CPU/disk, but this can quickly get expensive. Sharded deployments
can also be scaled vertically, but more importantly, they can be scaled horizontally based on capacity
requirements: a sharded cluster can be comprised of many more affordable commodity servers rather than a
few very expensive ones. Horizontal scaling is a great fit for elastic provisioning with cloud-hosted instances
and containers.

Opting for Performance vs. Features

Performance is important, but MongoDB also provides a large feature set. We've already discussed some
of the features MongoDB doesn’t implement, and you might be somewhat skeptical of the claim that
MongoDB achieves its impressive performance partly by judiciously excising certain features common to
other databases. However, there are analogous database systems available that are extremely fast, but also
extremely limited, such as those that implement a key/value store.

A perfect example is memcached. This application was written to provide high-speed data caching, and
itis mind-numbingly fast. When used to cache website content, it can speed up an application many times
over. This application is used by extremely large websites, such as Facebook and LiveJournal. The catch is

6

CHAPTER 1 © INTRODUCTION TO MONGODB

that this application has two significant shortcomings. First, it is a memory-only database. If the power goes
out, then all the data are lost. Second, you can’t actually search for data using memcached; you can only
request specific keys.

These might sound like serious limitations; however, you must remember the problems that
memcached is designed to solve. First and foremost, memcached is a data cache. That is, it’s not supposed
to be a permanent data store, but only a means to provide a caching layer for your existing database. When
you build a dynamic web page, you generally request very specific data (such as the current top ten articles).
This means you can specifically ask memcached for that data—there is no need to perform a search. If the
cache is outdated or empty, you would query your database as normal, build up the data, and then store it in
memcached for future use.

Once you accept these limitations, you can see how memcached offers superb performance by
implementing a very limited feature set. This performance, by the way, is unmatched by that of a traditional
database. That said, memcached certainly can’t replace an RDBMS. The important thing to keep in mind is
that it’s not supposed to.

Compared to memcached, MongoDB is itself feature-rich. To be useful, MongoDB must offer a strong
set of features, such as the ability to search for specific documents. It must also be able to store those
documents on disk, so they can survive a reboot. Fortunately, MongoDB provides enough features to be a
strong contender for most web applications and many other types of applications as well.

Like memcached, MongoDB is not a one-size-fits-all database. As is usually the case in computing,
tradeoffs must be made to achieve the intended goals of the application.

Running the Database Anywhere

MongoDB is written in C++, which makes it relatively easy to port or run the application practically
anywhere. Currently, binaries can be downloaded from the MongoDB website for Linux, Mac OS, Windows,
and Solaris. Officially supported Linux packages include Amazon Linux, RHEL, Ubuntu Server LTS, and
SUSE. You can even download the source code and build your own MongoDB, although it is recommended
that you use the provided binaries wherever possible.

Caution The 32-bit version of MongoDB is limited to databases of 2GB or less. This is because MongoDB
uses memory-mapped files internally to achieve high performance. Anything larger than 2GB on a 32-bit system
would require some fancy footwork that wouldn’t be fast and would also complicate the application’s code.

The official stance on this limitation is that 64-bit environments are easily available; therefore, increasing code
complexity is not a good tradeoff. The 64-bit version for all intents and purposes has no such restriction.

MongoDB'’s modest requirements allow it to run on high-powered servers or virtual machines, and
even to power cloud-based applications. By keeping things simple and focusing on speed and efficiency,
MongoDB provides solid performance wherever you choose to deploy it.

Fitting Everything Together

Before we look at MongoDB'’s feature list, we need to review a few basic terms. MongoDB doesn’t require
much in the way of specialized knowledge to get started, and many of the terms specific to MongoDB can be
loosely translated to RDBMS equivalents that you are probably already familiar with. Don’t worry, though;
we'll explain each term fully. Even if you're not familiar with standard database terminology, you will still be
able to follow along easily.

