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Preface

Wave propagation is an exciting field having applications cutting across many
disciplines. In the field of structural engineering and smart structures, wave
propagation based tools have found increasing applications especially in the
area of structural health monitoring and active control of vibrations and noise.
In addition, there has been tremendous progress in the area of material science,
wherein a new class of structural materials is designed to meet the particu-
lar application. In most cases, these materials are not isotropic as in metallic
structures. They are either anisotropic (as in the case of laminated composite
structures) or inhomogeneous (as in the case of functionally graded materi-
als). Analysis of these structures is many orders more complex than that of
isotropic structures. For many scientists/engineers, a clear difference between
structural dynamics and wave propagation is not evident. Traditionally, a
structural designer will not be interested in the behavior of structures beyond
certain frequencies, which are essentially at the lower end of the frequency
scale. For such situations, available general purpose finite element code will
satisfy the designer’s requirement. However, currently, structures are required
to be designed to sustain very complex and harsh loading environments. These
loadings are essentially multi-modal phenomena and their analysis falls under
the domain of wave propagation rather than structural dynamics. Evaluation
of the structural integrity of anisotropic and inhomogeneous structures sub-
jected to such loadings is a complex process. The currently available analysis
tools are highly inadequate to handle the modeling of these structures. In this
book, we present a technique called the “Spectral Finite Element Method”,
which we believe will address some of the shortcomings of the existing analysis
tools.

Although the spectral finite element method has been in existence for a
long time under the name of the dynamic stiffness method, its use was lim-
ited to simple vibration studies. It is only in recent times that the potential
of this method to handle a wide range of applications has been realized. This
is evident from the increasing number of publications in the archival liter-
ature. However, we believe that its impact has reached only a small subset
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of scientists/engineers working in these areas due to the non-availability of
a good textbook. The main aim of this book is to reach out to those ana-
lysts/engineers working in new and cutting edge areas to not only highlight
the power of this method, but also to serve as a good reference book for
specialists.

The spectral finite element method is essentially a finite element method
in the frequency domain. In essence, the beauty of the method lies in the fact
that one can easily convert a finite element code to a spectral element code
without much difficulty. In addition, it uses spectral analysis as a basic tool for
element formulation. That is, in the process of element formulation, one can
deeply understand the physics behind wave propagation in complex media
and its interaction with various boundaries. Frequency domain formulation
enables easy and straightforward solution of inverse problems. Hence, the
spectral element method can be used as a tool to post-process experimental
data.

The book mainly addresses the wave behavior in composites and inhomo-
geneous media in addition to its application to structural health monitoring
and active vibration and wave control. The book introduces new methods
for the solution of wavenumbers for propagation in composites and inhomo-
geneous waveguides. For structural health monitoring, waveguide models for
different types of damage are developed. The reader is also introduced to
various damage detection schemes that blend well with the spectral element
method. Towards the end of the book, a chapter on the use of the spectral
element method for active control application is presented.

A step by step modular approach is adopted here in writing this book. A
number of numerical results are presented to not only emphasize the efficiency
and numerical superiority of the method, but also to bring out the physics of
the problem. The reader may notice that in most cases only one element is
sufficient for solution of certain problems, where thousands of finite elements
are required. The material presented in this book can serve as a graduate level
textbook on wave propagation in structures. A separate graduate level course
on the spectral finite element method can be developed using this book. This
book is written assuming that the reader has only an elementary background
in the theory of elasticity, strength of materials, linear algebra and methods
for solving ordinary and partial differential equations.

We would like to thank many of the graduate students who have con-
tributed directly or indirectly towards the development of the book. We would
particularly thank A. Nag, D. Srikanth, A. Garg and A. Singhal for their con-
tributions.

Bangalore, India S. Gopalakrishnan
October, 2007 A. Chakraborty

D. RoyMahapatra
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1

Introduction

Dynamic analysis in structural engineering falls into two different classes,
one involving low frequency loading and the other involving high frequency
loading. Low frequency problems are categorized as Structural Dynamics
problems while those involving high frequency loading fall into the category
of Wave Propagation problems. In structural dynamics problems, the fre-
quency content of the dynamic load is of the order of a few hundred hertz (Hz)
and the designer will be mostly interested in the long-term (or steady-state)
effects of the dynamic load on the structures. Hence, the first few normal
modes and natural frequencies are sufficient to assess the performance of the
structure. The phase information of the response is not critical here. Most
of the dynamic problems in structures will fall into this category. On the
other hand, for wave propagation problems, the frequency content of the in-
put loading is very high (of the order of kilohertz (kHz) or higher) and hence,
short-term effects (transient response) become very critical. Further, many
higher order modes will participate in amplifying the dynamic response. Im-
pact and blast-type of loading fall into this category. The multi-modal nature
of wave propagation makes one parameter very important, and that is the
phase information.

1.1 Solution Methods for Wave Propagation Problems

Dynamic analyses are traditionally performed using the conventional Finite
Element Method (FEM). For wave propagation problems wherein the fre-
quency content of the input is very high, many higher order vibrational modes
participate in the motion. At these higher frequencies, the wavelengths are
very small and hence to capture these modes effectively, FE meshes need to
be very fine. This is due to the requirement that the element sizes should
be of the same order as the wavelength of the signal. For larger mesh sizes,
the element edges will act like a free boundary and start reflecting the initial
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responses from these element edges. A fine mesh, although ensuring accurate
distribution of the inertia, also increases the computation cost enormously.

FE solutions in dynamics are obtained by two different methods [1]; the
modal method and the time marching scheme. Modal methods cannot be
applied to multi-modal problems such as those involving wave propagation
analysis. This is because, unlike structural dynamics problems, here we need
to determine the natural frequencies and the mode shapes of both the low and
high frequency modes. It is well known that the extraction of the eigenvalues
is computationally the most expensive problem in mechanics. Hence, modal
methods are not suited to wave propagation problems. Alternatively we can
use various time marching schemes under the FE environment. In this method,
analysis is performed over a small time step, which is a fraction of the total
time for which the response histories are required. For some time marching
schemes, a constraint is placed on the time step, and this, coupled with very
large mesh sizes, makes the solution of wave propagation problems (under
the FE environment) computationally prohibitive. Hence, we need alternative
methods of solution.

Numerical methods such as FEM are based on some assumed solutions to
the field variable (say displacement). This assumed solution for wave propa-
gation problems gives large system sizes due to its inability to approximate
the mass distribution accurately. Hence, we need to look for a method that
approximates the mass accurately. This can happen only when the assumed
solution satisfies the governing wave equations as closely as possible. If one
is interested in solving the governing wave equation in the time domain, it is
very difficult to assume a solution that satisfies the governing wave equation.
Instead, one can ignore the inertial part of the wave equation, and solve the
static part of the equation exactly and use this solution to obtain the stiffness
and mass matrices. This procedure will ensure that the stiffness distribution
is nearly exact while the mass distribution is still approximate. Elements de-
veloped by this method are called the Super Convergent Finite Element
(SCFE), which are formulated for higher order rods, beams, box-beams and
inhomogeneous beams [2, 3, 4, 5, 6]. According to Reference [7], the error
introduced by approximating stiffness is much higher than the approximate
mass distribution. Hence, one can expect SCFE to give a smaller system size
for wave propagation problems than conventional FEM.

Alternatively, one can transform the governing wave equation to the fre-
quency domain and try to solve it exactly. This is a far easier option since
transformation to the frequency domain removes the time variable from the
governing equation and introduces frequency as a parameter. For 1-D systems,
the transform method reduces a governing partial differential equation(s) to a
set of ordinary differential equation(s), which are easier to solve than the origi-
nal wave equation in the time domain. There are different transforms that one
can use for this purpose, namely the Laplace Transform, the Fourier Trans-
form and the Wavelet Transform. In this method first the wave equation is
transformed into the frequency domain using appropriate forward transforms.
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The governing equation in the transformed domain is then solved exactly or
almost exactly and the results are post-processed to get all the relevant param-
eters in the frequency domain. The time domain solutions are then obtained
by taking an inverse transform on the frequency domain solutions. Two as-
pects are very clear from the above discussion: (1) transform methods will
yield solutions both in the time and the frequency domain; (2) one requires
an efficient way of obtaining inverse transforms, either analytically or numer-
ically, to obtain time domain solutions. If we look at the various available
transforms, obtaining inverse Laplace transforms is not straightforward in
most cases and this has limited its scope in the analysis of wave propagation
problems. On the other hand, numerical versions of forward and inverse trans-
forms are available for both the Fourier and Wavelet Transforms. The Fourier
Transform uses the Fast Fourier Transform (FFT) numerical algorithm, while
in the case of the Wavelet Transform, the Daubechies wavelet basis is com-
monly used for approximation in time. However, the Fourier transform is the
most extensively used transform method for the solution of wave propagation
problems due to its numerical superiority and the ease of implementation of
the FFT algorithm. The Spectral Finite Element Method (SFEM) is a
numerical method evolved from the Fourier Transform based method. More
details on the solution schemes are given in Section 3.4.

There are certain advantages that a transform method can offer over con-
ventional FEM. Unlike the direct problem, wherein one determines the re-
sponse to the given input, inverse problems deal with determining the input
history using the measured responses or determining the system as a whole
from the known input and output. These problems are called force (or source)
identification problems and system identification problems, respectively. Us-
ing a transform method such as SFEM, one can perform inverse problems in a
simple and straightforward manner. This is made possible due to an algebraic
relationship between the output and the input through the system transfer
function (frequency response function). In other words, the transform meth-
ods can give responses in both the time and frequency domain using a single
analysis.

The SFEM was initially conceived by Narayan and Beskos [8]. This was
later popularized by Doyle and co-workers [9]. In recent years, there has been
an increasing number of papers on this method in the archival literature for
various structural applications. Although its application to metallic struc-
tures is well documented, its application to the study of wave propagation in
anisotropic and inhomogeneous structures is not well reported in the litera-
ture. Unlike metallic structures, the wave behavior in anisotropic and inhomo-
geneous structures is quite complex due to the presence of both stiffness and
inertial coupling. These couplings sometimes give rise to newer set of waves.
In addition, the SFEM has potential for use in the application of Structural
Health Monitoring(SHM) and Active Wave Control (AWC), since both
these problems involve loading having a very high frequency content. Hence,
the main objective of this book is to bring out the essential wave characteris-
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tics in these complex structures and show how SHM and AWC problems can
be effectively handled in the SFEM environment.

Studies involving the monitoring, detection and arrest of the growth of
flaws such as cracks constitute what is universally termed Structural Health
Monitoring (SHM). SHM is a type of inverse problem, wherein the presence
of damage needs to be detected from the known input and the measured out-
put. It is well known that the most common method of detecting damage is
through modal methods [10], wherein one can look at the changes in the natu-
ral frequencies of the structure before and after the damage to assess/confirm
the presence of damage. In laminated composites, the most common form of
failure is the delamination of the plies. At the onset of the damage, the stiff-
ness of the structure reduces, but this reduction is negligible for very small
size damage. Hence, modal methods will show negligible change in the lower
energy modes and higher modes may become slightly perturbed. The compu-
tational cost of determining the higher modes limits the use of modal methods
for SHM of composite structures. In summary, small size damage affects only
the higher order modes leaving the lower modes unchanged. This effectively
means that to assess the presence of small size damage, one needs a mathe-
matical model that can capture the high frequency response of the damaged
structure with small problem sizes. In other words, we need a wave propaga-
tion based diagnostic tool for SHM studies. This is one of the fundamental
goals of on-line SHM, and the SFEM is an ideal candidate for this kind of
analysis.

The main requirements for on-line SHM are the following:

• Mathematical models to represent various types of damage. Some of the
common types of damage in laminated composites are delamination (both
single and multiple), fibre breakage, and surface breaking cracks. Also,
models are required for aging composite structures with degraded prop-
erties. One can easily model all types of damage using the conventional
FEM using 2-D or 3-D elements. The singularity near the flaw tip requires
fine mesh discretization. In addition, the high frequency loading require-
ment for SHM studies further increases the mesh density. These obviously
increase the time for solution, defeating the very purpose of on-line SHM.
In this book, we describe simplified but accurate spectral element models
for various types of damage for its use in SHM studies.

• Accurate damage detection algorithms that blend with the mathematical
model used to represent the damage. The success of a damage detection
algorithm depends on the quality of the measured responses. Often these
responses may be incomplete and in most cases they are corrupted by
the presence of high frequency noise. The main requirement is that these
damage detection algorithms should be able to predict the presence of
damage in an uncertain environment.

• Robust sensors and their placement. The sensitivity of the sensor is an ex-
tremely important parameter that determines the quality of the measured
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response. The sensitivity depends on the type of sensor and its placement
with respect to the damage location. Smart sensors made from Piezo-
ceramics (say lead-zirconate-titanate (PZT) or Polyvinylidene Difluoride
(PVDF)) are extremely popular for SHM applications. Sensors made from
magnetostrictive materials (say TERFENOL-D) are also quite popular
due to their large free strain property. Surface Acoustic Wave (SAW) and
Bulk Acoustic Wave (BAW) devices also find usage in SHM applications.
The placement of the sensors is critical for accurate damage estimation.
Normally, sensors are placed in regions of high stress, which are likely
locations for damage initiation. However, these locations are difficult to
determine a priori. Hence, the damage detection algorithm must be able
to predict the location of the damage from the far field responses.

Active wave control is yet another application that deals with inputs that
have high frequency content. Hence, SFEM is again a suitable candidate for
such applications. Vibration reduction in a structure can normally be achieved
passively by identifying the resonant conditions and suitably modifying the
geometry of the structure such that the natural frequency of the system is
far away from the driving frequency of the system. Alternatively, one can do
a detailed analysis and identify the regions in a structure having high vibra-
tion levels and design suitable damping mechanisms to alleviate vibrations.
However, design constraints may not allow any modification to the existing
structure. These exercises can be undertaken only when the frequency con-
tent of the exciting force is small and when it is desired to reduce the modal
amplitudes of the first few modes. Alternatively, one can design a feed back
control system, for which an interrogating signal triggered at a certain fre-
quency is required. This signal can be generated using smart actuators made
from materials such as PZT, TERFENOL-D et al. However, the design of
the control system poses a big problem if the problem sizes are large, as in
the case of conventional FEM. In such cases, one has resort to reduced-order
models for a given FE discretization. The fundamental requirement of any
reduced-order model is that the high energy mode that requires suppression
should be retained in the reduced model. This is a very difficult problem and
requires an experienced analyst to choose the appropriate degrees of freedom
to be retained in the reduced-order model. If the problem is a multi-modal one
where all the higher modes also have significant energy, the FE discretization
is also enormously large and hence to design a feedback control system for
such problems, a reduced-order model of the structure is an absolute neces-
sity. Again here, the choice of appropriate degrees of freedom to be included
in the reduced-order model is more difficult than the earlier case. The SFEM,
due to its inherent property of retaining all modal information within its small
size, can effectively be used in multi-modal wave control. The SFEM does not
require any reduced-order modelling and it can be used effectively with smart
actuators for control applications.
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1.2 Fourier Analysis

The heart of SFEM lies in the synthesis of waves using the Fourier transform.
A time signal can be represented in the Fourier (frequency) domain in three
possible ways, namely the Continuous Fourier Transform(CFT), the Fourier
Series (FS) and the Discrete Fourier Transform (DFT). In this section, only
brief definitions of the above transforms are given. The reader is encouraged
to refer to [9] for more details.

1.2.1 Continuous Fourier Transforms

Consider any time signal F (t). The inverse and the forward CFTs, normally
referred to as the transform pair, are given by

F (t) =
1
2π

∞∫

−∞
F̂ (ω)ejωtdω, F̂ (ω) =

∞∫

−∞
F (t)e−jωtdt , (1.1)

where F̂ (ω) is the CFT of the time signal, ω is the angular frequency and
j (j2 = −1) is the complex number. F̂ (ω) is necessarily complex and a plot
of the amplitude of this function against frequency will give the frequency
content of the time signal. As an example, consider a rectangular time signal
of pulse width d. Mathematically, this function can be represented as

F (t) = F0 − d/2 ≤ t ≤ d/2
= 0 otherwise . (1.2)

This time signal is symmetrical about the origin. If this expression is substi-
tuted in Equation (1.1), we get

F̂ (ω) = F0d

{
sin(ωd/2)

ωd/2

}
. (1.3)

The CFT for this function is real only and symmetric about ω = 0. The term
inside the curly brace is called the sinc function. Also, the value of the CFT
at ω = 0 is equal to the area under the time signal.

Now the pulse is allowed to propagate in the time domain by an amount
t0 seconds. Mathematically such a signal can be written as

F (t) = F0 t0 ≤ t ≤ t0 + d

= 0 otherwise. (1.4)

Substituting the above function in Equation (1.1) and integrating, we get

F̂ (ω) = F0d

{
sin(ωd/2)

ωd/2

}
e−jω(t0+d/2) . (1.5)
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Fig. 1.1. Continuous Fourier transforms for various pulse width

The above CFT has both real and imaginary parts. These are also plotted in
Figure 1.1. From Equations (1.3) and (1.5), we see that the magnitude of both
these transforms are the same, however, the second transform has phase infor-
mation built into it. Further, we see that the propagation of the signal in the
time domain is associated with the change of phase in the frequency domain.
Wave propagation problems are always associated with phase changes, which
occur as the signal propagates. Based on the CFT, one can also determine the
spread of the signal in both the time and frequency domain. For this, one has
to look at the frequencies at which the CFT is zero. This occurs when

sin
(

ωnd

2

)
= 0, or

ωnd

2
= nπ , or ωn =

2nπ

d
,

ω2 − ω1 = ∆ω =
4π

d
.

That is, if the spread of the signal in the time domain is d then the spread
in the frequency domain is ∆ω = 4π/d. Here, ∆ω represents the frequency
bandwidth. Hence, a Dirac delta function, which has infinitesimal width in
the time domain, will have infinite bandwidth in the frequency domain. This
aspect has greater implications in choosing the mesh sizes, when one resorts
to FEM to solve the wave propagation problem. Following are some of the
properties of the CFT:



8 1 Introduction

• Linearity: Consider two time functions F1(t) and F2(t). The CFTs of
these functions are given by F̂1(ω) and F̂2(ω), then the Fourier transform
of the combined function is F1(t)+F2(t) ⇔ F̂1(ω)+F̂2(ω). Here, the symbol
⇔ is used to denote the CFT of a time signal. Implications for wave
propagation: Here, F1(t) and F2(t) can be thought of as the incident
and the reflected waves, respectively. The linearity property states that
the combined transform of the incident and the reflected waves are equal
to the individual transform of these obtained separately.

• Scaling: If a time signal is multiplied by a factor k to become F (kt), the
CFT of this time signal is given by F (kt) ⇔ 1/kF̂ (ω/k) Implications
for wave propagation: Time domain compression is frequency domain
expansion. This property fixes the frequency bandwidth of the given time
signal.

• Time shifting: If a given time signal F (t) is shifted by an amount ts to
become F (t − ts), the CFT of the shifted signal is given by F (t − ts) ⇔
F̂ (ω)e−jωt. Implications for wave propagation: Propagation in the
time domain is accompanied by phase changes in the frequency domain.

• CFT is always complex: Any given time function F (t) can be split
up into symmetric and anti-symmetric functions Fs(t) and Fa(t). Fur-
ther, using the property of the linearity of the CFT, we can show that
Fs(t) = Real(F̂ (ω)) and Fa(t) = jImag(F̂ (ω)). Implications for wave
propagation: Since the time signals encountered in wave mechanics is
neither symmetric (even) nor anti-symmetric in nature, the CFT is nec-
essarily complex in nature. Hence, wave propagation problems are always
associated with phase changes.

• Symmetric property of the CFT: Since the CFT of a time signal
F (t) is complex, it can be split into real and imaginary parts as F̂ (ω) =
F̂R(ω) + j ˆFRI(ω). Substituting this into the first part of Equation (1.1)
and expanding the complex exponential in terms of the sine and cosine
functions, we can write real and imaginary parts of the transform as

F̂R =

∞∫

−∞
F (t) cos(ωt)dt, F̂I =

∞∫

−∞
F (t) sin(ωt)dt .

The first integral is an even function and the second is an odd function,
that is F̂R(ω) = F̂R(−ω), and F̂I(ω) = −F̂I(−ω). Now, if we consider the
CFT about a point ω = 0(origin), the transform on the right of the origin
can be written as F̂ (ω) = F̂R(ω)+ jF̂I(ω) . Similarly, the transform to the
left of the origin can be written as F̂ (−ω) = F̂R(−ω)+jF̂I(−ω) = F̂R(ω)−
jF̂I(ω) = F̂ ∗(ω), which is the complex conjugate of the transform on the
right side of the origin. The frequency point about which this happens
is called the Nyquist frequency. Implications for wave propagation:
The Nyquist frequency is an important parameter in wave propagation
analysis, especially in the context of using the FFT (to be introduced
later), since the analysis will be performed only up to this frequency.
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• Convolution: This is a property relating to the product of two time
signals F1(t) and F2(t). The CFT of the product of these two functions
can be written as

F̂12(ω) =

∞∫

−∞
F1(t)F2(t)e−jωtdt .

Substituting Equation (1.1) for both these functions in the above equation,
we can write

F̂12(ω) =

∞∫

−∞
F̂1(ω̄)

∞∫

−∞
F2(t)e−j(ω−ω̄)tdtdω̄ =

∞∫

−∞
F̂1(ω̄)F̂2(ω − ω̄)dω̄

or

F1(t)F2(t) ⇔
∞∫

−∞
F̂1(ω̄)F̂2(ω − ω̄)dω̄ .

The above form of CFT is called the convolution. Conversely, we can also
write

F̂1(ω)F̂2(ω) ⇔
∞∫

−∞
F1(τ)F2(t − τ)dτ .

Implication for wave propagation: The first property, using the prod-
uct of two time domain signals, has its use in understanding signal process-
ing aspects. For example, a truncated signal in the time domain is equal
to the product of the original signal and the truncated signal. The sec-
ond (or the converse) property is of great importance in wave propagation
analysis. That is, all the responses (outputs) of a mechanical waveguide to
applied loadings can be represented as the frequency domain product of
the input and the system transfer function. Thus the time responses are
obtained by convolving the transfer functions with the load spectrum.

1.2.2 Fourier Series

Both the forward and the inverse CFT require mathematical description of
the time signal as well as their integration. In most cases, the time signals
are point data acquired during experimentation. Hence, what we require is
the numerical representation for the transform pair (Equation (1.1)), which is
called the Discrete Fourier Transform (DFT). The DFT is introduced in detail
in the next subsection. The Fourier Series (FS) is in between the CFT and
the DFT, wherein the inverse transform is represented by a series, while the
forward transform is still in the integral form as in CFT. That is, one still needs
the mathematical description of the time signal to obtain the transforms.

The FS of a given time signal can be represented as
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F (t) =
a0

2
+

∞∑
n=1

[
an cos

(
2πn

t

T

)
+ bn sin

(
2πn

t

T

)]
(1.6)

where (n = 0, 1, 2, . . .)

an =
2
T

T∫

0

F (t) cos
(

2πnt

T

)
dt, bn =

2
T

T∫

0

F (t) sin
(

2πnt

T

)
dt. (1.7)

Equation (1.6) corresponds to the inverse transform of the CFT, while Equa-
tion (1.7) corresponds to the forward transforms of the CFT. Here T is the
period of the time signal, i.e., the discrete representation of a continuous time
signal F (t), introduces periodicity of the time signal. The FS given in Equa-
tion (1.6) can also be written in terms of complex exponentials, which can
give one-to-one comparison with CFT. That is, Equations (1.6) and (1.7) can
be rewritten as

F (t) = 1
2

∞∑
−∞

(an − bn)ejωnt =
∞∑
−∞

F̂nejωnt , n = 0,±1,±2, ...

F̂n = 1
2 (an − bn) = 1

T

T∫
0

F (t)e−jωntdt, , ωn = 2πn
T .

(1.8)

Because of enforced periodicity, the signal repeats itself after every T seconds.
Hence, we can define the fundamental frequency either in radians per second
(ω0) or Hz (f0 = ω0/2π = 1/T ). We can now express the time signal in terms
of the fundamental frequency as

F (t) =
∞∑
−∞

F̂nej2πnf0t =
∞∑
−∞

F̂nejnω0t . (1.9)

From Equation (1.9), it is clear that, unlike in CFT, the transform given by
FS is discrete in frequency. To understand the behavior of FS as opposed to
the CFT, the same rectangular time signal used earlier is again considered
here. The FS coefficients (or transform) are obtained by substituting the time
signal variation in Equation (1.8). This is given by

F̂n =
F0

T

[
sin(nπd/T )
(nπd/T )

]
e−j(t0+d/2)2πn/T . (1.10)

The plot of the transform amplitude obtained from the CFT and the FS
are shown in Figure 1.2. The figure shows that the values of the transform
obtained by FS at discrete frequencies fall exactly on the transform obtained
by CFT. The figure also shows the transform values for different time periods
T . We see from the figure that the larger the time period, the closer are
the frequency spacings. Hence, if the period tends to infinity, the transform
obtained by FS will be exactly equal to the transform obtained by CFT.
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Fig. 1.2. Comparison of Fourier series with Continuous Fourier Transforms

1.2.3 Discrete Fourier Transform

The Discrete Fourier transform (DFT) is an alternative way of mathemati-
cally representing the CFT in terms of summations. Here, both the forward
and inverse CFT given in Equation (1.1) are represented by summations. This
will completely do away with all complex integration involved in the compu-
tation of CFT. In addition, it is not necessary to represent the time signals
mathematically and the great advantage of this is that one can use the time
data obtained from experiment. Numerical implementation of the DFT is done
using the famous FFT algorithm.

We begin here with Equation (1.8), which is the FS representation of the
time signal. The main objective here is to replace the integral involved in the
computation of the Fourier coefficients by summation. For this, the plot of
time signal shown in Figure 1.3 is considered.

The time signal is divided into M piecewise constant rectangles, whose
height is given by Fm, and the width of these rectangles is equal to ∆T =
T/M . We derived earlier that the continuous transform of a rectangle is a
sinc function. By rectangular idealization of the signal, the DFT of the signal
will be the summation of M sinc functions of pulse width ∆T and hence the
second integral in Equation (1.8) can now be written as
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Fig. 1.3. Time signal discretization for DFT

F̂n = ∆T

[
sin(ωn∆T/2)
(ωn∆T/2)

] M∑
m=0

Fme−jωntm (1.11)

Let us now look at the sinc function in Equation (1.11). Its value depends on
the width of the rectangle ∆T . That is, as the width of the rectangle becomes
smaller, the term inside the bracket of Equation (1.11) tends to unity value.
This will happen for all values of n < M . It can easily be shown that for
values of n ≥ M , the values of the transform is approximately equal to zero.
Hence, the DFT transform pairs can now be written as

F
m

= F (tm) = 1
T

N−1∑
n=0

F̂mejωntm = 1
T

N−1∑
n=0

F̂mej2πnm/N

F̂n = F̂ (ωn) = ∆T
N−1∑
n=0

Fme−jωntm = ∆T
N−1∑
n=0

Fme−j2πnm/N (1.12)

Here, both m and n range from 0 to N−1.
The periodicity of the time signal is necessary for DFT as we begin from

the FS representation of the time signal. Now, we can probe a little further to
see whether the signal has any periodicity in the frequency domain. For this,
we can look at the summation term in Equation (1.11). Hypothetically, let us
assume n > M . Hence, we can write n = M + n̄ . Then, the exponential term
in the equation becomes

e−jωntm = e−jnω0tm = e−jMω0tme−jn̄ω0tm = e−j2πme−jn̄ω0tm = e−jn̄ω0tm .

Hence, the summation term in Equation (1.11) becomes
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∆T

M−1∑
m=0

Fme−jn̄ω0tm .

This term shows that the above summation has the same value when n = n̄.
For example, if M = 6, then the value of the summation for n = 9, 11, 17
is same as the value for n = 3, 5, and 11 respectively. Two aspects are very
clear from this analysis. First, n > M is not important, and second, there
is forced periodicity in both the time and frequency domain in using DFT.
This periodicity occurs about a frequency where the transform goes to zero.
This frequency can be obtained if one looks at the sinc function given in
Equation (1.11). That is, the argument of the sinc function is given by

ωn∆T

2
= πn∆T =

πn

M

where, we have used the relation ∆T = T/M .
Here, we see that the sinc function goes to zero when n = M . It is at this

value of n that the periodicity is enforced and the frequency corresponding to
this value is called the Nyquist frequency. As mentioned earlier, this happens
due to the time signal being real only and the transform beyond the Nyquist
frequency is the complex conjugate of the transform before this frequency.
Thus, N real points are transformed to N/2 complex points. Knowing the
sampling rate ∆T , we can compute the Nyquist frequency from the expression

fNyquist=
1

2∆T
. (1.13)

There are a number of issues in the numerical implementation of the DFT,
which are not discussed here. However, the reader is encouraged to consult
Reference [9] to get more information on these aspects. In all the wave prop-
agation examples given in this textbook, the FFT is used to transform the
signal back and forth from the time and frequency domains and vice versa.
In order to see the difference in different transform representation, the same
rectangular pulse is again used here. There are two parameters on which the
accuracy of the transforms obtained by the DFT depends, namely the sam-
pling rate ∆T and the time window parameter N . Figures 1.4 and 1.5 show the
transform obtained for various sampling rates ∆T and time window parame-
ter N . From the figures, we can clearly see the periodicity about the Nyquist
frequency. For a given time window N , the figure shows that the frequency
spacing increases with decreasing sampling rate. Also, the Nyquist frequency
shifts to a higher value. Next, for a given sampling rate ∆T , the time window
is varied through the parameter N . In this case, the Nyquist frequency does
not change. However, for larger N , the frequency spacing becomes smaller and
hence we get denser frequency distribution.
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Fig. 1.5. Comparison of FFT and continuous transform for different sampling rates



1.3 Spectral Analysis 15

1.3 Spectral Analysis

SFEM uses spectral analysis to obtain the local wave behavior for differ-
ent waveguides and hence the wave characteristics, namely the Spectrum and
the Dispersion relation. These local characteristics are synthesized to get the
global wave behavior. Spectral analysis uses DFT to represent a field variable
(say displacement) as a finite series involving a set of coefficients, which re-
quires to be determined based on the boundary conditions of the problem.
Spectral analysis enables the determination of two important wave param-
eters, namely the wavenumbers and the group speeds. These parameters are
not only required for spectral element formulation, but also to understand the
wave mechanics in a given waveguide. These parameters enable us to know
whether the wave mode is a propagating mode or a damping mode or a com-
bination of these two (propagation as well as wave amplitude attenuation). If
the wave is propagating, the wavenumber expression will let us know whether
it is non-dispersive (that is, the wave retains its shape as it propagates) or
dispersive (when the wave changes its shape as it propagates). In this section,
for the sake of completeness, we give a brief outline of spectral analysis for
second- and fourth-order systems. More details can be found in Reference [9].

The starting point of spectral analysis is the governing differential equa-
tion. Consider a second-order partial differential equation given by

a
∂2u

∂x2
+ b

∂u

∂x
= c

∂2u

∂t2
(1.14)

where, a, b, c are known constants and u(x, t) is the field variable, x is the
spatial variable and t is the temporal variable. We first approximate or trans-
form the above partial differential equation (PDE) to the frequency domain
using DFT, which is given by

u(x, t) =
N−1∑
n=0

ûn(x, ωn)ejωnt (1.15)

where, ωn is the circular frequency and N is the total number of frequency
points used in the approximation. Here û is the frequency-dependent Fourier
transform of the field variable. Substituting Equation (1.15) into Equa-
tion (1.14), we get

a
d2ûn

dx2
+ b

dûn

dx
+ cω2

nûn = 0 , n = 0, . . . , N − 1 . (1.16)

From the above equation, we see that a partial differential equation is reduced
to a set of ordinary differential equation (ODE) with the time variation re-
moved and instead, the frequency introduced as a parameter. The summation
is omitted in the above equation for brevity. Equation (1.16) is a constant co-
efficient ODE, which has a solution of the type ûn(x, ω) = Anejkx, where An
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is some unknown constant and k is called the wavenumber . Substituting the
above solution in Equation (1.16), we get the following characteristic equation
to determine k

(k2 − bj

a
k +

cω2
n

a
)An = 0 . (1.17)

The above equation is quadratic in k and has two roots corresponding to the
two modes of wave propagation. These two modes correspond to the incident
and reflected waves. If the wavenumbers are real, then the wave modes are
called propagating modes. On the other hand, if the wavenumbers are com-
plex, then the wave modes damp out the responses and hence they are called
evanescent modes . These are given by

k1,2 =
bj

2a
±

√
−b2

4a2
+

cω2
n

a
. (1.18)

Equation (1.18) is the generalized expression for the determination of the
wavenumbers. Different wave behavior is possible depending upon the val-
ues of a, b, and c. The behavior also depends on the numerical value of the
radical

√
cω2

n/a − b2/4a2. Let us consider a simple case of b = 0. The two
wavenumbers are given by

k1 = ωn
c

a
, k2 = −ωn

c

a
. (1.19)

From the above expression, we find that the wavenumbers are real and hence
they are propagating modes. The wavenumbers are linear functions of fre-
quency ω. At this point, we would like to introduce two important wave
parameters that will determine the wave characteristics, namely the phase
speed Cp and group Speed Cg. They are defined as

Cp =
ωn

Real(k)
, Cg =

dωn

dk
. (1.20)

For the wavenumbers given in Equation (1.19), the speeds are given by

Cp = Cg =
a

c
. (1.21)

We find that both group and phase speed are constant and equal. Hence,
when wavenumbers vary linearly with frequency ω and phase speed and group
speed are constant and equal, then the wave, as it propagates, retains its
shape. Such waves are called Non-dispersive waves. Longitudinal waves in
elementary rods are of this type. If the wavenumber varies in a non-linear
manner with respect to the frequency, the phase and group speeds will not
be constant but will be functions of frequency ω. That is, each frequency
component travels with different speed and as a result, the wave changes its
shape as it propagates. Such waves are called dispersive waves.
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Next, let us again consider Equation (1.18) with all the constants nonzero.
The wavenumber no longer varies linearly with the frequency. Hence, one can
expect dispersive behavior of the waves and the level of dispersion will depend
upon the numerical value of the radical. We will investigate this aspect in a
little more detail. There can be the following three situations:

1. b2/4a2 > cω2
n/a

2. b2/4a2 < cω2
n/a and

3. b2/4a2 = cω2
n/a

Let us now consider Case 1. When (b2)/(4a2) > (cω2
n)/(a), then the radical

will be a complex number and hence all the wavenumbers will be complex,
implying that the wave modes are not propagating and they would damp out
rapidly. For Case 2, where (b2)/(4a2) < (cω2

n)/(a), the value of the radical
will be positive and real and hence the wavenumber will have both real and
imaginary parts, i.e.,, takes the form k = p + jq. Hence, waves having this
feature will attenuate as they propagate. The phase and group speeds for this
case are given by

Cp =
ωn

k
=

ωn√
cω2

n/a − b2/4a2
, (1.22)

Cg =
dωn

dk
=

a
√

cω2
n/a − b2/4a2

cωn
. (1.23)

It is quite obvious that these are not the same and hence the waves could be
dispersive in nature. One can get back the non-dispersive solution by substi-
tuting b = 0 in Equation (1.23). Now, let us see Case 3 where the value of
the radical will be zero and hence the wavenumber is purely imaginary indi-
cating that the wave mode is a damping mode. The interesting point here is
to find the frequency of transition at which the propagating mode becomes
evanescent or a damping mode. This can be obtained by equating the radical
to zero. Thus the transition frequency ωt is given by

ωt =
b

2
√

ac
.

Once the wavenumbers are determined, the solution to the governing wave
equation (Equation (1.16)) in the frequency domain can be written as (for
b = 0)

ûn(x, ωn) = Ane−jknx + Bnejknx, kn = ωn

√
c

a
. (1.24)

In the above equation An represents the incident wave coefficient while Bn

represents the reflected wave coefficient. Solution of the governing equation in
the frequency domain is the starting point for the SFEM.

It is clearly seen how the values of the constants in the governing differen-
tial equation play an important part in dictating the type of wave propagation


