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Introduction

In the first book of this series [AUB 15], finite state automata were
introduced as an efficient model for the study of reliability and
dependability of systems as well in static as in dynamic context. We
saw that this type of model requires either an a priori exhaustive
knowledge of the possible states of the system or its formal
construction by operations starting from the models of its components.
This is unfortunately sometimes not possible. For example, during the
design of a system these states are not known in advance. It is however
useful to make a predictive dependability assessment in order to select
the best solution among some propositions. Petri nets may be an
interesting way to answer such problems. Widespread in the field of
automatic control, especially for the modeling of discrete event
systems, Petri nets were introduced in the field of dependability studies
with a noticeable success. The objective of this book is not to present
all of the forms of Petri nets used in dependability assessment but
instead to focus on the most interesting ones. Before their description,
we give a preliminary formal description of the different successive
models of Petri nets which led to the advent of their use in the
dependability field. Of course, it is not just a matter of exhaustively
describing the existing variants of the basic models which are today
hardly countable. In the same way, we will not demonstrate all the
mathematical properties of these models and we will refer the reader to
the essential basic works on the subject. After the introduction of the
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basic models called “autonomous Petri nets” and the comparison with
the finite state automata especially in terms of event language
expression, we will present the fundamental models of
non-autonomous Petri nets to take account of the time and of an
external environment, such models giving an opening to the study of
hybrid systems. Relying on these timed and synchronized Petri nets,
we will describe a systematic method of risk analysis based on an
ontological approach whose elements are entities (supplier or target of
hazard), their successive states and the events corresponding to these
state changes. From the proposed model, a risk assessment may be
deduced by simulation thanks to the introduction of random event
generators. This approach is illustrated by an example from the railway
transportation field. The need of models, integrating the stochastic
character of elements (in this case, events) and allowing an analytical
solution instead of simulation, leads to the introduction of stochastic
Petri nets modeling and its equivalence conditions with Markov or
some extensions of Markov models. We then show how, under some
conditions, complex models may be simplified by a distribution of the
global model on the two formalisms: stochastic Petri nets and Markov
processes. Numerous extensions of Petri nets have been proposed; we
recall the most significant ones and the conditions of their Markov
process equivalence. To complete the book, we present some modeling
examples using different available software tools. These examples are
issued from different application domains.

Writing this book would not have been possible without the
contribution of colleagues and of PhD and Master students who
investigated some related aspects. All of these contributions have been
the subject of publications and are referenced in the text. We would
like to extend our thanks to G. Babykina, P. Barger, G. Deleuze,
L. Gérard, R. Ghostine, D. Jampi, J. Lalouette, R. Schoenig, J-M.
Thiriet and N. Villaume.

Jean-François AUBRY

Nicolae BRINZEI

Mohammed-Habib MAZOUNI

December 2015
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Introduction to Part 1

Petri nets (denoted as PN in this book) were introduced by Carl
Adam Petri in 1962 [PET 62]. As finite state automata (FSA) described
in Volume 1 of this book series [AUB 15], PNs are intended to describe
discrete event systems but contrary to FSAs, the transition function is
explicitly described in PNs. Adding the suggestive and intuitive
graphic representation, we can say that PN is a more powerful model
than FSA to describe discrete event systems, due to the fact that an
FSA may always be transposed into PN whereas PNs, for example, do
not always have a finite state number. We will show here that the
notion of language, set of all the possible event sequences in a system,
may also be associated with a PN and that the class of these languages
is wider than regular languages associated with FSAs.

Like for FSAs, PNs were the subject of multiple extensions at first
to move them from the abstraction level, where only event sequencing
is considered, to the level taking time into account. Timed PNs were
defined to describe behavior of deterministic time systems. Following
extensions, called non-autonomous PNs, associated with a PN, an
external environment is needed in order to consider synchronization
events, continuous variables, especially to describe controlled systems.
All these models at various levels have an interest to model problems
in the dependability assessment of systems.

Systems Dependability Assessment: Benefits of Petri Net Models,  
First Edition. Jean-François Aubry, Nicolae Brinzei, and Mohammed-Habib Mazouni.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.





1

Autonomous Petri Nets

1.1. Unmarked Petri nets

1.1.1. Definitions

A unmarked PN is a bipartite oriented 1-graph1 provided with a
mapping � from the set of arcs to the positive integer set N+:

Q = 〈P, T,A, α, β,�〉
– P and T are two disjointed subsets of nodes: P ∩ T = ∅:

- P is the Place subset with a finite cardinal p;
- T is the Transition subset with a finite cardinal t.

– A is the set of Arcs, α and β are the mappings associating with
each arc, its origin and its goal nodes, respectively, so that:

∀a ∈ A, if α(a) ∈ T then β(a) ∈ P
if α(a) ∈ P then β(a) ∈ T

– � is a mapping or weighting function associating an integer with
each arc, � : A → N+.

If N is reduced to {1}, the PN is of ordinary type (or state transition
graph), otherwise the PN is of generalized type.

1 An oriented 1-graph is such that only one arc may be associated with a couple {origin
node and destination node}.

Systems Dependability Assessment: Benefits of Petri Net Models,  
First Edition. Jean-François Aubry, Nicolae Brinzei, and Mohammed-Habib Mazouni.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Practically, rather than this formalism directly issued from the graph
theory, we will use a definition where A does not explicitly appear. As
it is an 1-graph, it consists of considering all the couples (Pi, Tj) or
(Ti, Pj) and two applications w− and w+.

The PN is then defined as:

DEFINITION 1.1.– An unmarked PN or Place/Transition (P/T) net is a
4-uple Q = 〈P, T, w−, w+〉 [DAV 89] where:

– P is the set of places (finite cardinal p);

– T is the set of transitions (finite cardinal t);

– w−(Pi, Tj) : P × T → N is the backward transition function;

– w+(Pi, Tj) : T × P → N is the forward transition function.

The value “0” associated with the couple (Pi, Tj) by w− or w+

means that there is no arc between Pi and Tj or Tj and Pi. If the value
k ∈ N+ is associated with this couple by w−, respectively w+, then
one arc oriented from Pi to Tj , respectively from Tj to Pi, exists
between these nodes with the valuation k.

REMARK 1.1.– Another possibility is to define a PN as an n-graph (n
arcs may exist between two nodes), an arc of weight n being replaced
by n arcs each of them having the weight one.

1.1.2. Drawing

In the drawing of a PN, places and transitions are, respectively,
represented by circles and streaks (or filled or empty rectangles) and
the arcs are arrows to which the weights are attached. Figure 1.1 shows
an example of PN with three places and two transitions respectively
named as P1, P2, P3, T1, T2. From this figure, we can write
w−(P1, T1) = 1, w−(P3, T2) = 2, w−(P2, T1) = 2 , w+(P3, T1) = 2,
w+(P1, T1) = 1, w+(P2, T2) = 3.
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P1

T2

P2

P3

T1

1 2

2

2

3

1

Figure 1.1. The drawing of a PN

1.1.3. Other definitions

Some of other definitions concerning particular cases of PN are
summarized in the Appendix, section A.1.

1.2. Marking of a PN

Notations [DAV 89]:

– I(Tj) = {Pi ∈ P |w−(Pi, Tj) > 0} is the set of the input places
of Tj ;

– O(Tj) = {Pi ∈ P |w+(Pi, Tj) > 0} is the set of the output places
of Tj ;

– I(Pi) = {Tj ∈ T |w+(Pi, Tj) > 0} is the set of the input
transitions of Pi;

– O(Pi) = {Tj ∈ T |w−(Pi, Tj) > 0} is the set of the output
transitions of Pi.

For example, in Figure 1.1, I(T1) = {P1, P2} and O(T1) =
{P3, P1}.

The marking is a notion resulting from the association of tokens with
the places of the PN. The position in the places of these tokens will
evolve to represent the dynamics of the described system. This evolution
is performed according to a set of rules described in section 1.3.
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DEFINITION 1.2.– A marked PN is a couple R = 〈Q,M0〉 where Q is
an unmarked PN and M0 is an initial marking.

The marking M of a PN at a given instant is a p-sized columnar
vector of integers (p is the place number of the PN), each of its
component being the marking (or charge) of the place Pi that is to say
the number of tokens inside Pi at the considered time instant:

M ∈ Np MT = [M(P1),M(P2), . . . ,M(Pp)]

The initial marking M0 is the marking at time t = 0.

Figure 1.2 shows the initial marking of the PN of Figure 1.1 with:
MT

0 = [1, 2, 0].

P1

T2

P2

P3

T1

1 2

2

2

3

1

Figure 1.2. A marked PN

1.2.1. Order relation on markings

Let us consider two markings M1 and M2 of a PN.

We define the order relation between these markings as follows:

– M1 ≥ M2 ⇐⇒ M1(Pi) ≥ M2(Pi), ∀Pi ∈ P ;

– M1 > M2 ⇐⇒ M1(Pi) ≥ M2(Pi), ∀Pi ∈ P and ∃Pi|M1(Pi) >
M2(Pi).
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1.2.2. Enabled transition

The transition Tj is enabled for a given marking M if and only if:

M(Pi) ≥ w−(Pi, Tj), ∀Pi ∈ I(Tj)

In Figure 1.1, only the transition T1 is enabled.

1.3. Dynamics of autonomous PNs

The previously defined notion of marking is the observation means
of the evolution of the model. The position of the tokens will evolve
according to a set of formal rules allowing the definition
of some properties of the model. This will be recalled in the
following, and more details may be found, for example, in
[CAS 08, DAV 92, BES 01].

1.3.1. Firing of a transition

As PNs are models dedicated to discrete events systems, the firing
of a transition may be considered as an event describing an elementary
evolution of a system (see section 2.1 for the formal definition of
labeled PN) characterized by the successive values of the marking
before and after the firing. An enabled transition may be fired; from a
given marking, each enabled transition could be fired but only one will
be. The choice of the transition to be fired can be done arbitrarily.
When a place has two output transitions their firings are in conflict.
This notion of conflict (formally defined in Appendix A1.1) will be
retrieved, for example, each time a failure occurs concurrently with a
task activation or achievement. Some PN-dedicated software tools give
the possibility of priority assignment to a transition concerned by a
conflict, but this must be carefully handled to avoid the appearance of
dead branches in the reachability graph. Two transitions
T1, T2 ∈ O(Pi) are not in conflict if they are not simultaneously
enabled, which implies that these transitions have input places other
than Pi.



10 Systems Dependability Assessment

The set of the enabled transitions must always be considered
according to the current marking of the PN and not limited to a given
place.

If Mb is the marking before the firing of Tj , the marking Ma after
the firing is defined by:

– ∀Pi /∈ I(Tj) ∪O(Tj) =⇒ Ma(Pi) = Mb(Pi)

– ∀Pi ∈ I(Tj) − (I(Tj) ∩ O(Tj)) =⇒ Ma(Pi) = Mb(Pi) −
w−(Pi, Tj)

– ∀Pi ∈ O(Tj) − (I(Tj) ∩ O(Tj)) =⇒ Ma(Pi) = Mb(Pi) +
w+(Pi, Tj)

– ∀Pi ∈ I(Tj) ∩ O(Tj) =⇒ Ma(Pi) = Mb(Pi) − w−(Pi, Tj) +
w+(Pi, Tj)

The firing of the transition Tj subtracts in place Pi as many tokens
as indicated by w−(Pi, Tj) and adds in place Pk as many tokens as
indicated by w+(Pk, Tj).

Figure 1.3 shows the PN of Figure 1.2 after the firing of transition
T2.

P1

T2

P2

P3

T1

1 2

2

2

3

1

Figure 1.3. PN of Figure 1.2 after firing of transition T2
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1.3.2. Transition matrix

DEFINITION 1.3.– Let us define the backward matrix and forward
matrix, as the following matrices with p lines and t columns:

W− =

⎡
⎢⎢⎣

w−(P1, T1) . . . w−(P1, Tt)
. . . . .
. . w−(Pi, Tj) . .
. . . . .

⎤
⎥⎥⎦ [1.1]

W+ =

⎡
⎢⎢⎢⎢⎣

w+(P1, T1) . . . w+(P1, Tt)
. . . . .
. . w+(Pi, Tj) . .
. . . . .

w+(Pp, T1) . . . w+(Pp, Tt)

⎤
⎥⎥⎥⎥⎦ [1.2]

The transition matrix W is defined by:

W = W+ −W− [1.3]

The transition matrix (p lines and t columns) is independent of the
marking, each column simply shows the number of tokens to remove or
add in a place when the corresponding transition fires. For Figure 1.1:

W =

⎡
⎣ 1 0

0 3
2 0

⎤
⎦−

⎡
⎣ 1 0

2 0
0 2

⎤
⎦ =

⎡
⎣ 0 0

−2 3
2 −2

⎤
⎦

1.3.3. Firing sequence

DEFINITION 1.4.– A firing sequence is obtained when a set of
transitions are successively fired, starting from an initial marking. It is
represented by the concatenation of the successive names of the fired
transitions.
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If for example starting from the initial marking M0 the transitions T1

then T2 are fired to give the marking M2, the sequence will be denoted
as:

S = T1T2, M0
S→ M2

REMARK 1.2.– The transition set T provided with the concatenation
operation and a neutral element may be considered as a monoïd denoted
by T ∗. With such a notation, a firing sequence is one element of this
monoïd: S ∈ T ∗. This notation will sometimes be used later.

DEFINITION 1.5.– Let S be a firing sequence feasible from a marking
Mi, the characteristic vector of the sequence denoted as N is a t size
vector, whose jth component represents how many times the transition
Tj is fired in the sequence S:

N ∈ Nt, N(Tj) = k if Tj is fired k times.

1.3.4. Reachable marking

The M vector cannot take any value. From a given marking M0, it is
possible to list all the possible firing sequences. The obtained marking
after each of these sequences is a reachable marking.

Let us note that R(M0) is the set of the reachable marking from the
initial marking M0:

R(M0) = {Ma ∈ Np : ∃S/M0
S→ Ma}

1.3.5. Fundamental equation

In FSA, we defined the state changes by the mean of the transition
function. In PNs, this function is defined as follows:

f : Np × T → Np

f(Mk, Tj) is defined if and only if Tj is enabled, in this case,
f(Mk, Tj) = Mk+1 with:
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Mk+1(Pi) = Mk(Pi) − w−(Pi, Tj) + w+(TjPi) for Pi ∈ I(Tj) ∪
O(Tj)

As for the FSAs, we can extend f from the domain Np × T to the
domain Np × T ∗ (T ∗ being the monoïd on the set T provided with
the concatenation operation (see section 1.3.3)) and define for a given
initial marking, the new obtained marking after a firing sequence of
characteristic vector N .

We then obtain the fundamental matrix equation as:

Mk = Mi +W ·N [1.4]

For Figure 1.2, let us imagine from the initial marking, the firing
sequence T2T1. After the firing of T2, the obtained marking is shown
by Figure 1.3 and after the firing of T1 it becomes as indicated by
Figure 1.4.

P1

T2

P2

P3

T1

1 2

2

2

3

1

Figure 1.4. PN state of Figure 1.3 after firing of transition T1

As the two components of the vector N are 1 and 1, each of the two
transitions being fired one time, the obtained marking may be retrieved
by the following calculus:⎡

⎣ 1
3
0

⎤
⎦ =

⎡
⎣ 1

2
0

⎤
⎦+

⎡
⎣ 0 0

−2 3
2 −2

⎤
⎦ ·

[
1
1

]
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1.3.6. Properties of PN

A set of definitions and properties are summarized here. For a
complete description and formal demonstrations of properties, we can
report to [DAV 89, CAS 08, DAV 92, BES 01, BRA 83]:

– Boundedness:
- a place of a PN is bounded for a given initial marking M0 if

for any accessible marking from M0 the token number in this place
remains finite. If ∀Mn ∈ R(M0), Mn(Pi) ≤ k with k ∈ N, then Pi is
k-bounded,

- a PN is bounded for a given initial marking M0 if all the places
are bounded for M0.

If ∀Pi ∈ P , ∀Mn ∈ R(M0), Mn(Pi) ≤ k with k ∈ N, then the PN
is k-bounded.

These properties are dependent of the initial marking but sometimes
a PN may be structurally bounded, that is to say bounded for any initial
marking.

– Liveness:
- a transition Tj is alive for a given marking M0 if ∀Mn ∈

R(M0), ∃S : M0
S→ Mn/Tj ∈ S (there is always a firing of Tj),

- a PN is alive for a given marking M0 if all its transitions are
alive for M0.

– Blocking:
- a blocking is a marking from which any transition is enabled. It

corresponds to an absorbing state,
- a PN is blocking free for a given initial marking M0 if no

marking Mn ∈ R(M0) is a blocking.

Liveness and blocking are properties dependant on the initial
marking M0.

1.3.7. Other properties

Some other properties are summarized in Appendix A.1.
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1.3.8. Invariants in a PN

1.3.8.1. Conservative component and marking invariant

It should be noted that sometimes the weighted sum of the markings
of a subset of places remains constant. This is an invariant of this subset
which is called conservative component of the PN. As it is independent
of the initial marking, this is a property of the unmarked PN (the value
of this constant may only depend on the initial marking). In most cases,
this is the characteristic of a physical property of the modeled system.

A P -semi-flow is a vector F of integers of dimension p (number of
places of the PN) so that:

F T ·W = 0 [1.5]

According to the fundamental equation Mk = Mi +W ·N (for any
accessible marking from Mi by a firing sequence S characterized by the
vector N ): F T ·Mk = F T ·Mi+F T ·W ·N . If F T ·W = 0 we obtain:

F T ·Mk = F T ·Mi [1.6]

which is the marking invariant.

The integers of the vector F may be considered as weights assigned
to the places of the PN. The subset of places whose weights are null is
the PN conservative component support of the P -semi-low. It will be
noted PF .

Any linear combination of a semi-flow is itself a semi-flow.

Let PF = {P1, P2, ..., Pr} be a conservative component of a PN and
F = [q1, q2, ..., qr]

T the corresponding weighting vector. All the places
of the conservative component are bounded and we get: M(Pi) ≤ F T ·
M0/qi.

For example, it is easy to verify that in the PN of Figure 2.1 (see
section 2.2) the subset of places {P4, P5} is a conservative component,
the sum of their marking is always equal to 1 (the initial marking of P4).


