e

—

Wave Propagation
In Fluids

Models and Numerical Technigues

Second Edition

Vincent Guinot

=== $WILEY






File Attachment
Cover.jpg





Wave Propagation in Fluids






Wave Propagation in Fluids

Models and Numerical Techniques

Second Edition

Vincent Guinot

%

%)WILEY



First edition published 2008 by ISTE Ltd and John Wiley & Sons, Inc.
Second updated and revised edition published 2010 in Great Britain and the United States by ISTE Ltd
and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2008, 2010

The rights of Vincent Guinot to be identified as the author of this work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Cataloging-in-Publication Data

Guinot, Vincent.

Wave propagation in fluids : models and numerical techniques / Vincent Guinot. -- 2nd ed., updated and
rev.

p. cm.

Includes bibliographical references and index.

ISBN 978-1-84821-213-8

1. Fluids--Mathematics. 2. Wave-motion, Theory of. I. Title.

QA927.G85 2010

532'.05930151--dc22

2010027124

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-84821-213-8

Printed and bound in Great Britain by CPI Antony Rowe, Chippenham and Eastbourne.

®

MIX

Paper from
responsible sources
FSC

wwiscog  FSC® C013604



www.iste.co.uk
www.wiley.com

Table of Contents

Introduction. . . . . . . .. . . ... XV

Chapter 1. Scalar Hyperbolic Conservation Laws
in One Dimension of Space . . . . ... ........ . ... ... .. ..... 1

1.1.Definitions . . . . .. ... ... e 1
1.1.1. Hyperbolic scalar conservation laws . . .. .............. 1
1.1.2. Derivation from general conservation principles . . . ... ... .. 3
1.1.3. Non-conservation form . . . ... .................... 6
1.1.4. Characteristic form — Riemann invariants . . . .. .......... 7

1.2. Determination of the solution . . . . . ... ... .............. 9

1.2.1. Representation in the phasespace . . . . ... ... .......... 9
1.2.2. Initial conditions, boundary conditions . . . . ... .......... 12
1.3. A linear law: the advectionequation . . . . ... ... ........... 14
1.3.1. Physical context — conservation form . . . . .. ............ 14
1.3.2. Characteristic form . . . . . ............ .. ... . . . ..., 16
1.3.3. Example: movement of a contaminant inariver . . ......... 17
1.34.Summary. . . ... 21
1.4. A convex law: the inviscid Burgers equation. . . . . ... ... ..... 21
1.4.1. Physical context — conservation form . . . . ... ........... 21
1.4.2. Characteristic form . . . . . ............. ... ... ..... 22
1.4.3. Example: propagation of a perturbation in a fluid. . . . . ... ... 24
14.4.Summary. . . . ... 28
1.5. Another convex law: the kinematic wave for
free-surface hydraulics. . . . . . .. ... ... .. 28
1.5.1. Physical context — conservation form . . . . .. ... ......... 28
1.5.2. Non-conservation and characteristic forms. . . . ... ... ... .. 30
1.5.3. Expression of the wave speed. . . . . . ................. 31

1.5.4. Particular case: flow in a rectangular channel . . . . ... ... ... 34



vi  Wave Propagation in Fluids

LS55 Summary. . ... ... 35
1.6. A non-convex conservation law: the Buckley-Leverett equation . . . . 35
1.6.1. Physical context — conservationform . . . . ... ........... 35
1.6.2. Characteristicform. . . . .. ... ... ... ... ... 38
1.6.3. Example: decontamination of an aquifer . . . . ... ... ...... 40
1.64.Summary. . . ... ... 41
1.7. Advection with adsorption/desorption . . . . .. .............. 42
1.7.1. Physical context — conservation form . . . .. ............. 42
1.7.2. Characteristicform . . . . .. ... ... ... ... ... 45
1.7.3.Summary. . . ... .. 47
1.8. Summary of Chapter 1 . . .. ...... ... ... .. ... ... ..... 47
1.8.1. What you should remember. . . . .. .................. 47
1.8.2. Application €Xercises . . . . . .. .. ... i it 48

Chapter 2. Hyperbolic Systems of Conservation Laws

in One Dimensionof Space . . . ... ........ .. ... ..... .. ..... 53
2.1.Definitions . . . . .. ... 53
2.1.1. Hyperbolic systems of conservation laws. . . . . ... ... ..... 53
2.1.2. Hyperbolic systems of conservation laws — examples . . . .. ... 55
2.1.3. Characteristic form — Riemann invariants . . ... .......... 57
2.2. Determination of the solution . . . . . ......... ... ........ 59
2.2.1. Domain of influence, domain of dependence . ... ......... 59
2.2.2. Existence and uniqueness of solutions — initial
and boundary conditions . . ... ... ... ... ... ... .. 61
2.3. A particular case: compressible flows . . . ... .............. 63
23.1.Definition . .. ... ... 63
2.3.2.Conservationform . . . . ..... ... . 63
2.3.3. Characteristicform. . . . .. ....... ... .. . . . . 66
2.3.4. Physical interpretation . . . . . ... ... ... ... . 67
2.4. A linear 2X2 system: the water hammer equations. . . . . ... ..... 68
2.4.1. Physical context —assumptions. . . . . ... ... ... ... ... .. 68
24.2.Conservationform . . .. ....... ... .. . 70
2.4.3. Characteristic form — Riemann invariants . . . . ........... 75
2.4.4. Calculation of the solution . . . .. ........... ... ...... 79
245.SUMMATY . .« . o o ot e e e 83
2.5. A nonlinear 2x2 system: the Saint Venant equations . . . ... ... .. 84
2.5.1. Physical context —assumptions. . . . . . ... ..... ... ..... 84
2.5.2.Conservationform . . . . ....... ... ... ... .. 85
2.5.3. Characteristic form — Riemann invariants . . . . ........... 91
2.5.4. Calculation of solutions . . . . . ............. . ....... 100

2.55.5UMmMary. . . ..o e 107



Table of Contents  vii

2.6. A nonlinear 3x3 system: the Euler equations . . . . ... ......... 108
2.6.1. Physical context —assumptions. . . . . .. ... ... ... .. .... 108
2.6.2. Conservationform . . .. ........... ... ... ...... 109
2.6.3. Characteristic form — Riemann invariants . . . ............ 113
2.6.4. Calculation of the solution . . ... ................... 117
2.65.8ummary. . ... 121

2.7.Summary of Chapter2 . . ... ........ ... . . . .. . .. ... 122
2.7.1. What you should remember. . . . .. .................. 122
2.7.2. Application €XerciSes . . . . . . . . v vt i 123

Chapter 3. Weak Solutions and their Properties. . . . . ... ... ...... 131

3.1. Appearance of discontinuous solutions . . . . ............... 131
3.1.1. Governing mechanisms . . . ... .................... 131
3.1.2. Local invalidity of the characteristic
formulation — graphical approach . . . .. ... ................ 134
3.1.3. Practical examples of discontinuous flows . . . . . ... ....... 136

3.2. Classificationof waves . . . . .. ..... ... ... ... 138
32.1.Shockwave . . ... ... 138
322 Rarefactionwave . . . . . ... 140
3.2.3. Contact discontinuity. . . . . . . ... ... ... ... 140
3.24. Mixed/compound wave . . .. ....... ... ... .. ..., 141

33.SIMPle Waves. . . . . .. e 142
3.3.1. Definition and properties . . . . ... ... ... ... ... ... 142
3.3.2. Generalized Riemann invariants . . . . ... .............. 143

3.4. Weak solutions and their properties . . .. ................. 144
34 1. Definitions. . . . .. ..o 144
3.4.2. Non-equivalence between the formulations . . . ........... 145
3.4.3. Jump relationships . . . . ... ... ... 146
3.4.4. Non-uniqueness of weak solutions. . . ... .............. 148
3.4.5. Theentropy condition . . . . ... .................... 152
34.6. Irreversibility . .. ... ... ... .. . ... 154
3.4.7. Approximations for the jump relationships. . . .. ... ....... 156

3.5.8ummary ... 157
3.5.1. What you should remember. . . ... ... ............... 157
3.5.2. Application eXercises . . . . . ... ... 158

Chapter 4. The Riemann Problem. . . . ... ... .. ... ... ..... 161

4.1. Definitions — solution properties . . . .. ... ... ............ 161
4.1.1. The Riemannproblem . . . . ... .................... 161
4.1.2. The generalized Riemann problem. . . . . .. ............. 162

4.1.3. Solution properties . . . . . .. v vt e 163



viii  Wave Propagation in Fluids

4.2. Solution for scalar conservationlaws . . . ... .............. 165
4.2.1. The linear advection equation . . ... ................. 165
4.2.2. The inviscid Burgers equation . . . . .. ... ............. 166
4.2.3. The Buckley-Leverett equation. . . . . ... .............. 168

4.3. Solution for hyperbolic systems of conservation laws. . . . . ... ... 173
43.1.Generalprinciple . . . . ... ... 173
4.3.2. Application to the water hammer problem: sudden valve failure. . 174
4.3.3. Free surface flow: the dambreak problem . ... ........... 177
4.3.4. The Euler equations: the shock tube problem . . .. ......... 183

44.5ummary . . ... 189
4.4.1. What you should remember. . . . .. .................. 189
4.4.2. Application €XerciSes . . . . . . v v v v v i i 190

Chapter 5. Multidimensional Hyperbolic Systems. . . . . . ... ... .. .. 193

S.L.Definitions . . ... ... 193
Sl Scalarlaws. . . . . ..o 193
5.1.2. Two-dimensional hyperbolic systems. . . . .. ............ 195
5.1.3. Three-dimensional hyperbolic systems . . . . ... .......... 196

5.2. Derivation from conservation principles. . . . .. ... ... ....... 197

5.3. Solution properties . . .. ... ... ... 200
5.3.1. Two-dimensional hyperbolic systems. . . . . ............. 200
5.3.2. Three-dimensional hyperbolic systems . . . . ... .......... 206

5.4. Application: the two-dimensional shallow water equations . . . . . . . 208
5.4.1. Governing equations . . . . . . .. ... 208
5.4.2. The secant plane approach . . .. ... ................. 213
5.4.3. Interpretation — determination of the solution . . . . ... ...... 218

5.5.8ummary ... 221
5.5.1. What you should remember. . . . ... .. ............... 221
5.5.2. Application €Xercises . . . . . ...ttt 221

Chapter 6. Finite Difference Methods for Hyperbolic Systems . . . . . . . . 223

6.1. Discretization of time and space . . . ... ................. 223
6.1.1. Discretization for one-dimensional problems . . . .......... 223
6.1.2. Multidimensional discretization . . . . ... .............. 224
6.1.3. Explicit schemes, implicit schemes . . . ... ............. 226

6.2. The method of characteristics MOC) . . . .. ............... 227
6.2.1. MOC for scalar hyperboliclaws . . . ... ............... 227
6.2.2. The MOC for hyperbolic systems of conservation laws . . . . . . . 235
6.2.3. Applicationexamples . . . . ... ... .. ... ... ... 240

6.3. Upwind schemes forscalarlaws . . ... .................. 244
6.3.1. The explicit upwind scheme (non-conservative version). . . . . . . 244

6.3.2. The implicit upwind scheme (non-conservative version) . . . . . . 245



Table of Contents  ix

6.3.3. Conservative versions of the implicit upwind scheme . . . . . . .. 247
6.3.4. Applicationexamples . . . ... ... ... ... ... ... 249
6.4. The Preissmannscheme . . .......................... 250
6.4.1. Formulation . . . . . ... ... .. ... ... 250
6.4.2. Estimation of nonlinear terms — algorithmic aspects . . . . ... .. 253
6.4.3. Numerical applications . . ... ..................... 254
6.5.Centeredschemes . . . . ... ..... .. ... . ... ... ... .. ... 260
6.5.1. The Crank-Nicholson scheme . ... ... ............... 260
6.5.2. Centered schemes with Runge-Kutta time stepping. . . . . ... .. 261
6.6. TVDschemes . ........... ... .. ... .. 263
6.6.1. Definitions . . . . . ... ... ... 263
6.6.2. General formulation of TVD schemes. . . . ... ........... 264
6.6.3. Harten’s and Sweby’s criteria . . .. ... ............... 266
6.6.4. Classical limiters . . . .. ......... ... . ............ 268
6.6.5. Computational example . . . ... .................... 269
6.7. The flux splitting technique . . . .. ... .................. 271
6.7.1. Principle of the approach . . . ... ... ................ 271
6.7.2. Application to classical schemes. . . ... ............... 274
6.8. Conservative discretizations: Roe’smatrix . . ... ... ......... 280
6.8.1. Rationale and principle of the approach. . . . . ... ... ...... 280
6.8.2. Expression of Roe’smatrix . . .. .................... 281
6.9. Multidimensional problems . . . .. ... .................. 284
6.9.1. Explicit alternate directions . . . . ... ................. 284
6.92. The ADImethod . . ... ... ... .. ... ... ... ....... 286
6.9.3. Multidimensional schemes . . . .. ................... 288
6.10. Summary . . . .. ... 289
6.10.1. What you shouldremember. . . . . ... ............... 289
6.10.2. Application eXerciSes. . . . . v v v v v v it . 291
Chapter 7. Finite Volume Methods for Hyperbolic Systems. . . . . . .. .. 293
7.1.Principle. . . . ... 293
7.1.1. One-dimensional conservation laws. . . ... ............. 293
7.1.2. Multidimensional conservation laws . . ... ............. 295
7.1.3. Application to the two-dimensional shallow water equations. . . . 297
7.2.Godunov’sscheme . . ... ....... ... ... ... 299
72.1.Principle . . ... ... 299
7.2.2. Application to the scalar advection equation. . . .. ......... 301
7.2.3. Application to the inviscid Burgers equation. . . . . ... ... ... 305
7.2.4. Application to the water hammer equations . . . ... ........ 308
7.3. Higher-order Godunov-type schemes . . . ................. 313
7.3.1. Rationale and principle . . ... ... ... ... ... ... ...... 313

7.3.2. Example: the MUSCL scheme . . . ... ................ 316



x  Wave Propagation in Fluids

74.EVRapproach . . ... ... ... .. ..
7.4.1. Principle of the approach . . . ... ... ... ............
7.4.2. Application to the one-dimensional shallow water equations . . . .
7.5.5ummary ...
7.5.1. What you should remember. . . . .. ... ...............
7.5.2. Application €Xercises . . . . ... ... ...

Chapter 8. Finite Element Methods for Hyperbolic Systems . . . . . . ...

8.1. Principle for one-dimensional scalarlaws. . . . .. ... .........
8.1.1.Weakform. . . . ...... .. ... . ... .
8.1.2. Discretization of space and time . . . . ... ..............
8.1.3. Classical shape and test functions . . . .. ...............

8.2. One-dimensional hyperbolic systems . .. .................
8.2.1. Weak formulation. . . . ... ................. . .....
8.2.2. Application to the non-conservation form . . ... ... .......

8.3. Extension to multidimensional problems . . .. ..............
8.3.1. Weak form of the equations. . . . .. ... ...............
8.3.2. Discretization of space. . . . . . ...... .. ... ... ... ...
8.3.3. Classical shape and test functions . . . ... ..............

8.4. Discontinuous Galerkin techniques. . . . ... ...............
8.4.1. Principle of themethod . . . . .. ....................
8.4.2. Legendre polynomial-based reconstruction . . ............
843 . Limiting . . . . . . ...
8.4.4. Runge-Kutta time stepping . . . . .. ... ...............

8.5. Applicationexamples. . . . .. ... ... ... ...
8.5.1. The linear advection equation . . ....................
8.5.2. The inviscid Burgers equation . . . . ... ...............

8.6.Summary . . . ...
8.6.1. What you should remember. . . . ... ... ..............
8.6.2. Application €Xercises . . . . . ... ...

Chapter 9. Treatment of Source Terms. . . . . ... ...............

9.1. Introduction. . . . . ... ...

9.2.Problemposition. . . . .. ... ... ...
9.2.1. Example 1: the water hammer equations . . . . ... .........
9.2.2. Example 2: the shallow water equations . . . .............
9.2.3. Stationary solution and C—property . . . . .. ... ... .......

9.3. Source term upwinding techniques. . . . . .. ... ... ... ......
93.1.Principle . . . ... ...
9.3.2. Application example 1: the water hammer equations. . . . ... ..
9.3.3. Application example 2: the shallow water equations with
HLL solver . . ... .. .



Table of Contents  xi

9.4. The quasi-steady wave algorithm. . . . . . ......... ... ..... 386
94.1.Principle . . ... ... 386
9.4.2. Application to the water hammer equations . . . . ... ....... 387
9.4.3. Application to the one-dimensional shallow water equations . . . . 387

9.5.Balancing techniques . . . . . ... ... ... .. .. .. ... 390
9.5.1. Well-balancing . . . .. ... .. .. . .. . ... 390
9.5.2. Hydrostatic pressure reconstruction for free surface flow . . . . . . 393
9.5.3. Auxiliary variable-based balancing . . . ... ............. 395

9.6. Computational example . . .. ........................ 403

0.7.8ummary . . . . .. 408

Chapter 10. Sensitivity Equations for Hyperbolic Systems . . . . ... ... 411

10.1. Introduction. . . . . .. . ... ... . 411

10.2. Forward sensitivity equations for scalar laws . . . . .. ... ... ... 413
10.2.1. Derivation for continuous solutions . . . . .. ............ 413
10.2.2. Conservation, non-conservation and characteristic forms . . . . . 415
10.2.3. Extension to discontinuous solutions . . . ... ........... 416
10.2.4. Solution of the Riemann problem . ... ............... 418

10.3. Forward sensitivity equations for hyperbolic systems . . . . . ... .. 422
10.3.1. Governing equations . . . . . . . . . ..o 422
10.3.2. Non-conservation and characteristic forms . . . . . ... ... ... 424
10.3.3. The Riemann problem . . . . ... ................... 426
10.3.4. Application example: the one-dimensional shallow
water sensitivity equations . . . . . ... ... 427

10.4. Adjoint sensitivity equations. . . . . . . .. ... ... 435
10.4.1. Introduction . . . ... ... ... 435
10.4.2. Adjoint models for scalarlaws . . . ... ............... 435

10.5. Finite volume solution of the forward sensitivity equations . . . . . . 441
10.5.1. Introduction . . ... ... ... 441
10.5.2. Discretization . . . . ... ... ... 442
10.5.3. A modified HLL Riemann solver for sensitivity solutions. . . . . 443
10.5.4. Application example: the one-dimensional
shallow water equations. . . . . ... ..... ... ... ... ...... 446

10.6. Summary . . .. ... . 447

Chapter 11. Modeling in Practice . . . . ... ... .. ............. 449

11.1. Modeling software. . . . . ... ........... ... ......... 449
11.1.1. Introduction . . .. ... ... .. ... ... 449
11.1.2. Conservation. . . . . . ..o i it 450
11.1.3. Solution monotony . . . .. ... ... ... ... ... .. 453

11.2. Meshquality . ... .. ... ... .. .. 454

11.3. Boundary conditions. . . . ... ... ......... ... ... .... 459



xii  Wave Propagation in Fluids

11.3.1. Number and nature of boundary conditions. . . . .. ... ... .. 459
11.3.2. Prescribed discharge/flow velocity. . . . ... ............ 460
11.3.3. Prescribed pressure/water level . . . ... ............... 461
11.3.4. Stage-discharge and pressure-discharge relationships. . . . . . . . 463
11.4. Numerical parameters . . . . . .. ... ... .. ... ... 464
11.4.1. Computational timestep . . . . . . ... ................ 464
11.4.2. Scheme centering parameters . . . . . ... ... ........... 465
11.4.3. Tterationcontrol . . . . . . .. ... ... ... ... .. ... 465
11.5. Simplifications in the governing equations . . . .. ... ........ 466
I1.5.1.Rationale . . . .. ... .. 466
11.5.2. The Local Partial Inertia (LPI) technique . . . . ... ........ 467
11.5.3. The Reduced Momentum Equation (RME) technique . . . . . .. 468
11.5.4. Application examples. . . . . ... ... . ... ... 469
11.6. Numerical solution assessment . . . . ... ................ 472
11.6.1. Software solution accuracy . . ... .................. 472
11.6.2. Assessing solution convergence . . ... ............... 473
11.6.3. Consistency analysis — numerical diffusion and dispersion . . .. 474
11.6.4. Stability analysis — phase and amplitude portraits . . . . . ... .. 476
11.7. Getting started with a simulation package . . . . ... .......... 477
Appendix A. Linear Algebra . . . .. ... .. ... ... ............ 479
Al Definitions . . . . . . ... 479
A.2. Operations on matrices and vectors . . . . . ... ............. 480
A2 1 Addition . . . ... 480
A.2.2. Multiplicationby ascalar. . . .. .................... 481
A23. Matrixproduct . . . . ... ... 481
A.2.4. Determinantofamatrix. . . ... ............ ... .. ... 482
A25. Inverseofamatrix. . . .. ... ... 482
A.3. Differential operations using matrices and vectors . . . ... ...... 483
A3.1. Differentiation . . . ... ..... ... ... 483
A3.2. Jacoblan matriX. . . . . ... 483
A.4. Eigenvalues, eigenvectors . . . . . . . . . ..o 483
A4.1.Definitions . . . ... ... 483
Ad42. Example. . ... ... ... 484
Appendix B. Numerical Analysis. . . . ... .................... 487
B.L.ConSiStency . . . ... ittt e 487
B.1.1.Definitions. . . . ... ... ... 487
B.1.2. Principle of a consistency analysis . . . ................ 487
B.1.3. Numerical diffusion, numerical dispersion. . . . ... ........ 489
B.2. Stability. . . . ... 491

B.2.1.Definition . . . . ... ... .. 491



Table of Contents  xiii

B.2.2. Principle of a stability analysis. . . . ... ............... 492
B.2.3. Harmonic analysis of analytical solutions . . . . ... ........ 494
B.2.4. Harmonic analysis of numerical solutions . . . . ... ........ 497
B.2.5. Amplitude and phase portraits . . . . . ... ... ... ... ... .. 499
B.2.6. Extension to systems of equations. . . . ... ............. 501
B3.Convergence. . . . ... ... 503
B.3.1.Definition . . .. ... ... ... 503
B.3.2. Lax’stheorem. . . . . . ...... ... .. .. ... . ... 503
Appendix C. Approximate Riemann Solvers . . . .. .............. 505
C.l1.The HLL and HLLC solvers . .. ... ................... 505
C.l.1.The HLL solver. . . . ... ... .. ... .. 505
C.1.2. TheHLLCsolver. . . ... ....... .. ... ... .. ... 508
C.2.Roe’ssolver . . .. ... 511
C2.1.Principle. . .. ... .. 511
C.2.2. Algorithmic simplification . . . .. ... ................ 513
C.2.3. Entropy violationand fixes. . . . .. .................. 514
C.2.4. Application example: the shallow water equations. . . . . ... .. 514

C.3. The Lax-Friedrichs solver. . . . .. ..... ... .. ... .. ...... 515
C.4. Approximate-state solvers. . . ... ........... .. ........ 516
CA4.l.Principle . . . . ... .. . 516
C.4.2. Shock-based solvers . . . .. ....... ... ... ... 516
C.4.3. Rarefaction wave-based solvers . . . .. ................ 517
Appendix D. Summary of the Formulae . . . . ... ... ....... ... ... 521
Bibliography . . . ... ... ... 527






Introduction

What is wave propagation?

In a kitchen or in a bathroom, the number of times we turn a tap every day is
countless. So is the number of times we watch the liquid stream impacting the sink.
The circular flow pattern where the fast and shallow water film diverging from the
impact point changes into a deeper, bubbling flow is too familiar to deserve
attention. Very few people looking at the circular, bubbling pattern — referred to as a
hydraulic jump by hydraulics specialists — are aware that they are contemplating a
shock wave.

Closing the tap too quickly may result in a thud sound. This is the audible
manifestation of the well-known water hammer phenomenon, a train of pressure
waves propagating in the metal pipes as fast as hundreds or thousands of meters per
second. The water hammer phenomenon is known to cause considerable damage to
hydropower duct systems or water supply networks under the sudden operation of
valves, pumps or turbines. The sound is heard because the vibrations of the duct
system communicate with the ambient atmosphere, and from there with the
operator’s ears.

Everyone has once thrown stones into a pond, watching the concentric ripples
propagate on the surface. Less visible and much slower than the ripples is the
moving groundwater that displaces a pollutant front in a journey that may last for
years.

As ubiquitous and familiar as wave propagation may be, the phenomenon is
often poorly understood. The reason why intuition so often fails to grasp the
mechanisms of wave propagation may lie in the commonly shared, instinctive
perception that waves are made of matter. This, however, is not true. In the example
of the hydraulic jump in the sink, the water molecules move across an immobile
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wave. In the example of the ripples propagating on the free surface of a pond, the
waves travel while the water remains immobile.

Waves appear when an object or a system (e.g. the molecules in a fluid, a rigid
metallic structure) reacts to a perturbation and transmits it to its neighbors. In many
cases, as in the example of the water ripples, the initially perturbed system returns to
its initial equilibrium state, while the waves keep propagating. In this respect, waves
may be seen as information. The ripples propagating in a pond are a sign that the
water molecules “inform” their neighbors that the equilibrium state has been
perturbed. A sound is nothing other than information about a perturbation occurring
in the atmosphere.

Numerical techniques for wave propagation simulation have been the subject of
intensive research over the last 50 years. The advent of fast computers has led to the
development of efficient numerical techniques. Engineers and consultants now use
simulation software packages for wave propagation on a daily basis. Whether for the
purpose of acoustics, aerodynamics, flood wave propagation or contaminant
transport studies, computer-based simulation tools have become indispensable to
almost all domains of engineering. Such tools, however, remain instruments
operated by human beings to execute tedious, repetitive operations previously
carried out by hand. They cannot, and hopefully never will, replace the expert’s
judgment and experience. Human presence remains necessary for the sound
assessment of the relevance and accuracy of modeling results. Such an assessment,
however, is possible only provided that the very specific type of reasoning required
for the correct understanding of wave propagation phenomena has been acquired.

The main purpose of this book is to contribute to a better understanding of wave
propagation phenomena and the most commonly used numerical techniques for its
simulation. The first three chapters deal with the physics and mathematics of wave
propagation. Chapters 4, 5 and 10 provide insight into more theoretical notions, used
in specific numerical techniques. Chapters 6 to 9 are devoted to finite difference,
finite volume and finite element techniques. Chapter 11 is devoted to practical
advice for the modeler. Basic notions of linear algebra and numerical methods are
presented in Appendices A to C. The various formulae used in the present book are
summarized in Appendix D.

What is the intended readership of this book?

This book is intended for students of professional and research master’s
programs and those engaged in doctoral studies, the curriculum of which contains
hydraulics and/or fluid mechanics-related subjects. Engineers and developers in the
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field of fluid mechanics and hydraulics are also a potential target group. This book
was written with the following objectives:

(1) To introduce the physics of wave propagation, the governing assumptions and
the derivation of the governing equations (in other words, the modeling process) in
various domains of fluid mechanics. The application fields are as diverse as
contaminant transport, open channel and free surface hydraulics, or aerodynamics.

(i1) To explain how the behavior of the physical systems can be analyzed using
very simple mathematical techniques, thus allowing practical problems to be solved.

(iii) To introduce the main families of numerical techniques used in most
simulation software packages. As today’s practicing engineers cannot afford not to
master modeling packages, a basic knowledge of the existing numerical techniques
appears as an indispensable engineering skill.

How should this book be read?

Most of the chapters are made up of three parts:

— the first part of the chapter is devoted to the theoretical notions applied in the
remainder of the chapter;

— the second part deals with the application of these theoretical notions to various
hydraulics and fluid mechanics equations;

— the third part provides a summary of the key points developed in the chapter,
as well as suggestions of application exercises.

The main purpose of the application exercises is to test the reader’s ability to
reuse the notions developed in the chapter and apply them to practical problems. The
solutions to the exercises may be accessed at the following URL:
http://vincentguinot.free.fr/waves/exercises.htm.

Try to resist the temptation to read the solution immediately. Solving the
exercise by yourself should be the primary objective. The solution text is provided
only as an aid, in case you cannot find a way to start and for you to check the
validity of your reasoning after completing the exercise.


http://vincentguinot.free.fr/waves/exercises.htm




Chapter 1

Scalar Hyperbolic Conservation Laws
in One Dimension of Space

1.1. Definitions
1.1.1. Hyperbolic scalar conservation laws

A one-dimensional hyperbolic scalar conservation law is a Partial Differential
Equation (PDE) that can be written in the form:

B_U + B_F =S [1.1]
ot ox

where ¢ and x are respectively the time- and space-coordinates, U is the so-called

conserved variable, F is the flux and S is the source term. Equation [1.1] is said to be

the conservation, or divergent, form of the conservation law. The following
definitions are used:

— the flux F is the amount of U that passes at the abscissa x per unit time due to
the fact that U (also called the transported variable) is being displaced;

— the source term S is the amount of U that appears per unit time and per unit
volume, irrespective of the amount transported via the flux F. If U represents the
concentration in a given chemical substance, the source term may express
degradation phenomena, or radioactive decay. S is positive when the conserved
variable appears in the domain, negative if U disappears from the domain;
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— the conservation law is said to be scalar because it deals with only one
dependent variable. When several equations in form [1.1] are satisfied
simultaneously, the term “system of conservation laws” is used. Systems of
conservation laws are dealt with in Chapter 2.

Only hyperbolic conservation laws are dealt with in what follows. The
conservation law is said to be hyperbolic if the flux F is a function of U (and none of
its derivatives) and, possibly, of x and 7. Such a dependence is expressed in the form:

F=FUU,x, t)} (2]

S =S(U, x,1)

The function F(U, x, ¢) is called the “flux function”.

NOTE.— The expression F(U, x, ) in equation [1.2] indicates that F depends on U
at the abscissa x at the time ¢ and does not depend on such quantities as derivatives
of U with respect to time or space. For instance, the following expression:

F=aU [1.3]
is a permissible expression [1.2] for F, while the following, diffusion flux:

F=-pY [1.4]
ox

where D is the diffusion coefficient, does not yield a hyperbolic conservation law
because the flux F is a function of the first-order derivative of U with respect to
space.

In the case of a zero source term, equation [1.1] becomes

WLy [1.5]
ot  ox

In such a case (see section 1.1.2), U is neither created nor destroyed over the
domain. The total amount of U over the domain varies only due to the difference
between the incoming and outgoing fluxes at the boundaries of the domain.

Depending on the expression of the flux function, the conservation law is said to
be convex, concave or non-convex (Figure 1.1):

— the law is convex when the second-order derivative 02F/0U? of the flux
function with respect to U is positive for all U;
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— the law is concave when the second-order derivative 92F /9U? of the flux
function with respect to U is negative for all U;

— the law is said to be non-convex when the sign of the second-order derivative

02F /9U? of the flux function with respect to U changes with U.

F (a) F (b) F (©)

U u U

Figure 1.1. Typical examples of flux functions: convex (a), concave (b), non-convex (c)

1.1.2. Derivation from general conservation principles

The conservation form [1.1] is derived from a balance over a control volume of
unit section defined between x, and x, + o (Figure 1.2). The balance is carried out
over the control volume between two times f, and ¢, + ot. The variation in the total
amount of U contained in the control volume is then related to the derivatives
oU /0t and oF /dx in the limit of vanishing o and dx.

U ELLET] Proﬁle att

— Profile at
t+ o

Figure 1.2. Definition sketch for the balance over a control volume
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The total amount M(z,) of U contained in the control volume at # = ¢, is defined
as:

Xo+0x
M) = [U(x.to)d [1.6]

Xo

At ¢ =ty + &, the total amount of U contained in the control volume is:

Xo+0x
Mty + ) = jU(x,to + o)dx [1.7]

o

The variation S in the amount of U induced by the source term S over the
domain between ¢, and , + o is given by:

ty+0t x,+3x
&= [ [SU,x1)dxdt [1.8]
) Xo

The amount dF(x,) of U brought by the flux F across the left-hand side boundary
of the control volume between #y and ¢, + & is given by:

1+t
OF (xo) = [F(xg,1)dt [1.9]
t
A quantity 6F(x, + Ox) leaves the domain across the right-hand side boundary:
1+t

SF(xg + &) = [F(xg + 1) dt [1.10]
t

Stating the conservation of U over the control volume [xo, xo + d] between ¢
and £, + o, the following equality is obtained:

Mty + &) = M(ty) + 6F(xy) — OF (xg + &) + &5 [1.11]

Substituting equations [1.6] — [1.10] into equation [1.11] leads to:

X+ ty+ot
[[UCx 1 + &) = Ux,1g)ldx = [[F (o, 1) — F(xg + &, )] dr
o o [1.12]
ty+0t Xy +0x

+ [ [S(x,0)dxds

Iy X
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A first-order Taylor series expansion around (xo, #y) gives:

U(xg.to + &) — U(xg. ty) = 82, Oo(&?)
a;F [1.13]
F(xg,to) — F(xq + &, 1) = —d‘xa— + 0(&2)
24

where the quantities O(&) and O(J”) are second- or higher-order polynomials with
respect to O and Ox respectively. These polynomials contain the second- and higher-
order derivatives of U and F with respect to ¢ and x. When ¢t and J tend to zero, the
polynomial O(J) becomes negligible compared to the quantity & oU /ot because

o decreases faster than . The polynomial O(&?) becomes negligible compared to
O dF /dx for the same reason. Relationships [1.13] thus become:

w

ot
oF

F(xg,t9) = F(xy + &C,to)&:o— &g

U(xp,tg + ) = U(xg,ty) = o
¥=0 [1.14]

A similar reasoning leads to the following equivalence:

ty+0t X, +x
[ [Set)ydxdt = &S [1.15]
a—0

o o &—0
Substituting equations [1.14] and [1.15] into equation [1.12] leads to

é‘ta—Uc%c=—dca—Fé}+5t@cS [1.16]
ot ox

Dividing equation [1.16] by ot d yields the conservation form [1.1], recalled
here:

oU oF
=+ =

T s
ot  ox
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The following remarks can be made:

— the Partial Differential Equation (PDE) [1.1] is a particular case of the more
general, integral equation [1.12]. Equation [1.1] is obtained from equation [1.12]
using the assumption that ot and dx tend to zero. Equation [1.12] is the so-called
weak form of equation [1.1] (see Chapter 3 for more details);

— the conservation form [1.1] is based on the implicit assumption that F is
differentiable with respect to x and U is differentiable with respect to t.
Consequently, [1.1] is meaningful only when U is continuous in space and time. In
contrast, equation [1.12] is meaningful even when U is discontinuous in space
and/or time. This has consequences on the calculation of discontinuous solutions, as
shown in Chapter 3.

1.1.3. Non-conservation form

Equation [1.1] can be rewritten in the so-called non-conservation form that
involves only derivatives of U. The non-conservation form of equation [1.1] is:

W, Y s [1.17]
ot ox

where A is called the wave speed, and S' is a source term that may be identical (but
not necessarily) to the source term S in equation [1.1]. Equation [1.17] is obtained
from equation [1.1] by rewriting the derivative dF /dx as:

F F
a—=a—a—U+F' [1.18]
ox oU ox
where the term F'= (0F / 0x) _conee CONtains all the derivatives of F other than the

derivative with respect to U. The expression of F being known, dF /dU and F"' are
easily determined. Substituting equation [1.18] into equation [1.1] yields:

a—U+a—Fa—U+F': S [1.19]
ot JU ox

that is:
8U+8F Y =S-F [1.20]

90U ox
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Comparing equation [1.20] to equation [1.17] leads to the following definitions
for Aand S":

_or
oU

o {E
ox U =Const

The expressions of F' and S being known, the knowledge of U at any point in
time and space allows A and S' to be calculated directly. From definition [1.21], in
the case where the variations in F are due to variations in U only, F'=0 and S"' is
identical to S.

[1.21]

Example: assume that the flux function F is defined as in equation [1.3], recalled
here:

F=aU

where a is a function of x and ¢. Equation [1.18] then becomes:

oF 9 oU da

gza[a(x,t)U]=a§+Ua [1.22]
and A and F' are given by:

A=a

e U?)_i [1.23]

If a does not depend on x, F' = 0 because da/dx =0.

1.1.4. Characteristic form — Riemann invariants

Writing a conservation law in non-conservation form leads to the notions of
characteristic form and the Riemann invariant. Such notions are essential to the
understanding of hyperbolic conservation laws. A very convenient way of
determining the behavior of the solutions of hyperbolic conservation laws consists
of identifying invariant quantities (that is, quantities that do not change) along
certain trajectories, also called the “characteristic curves” (or more simply the
“characteristics”). The solution is calculated by “following” the invariants along the
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characteristics, which allows the value of U to be determined at any point. To do so,
the non-conservation form [1.17] is used:

a_U_}_ﬂ’a_U:S'
ot ox

The purpose is to derive the expression of the variation SU in U observed by an
observer travelling at a given speed v. A small time interval ot is considered, over
which the traveler moves by a distance ox =v &. The variation oU “seen” by the
observer is given by:

auza—U&+a—U&=(a—U+va—Uj5¢ [124]
ot ox ot ox

Note that from the observer’s point of view, U is a function of time only, because
the observer’s location x(¢) is defined by dx/d¢ = v. When & tends to zero, the ratio
OU /ot tends to the so-called total derivative dU/d:. Therefore equation [1.24]
becomes:

& =~ d_U:a_U+va_U for%:v [125]
o a-0 dt ot ox ds

In the particular case of an observer moving at a speed A, equation [1.25]
becomes:

du _oU _,oU for = 4 [1.26]
dr ot ox dr

Comparing equations [1.26] and [1.17] leads to:

W s for X2y [1.27]
dr dt

Equation [1.27] is the so-called characteristic form of equation [1.1]. The
trajectory, the equation of which is dx/d¢ = A, is called a characteristic. 4 is called the
wave speed.

S' being a function of U, x and ¢, its value may be calculated at any point (x, ¢) if
the value of U is known. The first-order Ordinary Differential Equation (ODE)
[1.27] is applicable along the characteristic.
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In the (important) particular case where the source term S is zero,
equation [1.17] becomes:

WL %Y [1.28]
ot ox

and equation [1.27] becomes:

d—U=0 forﬂ=/1 [1.29]
de de

Equation [1.29] can also be written as:
dx
U =Const for —=A1 [1.30]
dt
Consequently, the quantity U is invariant to an observer moving at the speed A.

U is called a Riemann invariant.

The physical meaning of the wave speed is the following. The wave speed is the
speed at which the variations in U (and not U itself) propagate. A perturbation
appearing in the profile of U at a given time propagates at the speed A. The wave
speed can be viewed as the speed at which “information”, or “signals” created by
variations in U, propagate in space.

1.2. Determination of the solution
1.2.1. Representation in the phase space

The phase space is a very useful tool in the determination of the behavior of the
solutions of hyperbolic conservation laws. The term “phase space” indicates the
(x, ?) plane formed by the space coordinate x and the time coordinate ¢ (Figure 1.3).

t

dx/dr=A

o dU/de=S"

X

Figure 1.3. Representation of characteristic curves in the phase space
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The trajectory dx/d¢= A is represented by a curve in the phase space. The
distance dx covered by the characteristic over a time interval &t is given by d = 4 &,
therefore the slope of the line is d/dx = 1/4. Note that the sign of A may change with
time depending on the variations in U and the expressions of 4 and S'. When A
becomes zero the tangent to the characteristic curve is vertical in the phase space
(Figure 1.4a). In contrast, an extremum with respect to time is not physically
permissible (Figure 1.4b) because “travelling backwards in time” is not possible.

. ) , (®)
A=0
A=0
X X

Figure 1.4. Physically permissible (a) and non-permissible (b) characteristics

The representation in the phase space may be used to determine the behavior of
the solutions of conservation law[1.1] using the so-called “method of
characteristics”. The following simple case is considered:

— the source term S in equation [1.1] is zero;

— the flux depends only on U, therefore F'' = 0 in equations [1.18] —[1.20].

The characteristic form [1.27] then reduces to equation [1.30], recalled here:
U = Const for dx =A
dr

F being a function of U only, A is also a function of U only. Consequently, if U
is constant along a characteristic line, A is also constant and the characteristic is a
straight line in the phase space (Figure 1.5). Assume that the profile U(x, 1) is
known for all x at the time ). The purpose is to determine the profile U(x, t,) for all x
at the time ¢, > ;. Consider the point A, the abscissa of which is denoted by x,, at
which the value of U at (x,, f) is denoted by U,. Since the wave speed A depends on
U only, the characteristic passing at A is a straight line. Its (constant) wave speed is
A, =0F/dU (U,). At time #, the characteristic has moved to point A', the

abscissa x, of which is given by:

XA' =xA+(tl_tO)ﬂA [131]



