Proteomics of Spermatogenesis

Proteomics of Spermatogenesis

Dr. G.S. Gupta, Ph.D.

Former Professor and Chairman Department of Biophysics Panjab University Chandigarh-160014 India

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN: 0-387-25398-X

©2005 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springeronline.com

PREFACE

Although morphological events in mammalian spermatogenesis have been known for many years, it is only through recent development of experimental techniques in cellular and molecular biology that made it possible to understand molecular biology of male gametogenesis in sufficient detail. However, despite considerable research over past several decades, there has been no systematic attempt to organize protein sequences/structures involved in spermatogenesis. The PROTEOMICS OF SPERMATOGENESIS, first of its kind, is the first ever effort to describe proteomics of an organ system such as male reproduction and deals with germ cell specific proteins from the point of view of their structures and functions as well as their clinical applications. However, the subject focuses mainly on the description of protein isoforms, which have been either considered specific to- or dominantly expressed in germ cells and finally localized in spermatozoa. The book has been written keeping in mind that the subject may be beneficial not only to students of reproductive biology in understanding spermatogenesis, but may be useful in understanding the causes of genetic infertility in human males and in other mammalian species, although few examples on proteins during spermatogenesis of non-mammalian species also have been cited. The salient feature of proteomics of spermatogenesis is the compilation of up to date information, based on the available data in literature, which has been interpreted and described in the words of original researchers. More importantly, each chapter in relation to a group of proteins has been properly introduced, although the classification of these proteins is arbitrary and based on their cellular localization or their functions. The knowledge of germ cell specific protein isoforms and understanding of sperm specific proteins and polypeptides acquired during maturation in epididymis offers potential application for targeted intervention in testis without generalized effects on stages of spermatogenesis, and in the development of a contraceptive vaccine in males and females. Although each chapter is unique, but under a broader base the book can be classified into sections such as (i) Spermatogenesis (Chapters 1-5), (ii) Cytoskeleton proteins (Chapters 6-10, and Chapter 25), (iii) Proteins involved in the regulation of gene expression, and in the transcription and translational activity (Chapters 11-17), (iv) Informational macromolecules and their relevance in cell communication during spermatogenesis and spermoocyte interactions (Chapters18-22), (v) Proteins participating in cell adhesion and fertilization (Chapters 23-27, and Chapter 34), (vi) Is-proteins which regulate sperm motility (Chapters 28-29) and participate in quality control of sperm functions (Chapters 30 and 31). In addition, the discovery of association of germ cell specific isoforms with non-germ cell/ somatic cell tumors has opened new challenges for their application in the diagnosis and prognosis of oncogenesis and immunotherapy of variety of malignancies (Chapter 32). Therefore, the main objectives of proteomics of spermatogenesis were to acquaint the reproductive biologists and andrologists with the current status of basic and applied research on specialized proteins of mammalian germ cells, their role in spermatogenesis, and to help in identifying research strategies that might yield information useful in the design of male anti-fertility agent, and antigenic peptides as future perspectives for development of contraceptive-cum-cancer vaccines in males and females. Since each topic has been properly introduced, proteomics of spermatogenesis may be referred to as a text book for students undergoing advanced training in reproductive biology and as a guide for Research and Development by pharmaceutical industries.

The author acknowledges the financial grant from Department of Science and Technology under USERS scheme and Emeritus Fellowship from University Grants Commission during the tenure of this project. The author also appreciates the cooperation of various research investigators for providing scientific literature and various copyright owners such as publishing agencies and scientific societies, and authors for granting copyright permissions to reproduce figures and other illustrations from original journals and books.

The author wishes to express his personal gratitude to Professor K.N.Pathak, the Vice-Chancellor and Dr. S.N. Sanyal, the Chairman, Department of Biophysics, Panjab University, Chandigarh for providing space and office facilities of the department during the entire tenure of writing of the manuscript. I am also thankful to my colleagues and friends, and office staff for their support and co-operation during this task. My special appreciation goes to Kishori (wife), Rajesh (son), and other family members who had been supporting this venture with great patience and their personal inconveniences.

G.S.Gupta

vi

CONTENTS

1. SPER	MATO	GENESIS	1
1.1.	TESTI	S COMPARTMENTS	1
		Intra-Testicular Communication	
	1.1.2.	Seminiferous Tubules	
1.2.	SPERM	MATOGENESIS	3
		Mitotic Phase	
		Meiotic Phase	
		Post-meiotic Phase (Spermiogenesis)	
1.3.		CRINE HORMONES AND SPERMATOGENESIS	8
		Action of LH	
		FSH Action	
		FSH Receptor	
		Local Factors in Trophic Hormone Action	
1.4.		DSTERONE AND SPERMATOGENESIS	13
		Androgen Receptors	
		Androgen Binding Protein	
		Estradiol	
	PROL		17
		TONIN RECEPTOR IN SERTOLI CELLS	17
1.7.	REFER	RENCES	18
2. PARA	CRINE	ROLE OF SERTOLI CELL	21
		DLICELL	21
	2.1.1.		
	2.1.2.	•	
		Spermatogenesis	
2.2.	BASE	MENT MEMBRANE COMPONENTS OF	23
	SEMIN	VIFEROUS TUBULES	
	2.2.1.	Collagen Type IV and Type II	
	2.2.2.	Laminin Fibulins and Other Components	
	2.2.3.	Fibulins and Other Components	
2.3.	SERTC	DLI CELL PRODUCTS IN GERM CELLS	25
		LOPMENT	
	2.3.1.	Cytokines	
	2.3.2.	Growth Factors	
	2.3.3.	Stem Cell Factor	
	2.3.4.	Sertoli Cell's Cystatins	
	2.3.5.	Mannose-6-phosphate Receptor	

2.3.6. Other Sertoli Cell Products

2.4.	SERTO	DLI CELL JUNCTION ADHESIONS	32
	2.4.1.	Neural Cell Adhesion Molecule (NCAM) at Sertoli Cell-	
		Gonocyte Junction	
	2.4.2.		
	2.4.3.		
	2.4.4.		
	2.4.5.	Clusterin	
	2.4.6.	Osteopontin	
	2.4.7.	Other Junction Proteins	
2.5.		CELLULAR BRIDGES/ ECTOPLASMIC	37
		ALIZATIONS	•
2.6.		LI CELL TIGHT JUNCTIONS DYNAMICS	38
		ALATION	38
		CELL-SERTOLI CELL INTERACTIONS	40
		-SFROM PERITUBULAR CELLS	42
	REFER		42
2.10			14
3. NON-9	STEROI	DALSIGNALMOLECULES IN SPERMATOGENESIS	47
		IN FAMILY	47
0111		Inhibin	.,
		Activins	
		Follistatin	
32		THFACTORS	52
0.2.		Insulin Like Growth Factors	
		Fibroblast Growth Factors	
		Epidermal Growth Factor	
	3.2.4.		
	3.2.5.	Transforming Growth Factor-β	
	3.2.6.	Anti-Mullerian Hormone	
	3.2.7.	Platelet Derived Growth Factor	
	3.2.8.	Nerve Growth Factor	
	3.2.9.		
		Vascular Endothelial Growth Factor	
		Hepatocyte Growth Factor/Activator-Inhibitor	
33		INOGEN ACTIVATORS	62
0.0.	3.3.1.	Ly-6/Urokinase-Type PlasminogenActivator Receptor	~
	3.3.2.	Plasminogen Activator Inhibitor Proteins	
34		DE HORMONES	64
5.1.	3.4.1.		01
	3.4.2.	Angiotensin Converting Enzyme	
	3.4.3.	Kallikrein-Kinin System	
	3.4.4.	Proopiomelanocortin Peptides	
	3.4.5.	Proenkephalin and Prodynorphin peptides	
	3.4.6.	Action of Other Peptide Hormones	
35	REFERI	•	72
0,0			
4. SPECI	FICITY	OF RETINOL, ESTROGEN AND STEROID	77
		DPROTEINS	
		N OF RETINOIDS	77
			••

	4.1.1. Retinol Binding Proteins	
	4.1.2. Retinol to Retinoic Acids	
	4.1.3. Stra 8-A: A Retinoic Acid Inducible Gene	
	NUCLEAR RECEPTORS	79
4.3	RETINOID RECEPTORS AND THEIR HOMOLOGUES	80
	4.3.1. Retinoid Receptors	
	4.3.2. Germ Cell Nuclear Factor (GCNF)	
	4.3.3. Retinoid Testis Receptor (RTR)	
	4.3.4. Tr $2-11$ Homologue	
	4.3.5. hTAK1	
	4.3.6. Nuclear Receptor Co-activator	
4.4	ACTION OF ESTROGENS	8 4
	4.4.1. Estrogen Receptors	
	4.4.2. P450 Aromatase	
	4.4.3. P450 Arom Gene (<i>CYP19</i>)	
	4.4.4. P450arom Deficiency	
4.5	OTHER STEROIDS LINKED ENZYMES IN	88
	GERM CELLS	
	4.5.1. Testis-Specific Lanosterol 14α -Demethylase (CYP51)	
	4.5.2. Steroidogenic Acute Regulatory (StAR) Protein and Home	ologues
	4.5.3. T-StAR/ETOILE	
4.6	REFERENCES	93
5. HOM	EOSTASIS OF GERM CELLS AND APOPTOSIS	97
5.1.	APOPTOSIS	97
5.1.	5.1.1. Death Signals	
	5.1.1. Death Signals5.1.2. Caspases	97
	5.1.1. Death Signals5.1.2. CaspasesTHE MECHANISMS OF APOPTOSIS	
	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 	97
	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 	97
5.2.	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 5.2.3. Apoptosis-Inducing Factor (AIF) Release Pathway 	97 98
5.2.	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 5.2.3. Apoptosis-Inducing Factor (AIF) Release Pathway INHIBITORS OF APOPTOSIS PROTEINS (IAPS) 	97 98 102
5.2.	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 5.2.3. Apoptosis-Inducing Factor (AIF) Release Pathway INHIBITORS OF APOPTOSIS PROTEINS (IAPS) APOPTOSIS DURING SPERMATOGENESIS 	97 98
5.2.	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 5.2.3. Apoptosis-Inducing Factor (AIF) Release Pathway INHIBITORS OF APOPTOSIS PROTEINS (IAPS) APOPTOSIS DURING SPERMATOGENESIS 5.4.1. FAS System in Testis 	97 98 102
5.2.	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 5.2.3. Apoptosis-Inducing Factor (AIF) Release Pathway INHIBITORS OF APOPTOSIS PROTEINS (IAPS) APOPTOSIS DURING SPERMATOGENESIS 5.4.1. FAS System in Testis 5.4.2. Apaf-1 and Cytochrome C in Germ Cell Apoptosis 	97 98 102
5.2.	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 5.2.3. Apoptosis-Inducing Factor (AIF) Release Pathway INHIBITORS OF APOPTOSIS PROTEINS (IAPS) APOPTOSIS DURING SPERMATOGENESIS 5.4.1. FAS System in Testis 5.4.2. Apaf-1 and Cytochrome C in Germ Cell Apoptosis 5.4.3. p53 Induced Pathway 	97 98 102
5.2. 5.3. 5.4.	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 5.2.3. Apoptosis-Inducing Factor (AIF) Release Pathway INHIBITORS OF APOPTOSIS PROTEINS (IAPS) APOPTOSIS DURING SPERMATOGENESIS 5.4.1. FAS System in Testis 5.4.2. Apaf-1 and Cytochrome C in Germ Cell Apoptosis 5.4.3. p53 Induced Pathway 5.4.4. Bcl-2 Protein Family 	97 98 102 102
5.2. 5.3. 5.4.	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 5.2.3. Apoptosis-Inducing Factor (AIF) Release Pathway INHIBITORS OF APOPTOSIS PROTEINS (IAPS) APOPTOSIS DURING SPERMATOGENESIS 5.4.1. FAS System in Testis 5.4.2. Apaf-1 and Cytochrome C in Germ Cell Apoptosis 5.4.3. p53 Induced Pathway 5.4.4. Bcl-2 Protein Family FACTORS CONTROLLING APOPTOSIS IN SPERMATOGENESIS 	97 98 102
5.2. 5.3. 5.4.	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 5.2.3. Apoptosis-Inducing Factor (AIF) Release Pathway INHIBITORS OF APOPTOSIS PROTEINS (IAPS) APOPTOSIS DURING SPERMATOGENESIS 5.4.1. FAS System in Testis 5.4.2. Apaf-1 and Cytochrome C in Germ Cell Apoptosis 5.4.3. p53 Induced Pathway 5.4.4. Bcl-2 Protein Family FACTORS CONTROLLING APOPTOSIS IN SPERMATOGENESIS 5.5.1. Paracrine Control of Apoptosis 	97 98 102 102
5.2. 5.3. 5.4.	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 5.2.3. Apoptosis-Inducing Factor (AIF) Release Pathway INHIBITORS OF APOPTOSIS PROTEINS (IAPS) APOPTOSIS DURING SPERMATOGENESIS 5.4.1. FAS System in Testis 5.4.2. Apaf-1 and Cytochrome C in Germ Cell Apoptosis 5.4.3. p53 Induced Pathway 5.4.4. Bcl-2 Protein Family FACTORS CONTROLLING APOPTOSIS IN SPERMATOGENESIS 5.5.1. Paracrine Control of Apoptosis 5.5.2. Endocrine Control of Apoptosis 	97 98 102 102
5.2. 5.3. 5.4.	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 5.2.3. Apoptosis-Inducing Factor (AIF) Release Pathway INHIBITORS OF APOPTOSIS PROTEINS (IAPS) APOPTOSIS DURING SPERMATOGENESIS 5.4.1. FAS System in Testis 5.4.2. Apaf-1 and Cytochrome C in Germ Cell Apoptosis 5.4.3. p53 Induced Pathway 5.4.4. Bcl-2 Protein Family FACTORS CONTROLLING APOPTOSIS IN SPERMATOGENESIS 5.5.1. Paracrine Control of Apoptosis 5.5.2. Endocrine Control of Apoptosis 5.5.3. Selective Apoptosis of Damaged Germ Cells 	97 98 102 102
5.2. 5.3. 5.4.	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 5.2.3. Apoptosis-Inducing Factor (AIF) Release Pathway INHIBITORS OF APOPTOSIS PROTEINS (IAPS) APOPTOSIS DURING SPERMATOGENESIS 5.4.1. FAS System in Testis 5.4.2. Apaf-1 and Cytochrome C in Germ Cell Apoptosis 5.4.3. p53 Induced Pathway 5.4.4. Bcl-2 Protein Family FACTORS CONTROLLING APOPTOSIS IN SPERMATOGENESIS 5.5.1. Paracrine Control of Apoptosis 5.5.2. Endocrine Control of Apoptosis 5.5.3. Selective Apoptosis of Damaged Germ Cells 5.5.4. Sertoli Cell-Germ Cell Contact 	97 98 102 102
5.2. 5.3. 5.4. 5.5.	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 5.2.3. Apoptosis-Inducing Factor (AIF) Release Pathway INHIBITORS OF APOPTOSIS PROTEINS (IAPS) APOPTOSIS DURING SPERMATOGENESIS 5.4.1. FAS System in Testis 5.4.2. Apaf-1 and Cytochrome C in Germ Cell Apoptosis 5.4.3. p53 Induced Pathway 5.4.4. Bcl-2 Protein Family FACTORS CONTROLLING APOPTOSIS IN SPERMATOGENESIS 5.5.1. Paracrine Control of Apoptosis 5.5.2. Endocrine Control of Apoptosis 5.5.3. Selective Apoptosis of Damaged Germ Cells 5.5.4. Sertoli Cell-Germ Cell Contact 5.5.5. Phagocytosis of Apoptotic Cells 	97 98 102 102 102
5.2. 5.3. 5.4.	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 5.2.3. Apoptosis-Inducing Factor (AIF) Release Pathway INHIBITORS OF APOPTOSIS PROTEINS (IAPS) APOPTOSIS DURING SPERMATOGENESIS 5.4.1. FAS System in Testis 5.4.2. Apaf-1 and Cytochrome C in Germ Cell Apoptosis 5.4.3. p53 Induced Pathway 5.4.4. Bcl-2 Protein Family FACTORS CONTROLLING APOPTOSIS IN SPERMATOGENESIS 5.5.1. Paracrine Control of Apoptosis 5.5.2. Endocrine Control of Apoptosis 5.5.3. Selective Apoptosis of Damaged Germ Cells 5.5.4. Sertoli Cell-Germ Cell Contact 	97 98 102 102
5.2. 5.3. 5.4. 5.5.	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 5.2.3. Apoptosis-Inducing Factor (AIF) Release Pathway INHIBITORS OF APOPTOSIS PROTEINS (IAPS) APOPTOSIS DURING SPERMATOGENESIS 5.4.1. FAS System in Testis 5.4.2. Apaf-1 and Cytochrome C in Germ Cell Apoptosis 5.4.3. p53 Induced Pathway 5.4.4. Bcl-2 Protein Family FACTORS CONTROLLING APOPTOSIS IN SPERMATOGENESIS 5.5.1. Paracrine Control of Apoptosis 5.5.3. Selective Apoptosis of Damaged Germ Cells 5.5.4. Sertoli Cell-Germ Cell Contact 5.5.5. Phagocytosis of Apoptotic Cells REFERENCES 	97 98 102 102 107 107
5.2. 5.3. 5.4. 5.5. 5.6 6. NUCL	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 5.2.3. Apoptosis-Inducing Factor (AIF) Release Pathway INHIBITORS OF APOPTOSIS PROTEINS (IAPS) APOPTOSIS DURING SPERMATOGENESIS 5.4.1. FAS System in Testis 5.4.2. Apaf-1 and Cytochrome C in Germ Cell Apoptosis 5.4.3. p53 Induced Pathway 5.4.4. Bcl-2 Protein Family FACTORS CONTROLLING APOPTOSIS IN SPERMATOGENESIS 5.5.1. Paracrine Control of Apoptosis 5.5.2. Endocrine Control of Apoptosis 5.5.3. Selective Apoptosis of Damaged Germ Cells 5.5.4. Sertoli Cell-Germ Cell Contact 5.5.5. Phagocytosis of Apoptotic Cells REFERENCES 	97 98 102 102 107 107 109 111
5.2. 5.3. 5.4. 5.5. 5.6 6. NUCL 6.1.	 5.1.1. Death Signals 5.1.2. Caspases THE MECHANISMS OF APOPTOSIS 5.2.1. The Intrinsic or Mitochondrial Pathway 5.2.2. The Extrinsic or Death Receptor Pathway 5.2.3. Apoptosis-Inducing Factor (AIF) Release Pathway INHIBITORS OF APOPTOSIS PROTEINS (IAPS) APOPTOSIS DURING SPERMATOGENESIS 5.4.1. FAS System in Testis 5.4.2. Apaf-1 and Cytochrome C in Germ Cell Apoptosis 5.4.3. p53 Induced Pathway 5.4.4. Bcl-2 Protein Family FACTORS CONTROLLING APOPTOSIS IN SPERMATOGENESIS 5.5.1. Paracrine Control of Apoptosis 5.5.3. Selective Apoptosis of Damaged Germ Cells 5.5.4. Sertoli Cell-Germ Cell Contact 5.5.5. Phagocytosis of Apoptotic Cells REFERENCES 	97 98 102 102 107 107

	6.2.1.	Mitosis	
	6.2.2.	Meiosis	
6.3.	THE SY	'NAPTONEMAL COMPLEX	115
6.4.	SYNAP	TONEMAL COMPLEX PROTEINS	117
	6.4.1.	Synaptonemal Complex Protein-1	
	6.4.2.	Synaptonemal Complex Protein-2	
	6.4.3.	Synaptonemal Complex Protein-3	
		Other SC Proteins	
6.5.	STRUC	TURAL MAINTENANCECHROMOSOME PROTEINS	122
6.6.		PLEX POLYPEPTIDES	124
	6.6.1.	TCP-1	
	6.6.2.	Tcte 2	
6.7.	CENTR	OMERE PROTEIN-B	126
6.8.	NUCLE	EAR LAMINS	126
6.9.	NUCLE	EAR ASSOCIATED PROTEIN (NASP)	128
6.10	.SPERM	CYLICIN	129
		EAR PORE ASSOCIATED PROTEINS	130
		10BILITY GROUP (HMG) PROTEINS	130
		NUCLEAR ANTIGENS	131
6.14	REFERE	ENCES	134
			107
7.NUCL		ELETON PROTEINS: CHROMOSOMAL	137
71		PROTEINS	127
		IALIAN TESTIS HISTONES	137 138
1.2.		NE H2A/TH2A	138
	7.2.1.	Somatic Variants	
7 7		Testis Specific TH2A Variant NE H2B/TH2B	139
7.3.		Somatic H2B Variants	139
		Testis TH2B	
74		NE H3 /TH3 VARIANTS	141
	HISTON		141
		NE H1 AND TESTIS VARIANT H1t	143
7.0.		Histone H1	145
	7.6.2.	Testis Specific Histone-1 (H1t)	
77		VES IN CHROMOSOME ASSEMBLY	150
		ITINATION OF HISTONES	150
	-	ITION PROTEINS	152
	. PROTA		155
		Characterization and Functions	
		Protamine Genes	
7.11		E OF BASIC PROTEINS IN OTHER SPECIES	160
		Basic Proteins of Winter Flounder	
7.12	REFERE	INCES	162
8. MICR	OTUBUI	LES	167
8.1.	INTRO	DUCTION	167
8.2.	FLAGE	LLAR STRUCTURE AND DOUBLET SLIDING	168

8.3.	TUBU	LINS	169
8.4.	MICR	OTUBULES IN SPERMATOGENIC CELLS	170
	8.4.1.	Testicular-α Tubulin	
	8.4.2.	Cell Specific Expression of β -Tubulin Isoforms	
	8.4.3.	• • •	
		(Post-Translational Modifications)	
	8.4.4.	δ-Tubulin	
8.5.	MICRO	DTUBULE ASSOCIATED PROTEINS	175
	8.5.1.	Tektins	
		Microtubule Associated Protein-2 like Proteins	
	8.5.3.	E-MAP-115/MTEST 60	
	8.5.4.	TBP-1-Like Subfamily with ATPase and Protease Domains CLIP50	
	8.5.5.	CLIP50	
	8.5.6.	CAS	
8.6.	RNA E	BINDING PROTEINS IN MICROTUBULES	181
	8.6.1.	Spermatid Perinuclear RNA Binding Protein (Spnr)	
	8.6.2.	• • • • • •	
	8.6.3.		
8.7.	OTHE	R MICROTUBULE ASSOCIATED PROTEINS	182
8.8.	CENT	ROSOME	183
8.9.	CENT	ROSOME PROTEINS	185
	8.9.1.	γ-Tubulin in MT Nucleation	
	8.9.2.	Centrin and Other Proteins in Centrosome	
8.10	REFER	RENCES	187
9. MICR	OTUBI	ULE BASED MOTOR PROTEINS	191
		SIN MOTOR	191
	9.1.1.	Kinesin Related Proteins	
	9.1.2.	Kinesin Family C-Terminal 5A Gene (KIFC5A)	
	9.1.3.	Kinesin Motor in Drosophila	
	9.1.4.	Structure-Function Relation	
9.2.	DYNE	INMOTORS	196
9.3.	AXON	EMAL DYNEINS	197
	9.3.1.	Doublet Tubules of Sperm Flagella	
	9.3.2.	Outer Row Dyneins	
	9.3.3.	Outer Arm Dynein Structure	
	9.3.4.		
	9.3.5.		
9.4.			203
0.6	RADIA	AL SPOKE PROTEINS	200
9.5.		AL SPOKE PROTEINS E GENERATION BY DYNEIN ARMS AND	203
9.5.	FORCE		
	FORCE BEAT I	E GENERATION BY DYNEIN ARMS AND	
	FORCE BEAT I	E GENERATION BY DYNEIN ARMS AND RHYTHMICITY PLASMIC DYNEINS	203
9.6.	FORCH BEAT I CYTO 9.6.1. 9.6.2.	E GENERATION BY DYNEIN ARMS AND RHYTHMICITY PLASMIC DYNEINS Tctex-2 : An Analogue of Outer Dynein Arm LC2 Cytoplasmic Dynein in Sertoli Cells and Germ Cells	203
9.6.	FORCH BEAT I CYTO 9.6.1. 9.6.2.	E GENERATION BY DYNEIN ARMS AND RHYTHMICITY PLASMIC DYNEINS Tctex-2 : An Analogue of Outer Dynein Arm LC2 Cytoplasmic Dynein in Sertoli Cells and Germ Cells CTURE-FUNCTION RELATIONS IN DYNEINS	203
9.6.	FORCH BEAT I CYTO 9.6.1. 9.6.2.	E GENERATION BY DYNEIN ARMS AND RHYTHMICITY PLASMIC DYNEINS Tctex-2 : An Analogue of Outer Dynein Arm LC2 Cytoplasmic Dynein in Sertoli Cells and Germ Cells CTURE-FUNCTION RELATIONS IN DYNEINS	203 205

10.	SEX CHROM	IOSOMAL PROTEINS AND AUTOSOMAL HOMOLOGUES	211
	10.1. X-CHR	OMOSOME ABERRATIONS AND SPERMATOGENESIS	212
	10.1.1.	Xp22 Contiguous Gene Syndrome	
	10.1.2.	Translocation of X-Chromosome Genes to Autosomes and Y-	
		Chromosome	
	10.2. X-CHR	OMOSOME LINKED PROTEINS	213
		Pro-mAKAP82	
		SPAN-X	
		Cleavage Stimulation Factor Like Protein	
		OMOSOME ABERRATIONS	214
		Y-Chromosome and Sex Reversal	
		The SRY: a Sex-Determining Region on YGene in Mammals	
		DMOSOME AND SPERMATOGENESIS	217
		AZFa Region	
		ZFb Region	
		AZFc Region	
	10.4.4.	RBM Gene Family	
	10.5. THE D	AZ GENE FAMILY AS AZF CANDIDATE	222
	10.6. THE CE	DY GENE FAMILY	223
	10.7. OTHER	SPERMATOGENESIS-RELATED	223
	GENES	ON Y-CHROMOSOME	
		OMAL GENES PRODUCTS	224
	10.8.1.	SOX9 and Other SOX Proteins	
		Autosomal DAZ like (DAZL) Proteins	
	10.8.3.	Murine DazL1 Binding mRNAs	
	10.8.4.	Boule and DAZ	
	10.8.5.	MORC Gene	
	10.8.6.	Other Gene Products in Infertility	
	10.9. XY BOI	DY	230
	10.10.REFER	ENCES	231
11	CELL CVCL	E COMPONENTS	235
11.	11.1. CELLC		235
			235
		YCLE GENES IN YEAST	235
		Cdc2, Cdc28 and Cdc13 Genes	
		Cdc25 and Weel Genes	
		Cyclin and Other Genes in Budding Yeast DENCE OF MITOSIS ON DNA SYNTHESIS	237
		EMISTRY OF CELL DIVISION: AN OVERVIEW	238
			230
		MPF and Kinase Activity	
		Phosphorylation / Dephosphorylation of Cdc2	240
		CTIVITY IN SPERMATOGENESIS	240
		Cdk activity in Spermatogenic Cells	
		Multiple Forms of Cdks in Spermatogenesis	
		Human Weel	
		Other Protein Kinases in Cell Cycle	242
		YCLINS IN SPERMATOGENIC CELLS	243
		Cyclin B: A Component of MPF	
	11.6.2.	Cyclin A1 in Male Germ Cells	

11.6.3. Cyclin A2	
11.6.4. D-Type Cyclins	
11.6.5. Cyclin G Associated Kinase (GAK)-Cdk5	
11.6.6. Cyclin H/Cdk7 Complex	
11.6.7. Sperm Cyclin I	
11.6.8. Cyclin K	
11.7. CDC25 PHOSPHATASES IN MALE GERM CELLS	253
11.8. CYCLIN DEPENDENT KINASE INHIBITORS	254
11.8.1. INK4 Family	
11.8.2. Cip/Kip Family of Cdk Inhibitors	
11.9. ACTIVATION OF MAPK PATHWAY DURING MEIOSIS	257
11.10.REFERENCES	258
12. ISOPROTEINS IN DNA SYNTHESIS	261
12.1. EUKARYOTIC DNA POLYMERASES	261
12.1.1. DNA Polymerases in Spermatogenesis	201
12.1.2. DNA Polymerase β	
12.1.3. Polλ	
12.1.4. DNA Polymerase ξ	
12.2. DNA LIGASES	266
12.3. DNA HELICASES	267
12.4. DNA TOPOISOMERASES	270
12.5. REVERSE TRANSCRIPTASE	272
12.6. TELOMERE PROTEINS	273
12.6.1. Telomere Binding Proteins	
12.6.2. Telomerase and Telomere Length	
12.6.3. Tankyrase	
12.7. REFERENCES	277
13. DNA REPAIR AND RECOMBINATION	279
13.1. MISMATCH REPAIR	279
13.1.1. Mismatch Repair Genes	
13.1.2. Proteins with Nuclease Activity	
13.2. PROTEIN SPECIFICITY IN RECOMBINATION REPAIR	285
13.2.1. RAD52	
13.2.2. RAD 51	
13.2.3. RAD51 Paralogs	
13.2.4. Excision Repair Cross Complimenting Genes	
13.2.5. BLM Helicase	
13.3. POST-REPLICATION REPAIR GENE PRODUCTS	292
13.3.1. RAD6 and its Mammalian Homologues: HR6A and HR6B	
13.3.2. Mammalian Homologues of Rad 18	
13.3.3. RAD30 Gene	
13.4. CELL CYCLE CHECK POINT CONTROL	296
13.4.1. RAD1	
13.4.2. ATR/ATM Gene Products	
13.5. CRE RECOMBINASE	298
13.6. REFERENCES	299

14 TRANSCRIPTIONAL CONTROL	303
14.1. TRANSCRIPTION IN EUKARYOTES	303
14.2. CHAUVINIST GENES	304
14.3. REGULATORY FACTORS IN GENE EXPRESSION	305
OF GERM CELLS	
14.3.1. Intrinsic and Extrinsic Factors	
14.3.2. Chromatin Structure	
14.3.3. Role of Nuclear Matrix in Replication	
14.3.4. Role of Chromosomal Proteins in Transcription	
14.3.5. In-situ Modification of Nucleoproteins	
14.4. GENE METHYLATION AND GENE EXPRESSION	307
IN SPERMATOGENESIS	
14.4.1. DNA Methylation of Testis Specific Genes	
14.4.2. CpG Islands and Spermatogenesis	
14.4.3. Methyl-CpG-Binding Proteins	
14.4.4. DNA Methyltransferase	
14.5. POLY-(ADP) – RIBOSYLATION	311
14.5.1. Poly-(ADPR)–Polymerase	211
14.5.2. Poly(ADP-ribosyl)transferase (pADPRT)	
14.6. ACETYLATION AND REGULATION OF	312
PROTEIN FUNCTIONS	012
14.6.1. Histone Acetylation	
14.6.2. ESET Histone Methyltransferase	
14.6.3. Functional Significance of Acetylation	
14.7. PHOSPHORYLATION/DEPHOSPHORYLATION	314
14.8. PROTEIN BINDING SITES IN DNA	314
14.9. FAMILIES OF DNA BINDING PROTEINS	315
14.9.1. Helix-Turn-Helix (HTH) and Homeodomain	
14.9.2. Zinc Finger Proteins	
14.9.3. Leucine Zipper	
14.9.4. The Helix-Loop-Helix (HLH)	
14.9.5. β -Sheet Motifs	
14.9.6. Other Families	
14.10.REFERENCES	321
	521
15. PROTEINS IN TRANSCRIPTIONAL ACTIVITY	
OF SPERMATOGENIC CELLS	323
15.1. TRANSCRIPTIONAL ACTIVITY IN GERM CELLS	323
15.1.1. RNA Polymerases in Eukaryotes	
15.1.2. Initiation of RNA Synthesis in Eukaryotes	
15.1.3. Pre-Initiation Complex with RNA Polymerase II	
15.2. RNASYNTHETIC MACHINERY IN SPERMATOGENESIS	324
15.2.1. RNA in Meiosis and Post-meiotic Stages	
15.2.2. RNA Polymerases	
15.2.3. TATA Binding Protein	
15.2.4. TFIID Subunit TAF7	
15.2.4. Transcription Elongation Factor (S-II)	
	328
15.3. RNA PROCESSING IN GERM CELLS	528

15.3.1. Alternative RNA Splicing	
15.3.2. Polyadenylation	
15.3.3. Testis Specific Poly (A) Polymerase	
15.3.4. Poly-A Binding Protein	
15.3.5. Cleavage Stimulation Factor – 64	
15.4. TRANSLATIONAL ACTIVITY IN GERM CELLS	331
15.4.1. Eukaryotic Translation Elongation Factor 1 (eEF1)	
15.5. m-RNA BINDING PROTEINS	332
15.5.1. Eukaryotic Translation Factor (eIF-4E)	
15.5.2. RNA Helicases	
15.5.3. Protamine m-RNA Binding Protein	
15.5.4. Testis Nuclear RNA Binding Protein (Tenr)	
15.5.5. Testis-Brain RNA Binding Protein (Translin)	
15.5.6. Y-Box Proteins	
15.5.7. Other mRNA-Binding Proteins in Germ Cells	
15.6. mRNAAND RNP IN SPERMATOZOA	344
15.7. REFERENCES	345
16. TRANSCRIPTION FACTORS ASSOCIATED	347
WITH SPERMATOGENESIS	
16.1. CRE-TRANSCRIPTION FACTORS (b-ZIP CLASS PROTEINS)	347
16.2. CRE-MODULATOR (CREM) PROTEIN	347
16.2.1. Signal Transduction	
16.2.2. Germ Cell Specific CREM Isoform	
16.2.3. CREM Activator Protein	
16.2.4. CREM and Spermatogenic Genes	
16.2.5. Location of CRE in Promoters of Germ-Cell Specific Genes	
16.3. CRE-BINDING (CREB) PROTEIN	354
16.3.1. CREB mRNA Isoforms	
16.3.2. CREB Promoter	
16.3.3. Hormonal Control of CREB	
16.3.4. CREB Regulation by NF- $\kappa\beta$ and Other Factors	
16.3.5. Activating Transcription Factor 4 (ATF4/CREB2)	0.00
16.4. OTHER LEUCINE ZIPPER PROTEINS	357
16.4.1. RT7: A Germ Cell Specific Protein	
16.4.2. Nurit Protein	250
16.5. HOMEOBOX PROTEINS IN GERM CELLS 16.6. ZINC FINGER PROTEINS	358 359
16.6.1. Zinc Fingers of Class 1 and 2	339
16.6.2. GATA Binding Proteins	
16.6.3. Basonuclin	
16.6.4. Ret Finger Protein	
16.6.5. RING Finger Proteins	
16.7. RNA BINDING PROTEINS AS TRANSCRIPTION FACTORS	370
16.8. TCFL5-A BASIC HELIX-LOOP-HELIX PROTEIN	370
16.9. OTHER TRANSCRIPTION FACTORS IN TESTIS	370
16.9. OTHER TRANSCRIPTION FACTORS IN TESTIS	372
IU.IU.IU.PENENCES	512

17.	PROTO-ONCOPROTEINS	377
	17.1. INTRODUCTION	377
	17.2. C-KIT AND STEM CELL FACTOR (SCF)	377
	17.2.1. Truncated Form of c-Kit	
	17.2.2. Activation of Phosphatidylinositol 3'-Kinase Pathway	
	17.2.3. Stem Cell Factor (SCF) or c-Kit Ligand (KL)	
	17.3. THE MYC FAMILY	383
	17.3.1. The C-Myc	
	17.3.2. Other Myc Proteins in Testis	
	17.4. THE MYB FAMILY	386
	17.4.1. A-Myb and B-Myb in Germ Cell	
	17.5. THE JUN FAMILY	387
	17.5.1. Jun-B, C-Jun, Jun-D	
	17.5.2. C-FOS AND C-FOS RELATED ANTIGENS	
	17.6. C-ROS TYROSINE KINASE	389
	17.6.1. Epididymis c-Ros and Infertility	
	17.6.2. Regulation of c-Ros Receptor by Protein Tyrosine Phosphata	se
	17.7. PIM-1 AND PIM-2	390
	17.8. C-MOS FACTOR	392
	17.9. INT-1 AND INT-2 ONCOPROTEINS	395
	17.10. CELLULAR-ABELSON PROTO-ONCOGENE	396
	(C-ABL) PROTEIN	
	17.11. Bcl-2 FAMILY	397
	17.12. OTHER PROTOONCOGENE PRODUCTS IN TESTIS	399
	17.13. REFERENCES	400
18.	G PROTEINS AND ASSOCIATED SIGNAL	405
18.	TRANSDUCTION MOLECULES	405
18.	TRANSDUCTION MOLECULES 18.1. CYCLIC AMPAND Ca ²⁺ MEDIATED SIGNAL TRANSDUCTION	405 405
18.	TRANSDUCTION MOLECULES 18.1. CYCLIC AMPAND Ca ²⁺ MEDIATED SIGNAL TRANSDUCTION 18.2. GPROTEINS	405
18.	TRANSDUCTION MOLECULES 18.1. CYCLIC AMPAND Ca ²⁺ MEDIATED SIGNAL TRANSDUCTION 18.2. G PROTEINS 18.2.1. Heterotrimeric G Proteins	405 405 405
18.	TRANSDUCTION MOLECULES 18.1. CYCLIC AMPAND Ca ²⁺ MEDIATED SIGNAL TRANSDUCTION 18.2. G PROTEINS 18.2.1. Heterotrimeric G Proteins 18.3. G Proteins in Testis Germ Cells	405 405
18.	 TRANSDUCTION MOLECULES 18.1. CYCLIC AMPAND Ca²⁺ MEDIATED SIGNAL TRANSDUCTION 18.2. GPROTEINS 18.2.1. Heterotrimeric G Proteins 18.3. G Proteins in Testis Germ Cells 18.3.1. Gα 	405 405 405
18.	 TRANSDUCTION MOLECULES 18.1. CYCLIC AMPAND Ca²⁺ MEDIATED SIGNAL TRANSDUCTION 18.2. GPROTEINS 18.2.1. Heterotrimeric G Proteins 18.3. G Proteins in Testis Germ Cells 18.3.1. Gα 18.3.2. Gγ-Subunit 	405 405 405
18.	 TRANSDUCTION MOLECULES 18.1. CYCLIC AMPAND Ca²⁺ MEDIATED SIGNAL TRANSDUCTION 18.2. GPROTEINS 18.2.1. Heterotrimeric G Proteins 18.3. G Proteins in Testis Germ Cells 18.3.1. Gα 18.3.2. Gγ-Subunit 18.3.3. G Proteins in Sperm 	405 405 405 408
18.	 TRANSDUCTION MOLECULES 18.1. CYCLIC AMPAND Ca²⁺ MEDIATED SIGNAL TRANSDUCTION 18.2. GPROTEINS 18.2.1. Heterotrimeric G Proteins 18.3. G Proteins in Testis Germ Cells 18.3.1. Gα 18.3.2. Gγ-Subunit 18.3.3. G Proteins in Sperm 18.4. SMALL G PROTEINS 	405 405 405
18.	 TRANSDUCTION MOLECULES 18.1. CYCLIC AMPAND Ca²⁺ MEDIATED SIGNAL TRANSDUCTION 18.2. GPROTEINS 18.2.1. Heterotrimeric G Proteins 18.3. G Proteins in Testis Germ Cells 18.3.1. Gα 18.3.2. Gγ-Subunit 18.3.3. G Proteins in Sperm 18.4. SMALL G PROTEINS 18.4.1. Ras Proteins 	405 405 405 408
18.	TRANSDUCTION MOLECULES18.1. CYCLIC AMPAND Ca ²⁺ MEDIATED SIGNAL TRANSDUCTION18.2. GPROTEINS18.2.1. Heterotrimeric G Proteins18.3. G Proteins in Testis Germ Cells18.3.1. G α 18.3.2. G γ -Subunit18.3.3. G Proteins in Sperm18.4. SMALL G PROTEINS18.4.1. Ras Proteins18.4.2. Ran-GTPase and Germ Cell Specificity	405 405 405 408
18.	TRANSDUCTION MOLECULES18.1. CYCLIC AMPAND Ca^{2+} MEDIATED SIGNAL TRANSDUCTION18.2. GPROTEINS18.2.1. Heterotrimeric G Proteins18.3. G Proteins in Testis Germ Cells18.3.1. G α 18.3.2. G γ -Subunit18.3.3. G Proteins in Sperm18.4. SMALL G PROTEINS18.4.1. Ras Proteins18.4.2. Ran-GTPase and Germ Cell Specificity18.4.3. Rap1: A Ras-like GTPase	405 405 405 408
18.	TRANSDUCTION MOLECULES18.1. CYCLIC AMPAND Ca ²⁺ MEDIATED SIGNAL TRANSDUCTION18.2. GPROTEINS18.2.1. Heterotrimeric G Proteins18.3. G Proteins in Testis Germ Cells18.3.1. Gα18.3.2. Gγ-Subunit18.3.3. G Proteins in Sperm18.4. SMALL G PROTEINS18.4.1. Ras Proteins18.4.2. Ran-GTPase and Germ Cell Specificity18.4.3. Rap1: A Ras-like GTPase18.4.4. Rab Proteins	405 405 405 408
18.	TRANSDUCTION MOLECULES18.1. CYCLIC AMPAND Ca ²⁺ MEDIATED SIGNAL TRANSDUCTION18.2. GPROTEINS18.2.1. Heterotrimeric G Proteins18.3. G Proteins in Testis Germ Cells18.3.1. G α 18.3.2. G γ -Subunit18.3.3. G Proteins in Sperm18.4. SMALL G PROTEINS18.4.1. Ras Proteins18.4.2. Ran-GTPase and Germ Cell Specificity18.4.3. Rap1: A Ras-like GTPase18.4.4. Rab Proteins18.4.5. Rho family	405 405 405 408
18.	TRANSDUCTION MOLECULES18.1. CYCLIC AMPAND Ca ²⁺ MEDIATED SIGNAL TRANSDUCTION18.2. GPROTEINS18.2.1. Heterotrimeric G Proteins18.3. G Proteins in Testis Germ Cells18.3.1. Gα18.3.2. Gγ-Subunit18.3.3. G Proteins in Sperm18.4. SMALL G PROTEINS18.4.1. Ras Proteins18.4.2. Ran-GTPase and Germ Cell Specificity18.4.3. Rap1: A Ras-like GTPase18.4.4. Rab Proteins18.4.5. Rho family18.4.6. Rho targets (Rhophilin and Ropporin)	405 405 405 408 411
18.	TRANSDUCTION MOLECULES18.1. CYCLIC AMPAND Ca ²⁺ MEDIATED SIGNAL TRANSDUCTION18.2. GPROTEINS18.2.1. Heterotrimeric G Proteins18.3. G Proteins in Testis Germ Cells18.3.1. Gα18.3.2. Gγ-Subunit18.3.3. G Proteins in Sperm18.4. SMALL G PROTEINS18.4.1. Ras Proteins18.4.2. Ran-GTPase and Germ Cell Specificity18.4.3. Rap1: A Ras-like GTPase18.4.4. Rab Proteins18.4.5. Rho family18.4.6. Rho targets (Rhophilin and Ropporin)18.5. REGULATORS OF RHO GTPases	405 405 405 408
18.	TRANSDUCTION MOLECULES18.1. CYCLIC AMPAND Ca ²⁺ MEDIATED SIGNAL TRANSDUCTION18.2. GPROTEINS18.2.1. Heterotrimeric G Proteins18.3. G Proteins in Testis Germ Cells18.3.1. Gα18.3.2. Gγ-Subunit18.3.3. G Proteins in Sperm18.4. SMALL G PROTEINS18.4.1. Ras Proteins18.4.2. Ran-GTPase and Germ Cell Specificity18.4.3. Rap1: A Ras-like GTPase18.4.4. Rab Proteins18.4.5. Rho family18.4.6. Rho targets (Rhophilin and Ropporin)18.5. REGULATORS OF RHO GTPases18.5.1. GTPase-Activating Proteins	405 405 405 408 411
18.	TRANSDUCTION MOLECULES 18.1. CYCLIC AMPAND Ca ²⁺ MEDIATED SIGNAL TRANSDUCTION 18.2. GPROTEINS 18.2.1. Heterotrimeric G Proteins 18.3. G Proteins in Testis Germ Cells 18.3.1. G α 18.3.2. G γ -Subunit 18.3.3. G Proteins in Sperm 18.4. SMALL G PROTEINS 18.4.1. Ras Proteins 18.4.2. Ran-GTPase and Germ Cell Specificity 18.4.3. Rap1: A Ras-like GTPase 18.4.4. Rab Proteins 18.4.5. Rho family 18.4.6. Rho targets (Rhophilin and Ropporin) 18.5. REGULATORS OF RHO GTPases 18.5.1. GTPase-Activating Proteins 18.5.2. Rho GDP Dissociation Inhibitor (Rho GDI)	405 405 408 411 411
18.	TRANSDUCTION MOLECULES 18.1. CYCLIC AMPAND Ca ²⁺ MEDIATED SIGNAL TRANSDUCTION 18.2. GPROTEINS 18.2.1. Heterotrimeric G Proteins 18.3. G Proteins in Testis Germ Cells 18.3.1. G α 18.3.2. G γ -Subunit 18.3.3. G Proteins in Sperm 18.4. SMALL G PROTEINS 18.4.1. Ras Proteins 18.4.2. Ran-GTPase and Germ Cell Specificity 18.4.3. Rap1: A Ras-like GTPase 18.4.4. Rab Proteins 18.4.5. Rho family 18.4.5. Rho family 18.4.6. Rho targets (Rhophilin and Ropporin) 18.5. REGULATORS OF RHO GTPases 18.5.1. GTPase-Activating Proteins 18.5.2. Rho GDP Dissociation Inhibitor (Rho GDI) 18.6. ADP-RIBOSYLATION FACTORS	405 405 408 411 411 418 421
18.	TRANSDUCTION MOLECULES 18.1. CYCLIC AMPAND Ca ²⁺ MEDIATED SIGNAL TRANSDUCTION 18.2. GPROTEINS 18.2.1. Heterotrimeric G Proteins 18.3. G Proteins in Testis Germ Cells 18.3.1. G α 18.3.2. G γ -Subunit 18.3.3. G Proteins in Sperm 18.4. SMALL G PROTEINS 18.4.1. Ras Proteins 18.4.2. Ran-GTPase and Germ Cell Specificity 18.4.3. Rap1: A Ras-like GTPase 18.4.4. Rab Proteins 18.4.5. Rho family 18.4.6. Rho targets (Rhophilin and Ropporin) 18.5. REGULATORS OF RHO GTPases 18.5.1. GTPase-Activating Proteins 18.5.2. Rho GDP Dissociation Inhibitor (Rho GDI)	405 405 408 411 411

18.7.2. Soluble Form of Adenylyl Cyclase in Germ Cells	
18.7.3. Olfactory Adenylyl Cyclase Type 3	
18.7.4. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP)	
18.8. G-PROTEIN RECEPTORS	426
18.8.1. G-Protein Odorant Receptors in Germ Cells	
18.9. ADENOSINE RECEPTORS AND LIGANDS	427
18.9.1. Adenosine Receptors	
18.9.2. Fertilization Promoting Peptide (FPP) and	
Adenosine Receptors	
18.10. RECEPTOR GUANLYL CYCLASE	429
18.10.1.Natriuretic Peptides of Egg as Ligand of Guanylyl-Cyclase	
18.11. PHOSPHODIESTERASES IN TESTIS	431
18.11.1.PDE1 and PDE2 Genes	
18.11.2.PDE3 Isoforms	
18.11.3.PDE4 Isoforms	
18.11.4.Other PDE Isoforms	
18.12. c-AMP-GEF PATHWAY	434
18.13. REFERENCES	435
	420
19. PROTEIN KINASES	439
I SERINE/THREONINE KINASES	439
19.1. C-AMP DEPENDENT PROTEIN KINASE-A	439
19.1.1. Catalytic Sub-units of PKA	-07
19.1.2. Regulatory Subunits of PKA	
19.1.3. Functions of Protein Kinase A	
19.1.4. PKA Inhibitor Proteins	
19.2. PROTEIN KINASE-C	445
19.2.1. PKC8 and PKC0 Isoforms in Testis	
19.2.2. Functions of Protein Kinase-C	
19.2.3. PKC Substrates in Sperm	
19.3. Ca ²⁺ /CALMODULIN DEPENDENT PROTEIN KINASES	449
19.3.1. CaMKI and CaMKII	
19.3.2. CaMK IV in Testis	
19.3.3. Calspermin: A Germ Cell Homologue of CaMKIV	
with no Kinase Activity	
19.4. LIM KINASES	453
19.5. TESTIS SPECIFIC SERINE PROTEIN KINASES	454
19.5.1. TESK-1	
19.5.2. TESK 2	
19.5.3. Testis Specific Serine Kinase(s)	
19.6. CASEIN KINASES	458
19.6.1. Casein Kinase 1	
19.6.2. Casein Kinase II	
19.7. AURORA LIKE KINASES	461
19.7.1. Aurora Like Kinase 3 (ALK3)	
19.7.2. AIE 1 and AIE/2	

xviii

19.8. MICROTUBULE ASSOCIATED PROTEIN KINASES	462
19.8.1. Polo Like Kinase	
19.8.2. p56 KKIAMRE	
19.8.3. MAST205 with Kinase Activity	
19.9. CELL CYCLE CHECK POINT KINASES	464
19.10. MITOGEN ACTIVATED PROTEIN KINASES	465
19.10.1.ERK 1/ERK2/ERK7 and Other MAP-Kinases	
19.10.2.p21-Activated Kinases (PAKs)	
19.11. RAC-PROTEIN KINASES	467
19.12. HASPIN	469
19.13. MALE GERM CELLASSOCIATED KINASE (MAK)	469
19.14. OTHER SERINE / THREONINE KINASES	470
II PROTEIN TYROSINE KINASES	471
19.15. TYROSINE KINASES IN TESTIS	472
19.15.1. Src Kinase	
19.15.2. Testis Specific Tyrosine Kinase FER (FerT)	
19.15.3. G protein-Coupled Receptor Kinase 4 (GRK4)	
19.15.4. Tyro-Receptors	
19.16. PHOSPHORYLATION OF SPERM TYROSINE	475
19.17. TYROSINE KINASES IN SPERM	476
19.17.1. Zona Receptor Kinase	
19.17.2. Sp 42	
III DUAL SPECIFICITY PROTEIN KINASES	478
19.18. CDC2-LIKE KINASE-3 (CLK3): A LAMMER KINASE	478
19.19. NIMA LIKE KINASES	478
19.19.1. Nek1 and Nek2	
19.19.2. Murine Nek3 and Nek4	
19.19.3. Human Nek6 and Nek7	
19.20. DYRK-1B	481
19.21. C-GMP DEPENDENT PROTEIN KINASE	481
19.22. PHOSPHOLIPID RELATED KINASES	482
19.22.1. Phoshoinositide-Dependent Protein Kinase-1 (PDK1)	ı.
19.22.2. Phosphatidylinositol 3-Kinase	
19.22.3. Phosphatidylinositol 4-Kinase	
19.22.4. Diacylglycerol Kinase	
19.23 OTHER PROTEIN KINASES	484
19.23.1 5'-AMP-Activated Protein Kinase (AMPK)	
19.23.2. Glycogen Synthase Kinase-3	
19.23.3. Other Non-specific Protein Kinases in Germ Cells	
19.24. REFERENCES	485
20. PROTEIN PHOSPHATASES	493
20.1. INTRODUCTION	493
I SERINE-THREONINE PHOSPHATASES	493
20.2. CLASSIFICATION	493
20.3. PROTEIN PHOSPHATASE TYPE-1	494

 20.3.1. Protein Phosphatase-1γ2 20.4. PROTEIN PHOSPHATASE TYPE-2 20.4.1. Protein Phosphatase-2A 20.4.2. Ca²⁺ /Calmodulin Dependent Protein Phosphatase 2E 20.4.3. Protein Phosphatase 2C 20.5. PROTEIN PHOSPHATASE-4 or PPx 20.6. Cdc25 PROTEIN PHOSPHATASES 20.7. INHIBITORS OF PROTEIN PHOSPHATASES 	495 3 500 502 502
II. PROTEIN TYROSINE PHOSPHATASES	503
20.8. PROTEIN TYROSINE PHOSPHATASE-1	503
20.8.1. Tesis SpecificCytoplasmic PTPase	
20.8.2. Transmembrane PTPase with Tensin Homology (TPT)	E)
20.8.3. Osteotesticular Protein Tyrosine Phosphatase (OST-P	PTP)
	5 07
III. DUAL SPECIFICITY PROTEIN PHOSPHATASES	506
20.9. DSP FAMILY 20.0.1. Testis and Skaletal Musala Spacific DSP (TMDP)	506
20.9.1. Testis-and Skeletal-Muscle-Specific DSP (TMDP) 20.9.2. Low Molecular Weight Dual Specificity Phosphatase:	
20.9.2. Low Molecular weight Dual specificity Phosphatases 20.10. PTPase IN GERM CELLS-SERTOLI CELLS INTERACTIONS	s 507
20.10.11 Hase IN GERM CELES-SERTOLI CELES IN TERRE HONS 20.11. REFERENCES	509
20.11. NEA EXENCES	509
21. ION CHANNELS AND AQUAPORINS	513
21.1. ION CHANNELS IN SPERM PHYSIOLOGY	513
21.2. POTASSIUM CHANNELS	513
21.2.1. Ca ²⁺ Activated K ⁺ Channel	
21.2.2. Cyclic Nucleotides and K ⁺ Channels	
21.2.3. SLO3	
21.2.4. Rectifier K ⁺ Channel	
21.2.5. Volume Regulatory K ⁺ Channel	
21.3. SODIUM CHANNELS	518
21.4. CATION CHANNELS	520
21.4.1. Voltage Gated Ion Channels	
21.5. CALCIUM CHANNELS	521
21.5.1. Presence of Two Ca^{2+} Channels in Sperm	
21.5.2. T-Type Low Voltage Activated VDCC	
21.5.3. Neoglycoproteins and Ca^{2+} Channels	
21.5.4. L-Type Hight Voltage Dependent VDCC in Testis	
21.6 AMINO ACID NEUROTRANSMITTER RECEPTOR	527
/ CI ⁻ CHANNELS	
21.6.1. GABA _A Receptor/Cl ⁻ Channel	
21.6.2. Glycine Receptor (GlyR)/Cl ⁻ Channel	
21.7. ANION CHANNELS	528
21.7.1. Voltage-Dependent Anion Selective Channels (VDAC	s)
21.7.2. Close Cell-Cell Chloride Channel (CLC CL ⁻ Channel)	500
21.8. VDCC AND ACROSOME REACTION	529
21.9. AQUAPORINS (WATER CHANNELS)	531
21.9.1. Aquaporins in Male Reproductive Tract	

21.9.2. Aquaporin 7 and 8	
21.9.3. Aquaporin 9 21.10.REFERENCES	524
21.10.REFERENCES	534
22. ACTION OF PHOSPHOLIPASES	539
22.1 INOSITOL TRIPHOSPHATE MEDIATED SIGNAL	539
TRANSDUCTION	
22.2. INOSITOL TRIPHOSPHATE RECEPTORS IN GERM CELLS	540
22.3. PHOSPHOLIPASES	541
22.3.1. Phospholipase A2	
22.3.2. LA2 in Sperm	
22.3.3 Phosphatidic Acid Preferring Phospholipase A1	
22.3.4. Phopholipase B	
22.3.5. Phospholipase – C	
22.3.6. Sperm PLC in Egg Activation	
21.3.7. Role of Egg PLC in Egg Activation	
22.4. HORMONE-SENSITIVE LIPASE	552
22.5. REFERENCES	552
23. ACROSOMAL ENZYMES	555
23.1 INTRODUCTION	555
23.2. ACROSOME BIOGENESIS	555
23.3. GLYCOSYLTRANSFERASES AND GLYCOSIDASES	556
23.4. β1,4-GALACTOSYLTRANSFERASE	557
23.5. OTHER GLYCOSYL TRANSFERASES	559
23.6. HYALURONIDASE AND PH-20	560
23.6.1. Characterization	
23.6.2. Post-Testicular Modifications	
22.6.3. Contraceptive Effects	570
23.7. GLYCOSIDASES	568
23.7.1. N-Acetyl-b-D-Glucosaminidase	
23.7.2. β-D-Glucuronidase	
23.7.3. β-D-Galactosidase	
23.7.4. Arylsulfatase A	
23.7.5. Sperm α-L-Fucosidase 23.7.6. Mannosidase	
23.8. PROTEINASES	574
$23.8.1. \beta \text{ Acrosin}$	574
23.8.2. Cathepsins	
23.8.3. Testicular Serine Protease -1 and -2 (TESP1 and TESP2)	
23.8.4. Testisin	
23.9. OTHER ENZYMES IN ACROSOME	580
23.10.REFERENCES	581
	201
24. ACROSOMAL PROTEINS (NON-ENZYMATIC)	585
24.1. ACROSOMAL MATRIX	585
24.2. ACROSOMAL MATRIX PROTEINS	586
24.2.1. Mouse Sp 56	

24.2.2. Guinea pig AM 67: An Orthologue of Sp56	
24.2.3. Acrins	
24.2.4. SP17: A Zona-Binding Protein	
24.3. ACROSOMAL VESICLE PROTEIN 1 (SP-10)	590
24.4. HAMSTER P26H AND ITS HUMAN ORTHOLOGUE	593
24.5. PERIACROSOMAL PLASMA MEMBRANE PROTEIN (PM52)	595
24.6. ACTIN AND ACTIN BINDING PROTEINS IN ACROSOME	595
24.7. FUSION PROTEINS IN SPERM	596
24.8. BINDIN 24.9. OVSTATIN RELATED EDIDIDYMAAL	597 598
24.9. CYSTATIN-RELATED EPIDIDYMAL SPERMATOGENIC PROTEIN	398
24.10.OTHER NON-ENZYMATICACROSOMAL PROTEINS	598
24.11.REFERENCES	600
24.11 INLI LINLI VELS	000
25. ACTINS AND MYOSINS	603
25.1. INTRODUCTION	603
25.1.1. β - and γ -Actins in Spermatogenic Cells	
25.1.2. F-Actin	
25.1.3. Actin-Like Proteins (T-ACTINS)	
25.2. ACTINS IN SPERMATOZOA	606
25.3. ACTIN BINDING PROTEINS	608
25.3.1. Basic Proteins of Cyclicin Group	
25.3.2. Actin Capping Proteins	
25.3.3. β3 Capping Protein	
24.3.4. Gelsolin	
25.3.5. Thymosin β 10	
25.3.6. Other Actin Associating Proteins	
25.4. ACTIN IN LIMULUS SPERM	614
25.4.1. β-Scruin	
25.5. MYOSINS	616
25.5.1. Myosin X in Mouse Testis	
25.5.2. Functions of Myosin in Reproduction	
25.5.3. Myosins in Spermatogenic Cells of Non-Mammalian Species	(20)
25.6. REFERENCES	620
ACCELL ADDRESION DOCTEINS	622
26. CELL ADHESION PROTEINS 26.1. CELL ADHESIONS	623 623
26.2. INTEGRINS	623
26.2.1. Integrins and Their Ligands in Testis and Sperm	020
26.3. CADHERINS	627
26.3.1. Cadherins in Male Germ Cells	027
26.4. IMMUNOGLOBULIN SUPERFAMILY	629
26.5. SELECTINS	630
26.6. ADAM PROTEINS: THE FAMILY OF	631
METALLO PROTEINASE DISINTEGRINS	
26.6.1. Fertilin α and β (ADAM1 and ADAM2)	
26.6.2. Fertilin as a Co-receptor for Egg Integrins	

xxi

26.6.3. Role of CD9 in Sperm-Egg Interactions	
26.7. CYRITESTIN (ADAM 3)	641
26.8. OTHER ADAM PROTEINS	642
26.9. ZONA ADHESINS	646
26.9.1. Mouse	
26.9.2. Pig	
26.9.3. Tektorins and Zonaadhesins	
26.10.ADHESION COMPONENTS OF IMMUNE SYSTEM	647
26.10.1. Membrane Cofactor Protein (MCP)	
26.10.2. Protectin (CD59)	
26.10.3. Other Components of Immune System in Germ Cells	
26.11.REFERENCES	650
27. METALLOPROTEASES AND METALLOPROTEASE INHIBITORS	655
27. METALLOP KOT EASES AND METALLOP KOT EASE INHIBITORS 27.1. MATRIX METALLOPROTEASES	655
27.1.1. MMP-1, MMP-2, and MMP-9	000
27.1.2. Epilysin (MMP-28)	
27.1.2. Collagenase IV Metalloproteinases	
27.1.5. Conagenace iv Metanoproteinases	
27.2. METALLOPEPTIDASES	658
27.2.1. Neutral End Peptidases (Neprilysins)	0.0
27.2.2. Endopeptidase 24.15	
27.2.3. Endothelin-1 Converting Enzyme	
27.2.5. Direction in Converting Enzyme	
27.3. ENDOPROTEASES	663
27.3.1. Proprotein Convertase	
27.3.2. Calpain	
27.4. TISSUE INHIBITORS OF METALLOPROTEINASES	664
27.4.1. Testicular Inhibitors of Metalloproteinases (TIMPs)	
27.4.2. Epididymal Protease Inhibitor (EPPIN)	
27.4.3. Protein C Inhibitor	
27.5. REFERENCES	667
28. ISOENZYMES IN ENERGY PATHWAYS	669
28.1. INTRODUCTION	669
28.2. HEXOKINASE	669
28.3. GLUCOSE-6-PHOSPHATASE	671
28.4. GLUCOSE-PHOSPHATE ISOMERASE AND SPERM ANTIGEN-36	672
28.5. FRUCTOSE-6-PHOSPHATE, 2 KINASE / FRUCTOSE-2,	672
6-BIS PHOSPHATASE	
28.6. PHOSPHOGLYCERATE KINASE-2	674
28.7. GLYCERALDEHYDE-3 PHOSPHATE DEHYDROGENASE	679
28.8. PHOSPHOGLYCERATE MUTASE	680
28.9. ENOLASE	681
28.10. LACTATE DEHYDROGENASE-C	682
28.11. PYRUVATE DEHYDROGENASE-E1 α	685
28.12.GLUCOSE-6-PHOSPHATE DEHYDROGENASE-2	688
28.13. TESTICULAR CYTOCHROME C _t	689

28 14 ENZV	MES WITH LIMITED SPECIFICITY	69 1
28.15. REFE		692
20.1.J. KEP EF	LINCLS .	092
29. FIBROUS SH	IEATH, DENSE FIBERS, AND PLASMA	695
	RANE OF SPERM	
	R DENSE FIBER PROTEINS	695
	ODF27/Odf1	0.0
	Odf1 Interacting Proteins	
	ODF84/Odf2	
	Cysteine Rich Proteins in ODF	
29.2. FIBRO	US SHEATH PROTEINS	701
	Electrophoretic Studies	/01
	Thioredoxins	
	OR PROTEINS IN FIBROUS SHEATH	704
	AKAP220	/01
	AKAP4	
	Rat Testis AKAP80	
	Sperm AKAP 82	
	FSP95	
	AKAP110	
	Mitochondrial S-AKAP84	
	Human Testis hi gene	
	Dual Specificity AKAPs	
	Fibrous Sheath Component 1	
	. c-GMP Dependent Protein Kinase Anchor Protein	
	R PROTEINS OF FIBROUS SHEATH	713
	1 PLASMA MEMBRANE PROTEINS	714
	Na/K-ATPase	/
	Periacrosomal Plasma Membrane Protein (PM52)	
	Calcium-Binding Tyrosine-Phosphorylation Regulated Protein	
27.0.0.	(CABYR)	
2954	Human Sperm Membrance Protein-I	
	Other Protein Components of Sperm Membrane	
29.6. REFER	· ·	717
27.0. IKLI LAK		/1/
30 PROTEINS IN	NANTIPEROXIDATION	721
	IVE OXYGEN SPECIES	721
	Types of ROS	/
	ROS and Sperm Function	
	Oxidative Stress and DNA damage	
	EINS IN ANTIPEROXIDATION	723
	Glutathione Peroxidase in Reproductive Tract	
30.2.1.	Classical Glutathione Peroxidase in Male accessary sex organs	
	Phospholipid Hydroperoxide Glutathione Peroxidase	
	Sperm Nucleus Glutathione Peroxidase (snGPx)	
	Glutathione-S-Transferases	
	Mu Class of Glutathione-S-Transferase in Testis	

30.2.7. Superoxide Dismutase

30.2.8. Search for Other Enzymes of Antiperoxidative Pathway	
30.3. NITRIC OXIDE SYNTHASE	739
30.4. HEME OXYGENASES	740
30.5. SELENOPROTEINS (NON-ENZYMATIC)	740
30.6. METALLOTHIONEINS	742
30.6.1. Metallothioneins	
30.6.2. Tesmin-60	
30.7. REFERENCES	744
31. QUALITY CONTROL OF GERM CELL PROTEINS	749
L UBIQUITINATION AND PROTEOLYSIS	749
31.1. UBIQUITIN SYSTEM	749
31.2. UBIQUITIN SYSTEM IN VERTEBRATE GONADS	752
31.2.1. Ubiquitin	
31.2.2. E1-E2-E3 Enzymes	
31.2.3. Deubiquitination Enzymes	
31.2.4. Multiubiquitin Chain Binding Protein (Mcb1)	
31.2.5. Proteasome	
31.2.6. Tat Binding Protein 1 and Proteasome	
31.2.7. Significance of Ubiquitination in Gametogenesis	
II. MOLECULAR CHAPERONS	759
31.3. Heat shock proteins in Spermatogenesis	759
31.3.1. Properties of Heat Shock Proteins	
31.3.2. 'Small' Heat Shock Proteins	
31.3.3. Heat Shock Protein - 40 or DnaJ	
31.3.4. Heat Shock Protein-60	
31.3.5. Heat Shock Protein-70	
31.3.6. Heat Shock protein-90	
31.3.7. Heat Shock Protein-110	
31.4. Heme Oxygenases as Chaperones	766
31.5. Calreticulin And Calnexin	766
31.5.1. Calreticulin	
31.5.2. Calmegin (Calnexin-t)	
31.6. IMMUNOPHILINS AND TETRATRICOPEPTIDE REPEATS	769
31.7. SPECIALIZED CHAPERONES IN GERM CELLS	771 772
31.8. REFERENCES	773
32. CANCER ASSOCIATED TESTIS ANTIGENS	777
32.1. TUMOR SUPPRESSOR ANTIGENS IN	777
SPERMATOGENIC CELLS	
32.1.1. P53: Regulation of Spermatogenesis and Tumorigenesis	
32.1.2. Retinoblastoma Family of Proteins	
32.1.3. C9orf11	
32.1.4. hH-Rev107-3 Cdna	
32.1.5. Testisin – A Serine Protease	
32.1.6. Tumor Suppressor Gene: PTEN	

32.2. CANCER-TESTIS ANTIGENS	78 1
32.2.1. Breast Cancer Antigens (BRCA-1 and BRCA-2)	
32.2.2. PLU-1: A Nuclear Protein	
32.2.3. MAGE Gene Products	
32.2.4. LAGE-1	
32.2.5. CAGE-1	
32.2.6. Testis Specific Cyclin A1 in Testicular and Ovarian Tumors	
32.2.7. Testis-Specific Protein Y-encoded (TSPY)	
32.2.8. Markers of Seminomas	
32.2.9. Other Testis Antigens Expressed in Cancer	
32.3. DIAGNOSTIC AND THERAPEUTIC POTENTIAL	790
OF C/T ANTIGENS	//0
32.3.1. MAGE in Squamous Cell Carcinoma and Childhood Astrocy	vtoma
32.3.2. NY-ESO	,
32.3.3. Semenogelin 1 and HAGE in Leukemia	
32.4. REFERENCES	792
	172
33. SELECTIVE GROUP OF GERM CELL SPECIFIC PROTEINS	795
33.1. POLYAMINES AND ORINITHINE DECARBOXYLASE	795
33.1.1. Polyamines	
33.1.2. Orinithine Decarboxylase	
33.1.3. Ornithine Decarboxylase Antizyme	
33.2. SELECTIVE GROUP OF GERM CELL SPECIFIC PROTEINS	799
33.2.1. Isoaspartyl Methyltransferase	
33.2.2. Phosphoribosyl Pyrophosphate (PP-Rib-P) Synthetase	
33.2.3. Glucosamine-6-Phosphate Deaminase	
33.2.4. Carnitine Transferases	
33.2.5. Organic Cation/Carnitine Transporters	
33.2.6. NM23-H5 (Nucleoside Diphosphate Kinase)	
33.3.7. Farensyl Transferase	
33.3. OTHER DOMINANT PROTEINS IN GERM CELLS	803
33.4. REFERENCES	809
34. SPERM MATURATION IN EPIDIDYMIS	811
34.1. ROLE OF EPIDIDYMIS	811
34.2. SPERM SURFACE ALTERATIONS	812
34.3. PROCESSING OF SPERM PROTEINS IN EPIDIDYMIS	813
34.4. PROTEINS ADSORBED BY SPERM DURING	814
EPIDIDYMIS TRANSIT	
34.4.1. Mouse and Rat	
34.4.2. Guinea pig/Rabbit/Hamster	
34.4.3. Ram/Goat/Bull	
34.4.4. Porcine Epididymal Proteins	
34.4.5. Stallion	
34.4.6. Primate Epididymis Secretory Proteins	
34.5. HUMAN EPIDIDYMIS PROTEINS AND THEIR	821
ANIMALORTHOLOGS	
34.5.1. Human Epididymal (HE1-HE4) Proteins	

34.5.2.	CD52 (HE5) and Its Orthologs	
34.5.3.	P34H and its Orthologs	
34.5.4.	Cysteine Rich Secetory Protein (CRISP) Family	
34.5.5.	Cystatin-Related Epididymal Spermatogenic Protein	
34.5.6.	Clusterin	
34.5.7.	Other Epididymal Proteins in Sperm maturation	
34.6. PROST	ASOME	832
34.7. REFER	ENCES	833
INDEX		839

Chapter 1

SPERMATOGENESIS

1.1. TESTIS COMPARTMENTS

The main function of testis is to produce the male gametes and steroid hormones. Spermatogenesis and steroidogenesis take place in two different compartments: seminiferous tubules and interstitium respectively that are morphologically and functionally distinguished from each other. Although anatomically divided, both compartments are functionally connected to each other, and their integrity is essential for normal germ cell production. The functions of the testis and thereby also the functions of its compartments are primarily regulated by the hypothalamus and the pituitary gland, whereas at the testicular level various local regulatory molecules modulate the endocrine hormone actions in somatic and germ cells directly. In mammalian species, the testicular tubular compartment consists of a variety of cell types. The Sertoli cells comprise the main structural component of the seminiferous epithelium. They are responsible for the physical support of the germ cells, in addition to providing nutrients and growth factors. The germ cells are sequentially organized into several layers signifying the respective mitotic or meiotic processes and spermatid development. The presence of distinct germ cell associations allowed stages of the spermatogenic cycle of the seminiferous epithelium to be described on the basis of morphological changes in spermatid morphology. Although the staging is arbitrary, it is of great help in describing structural and physiological changes in the seminiferous epithelium. Each seminiferous tubule is surrounded by mesenchymal cells, which comprise the peritubular myoid cells whose contractile elements generate peristaltic waves along the tubules, but do not present a tight diffusion barrier. The interstitium, the other compartment is populated by androgen producing Leydig cells, which are heterogeneous in respect to their physiological and structural features. Vascular smooth muscle cells, macrophages and endothelial cells are also located in the interstitial space of the testis. The physiological function of macrophages has not been well studied. However, their presence is crucial for (re)population of Levdig cells during development and after experimental depletion. Immune cells, known to secrete a number of growth factors and cytokines, are part of the intra-testicular communication pathways. In addition, neuronal connections also influence cellular interaction in the testis.

1.1.1. Intra-Testicular Communication

At the organ and cell levels, a number of signaling factors operate for rapid communication and responsiveness. Presently, cellular communication is categorized into endocrine, paracrine and autocrine signaling. A signaling molecule can functionally cover more than one category.

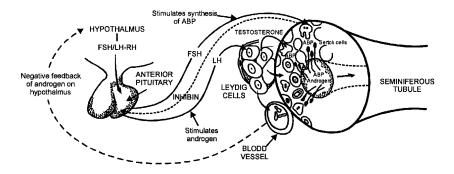


Fig.1.1: Hypothalmus-pituitary-testis axis in mammalian male reproduction.

To ensure coordinate organ function, response and activation, cells in one organ synthesize and release signaling molecules that act on distant organs. This signaling mechanism, termed endocrine signaling is mediated by hormones. Hormones are transported via the bloodstream from the site of production, and reach their cellular target through diffusion or mediated by receptor. Hence, endocrine communication, albeit indispensable and highly effective, is relatively slow (**Fig 1.1**).

In addition to the regulation of testis function by hypothalamus and the pituitary gland, another level of interaction exists between the neighbouring cellular elements within each of two testicular compartments. While paracrine factors secreted from cells act through diffusion on neighbouring cells, the secreted molecules that act back on the cells from which they originate are referred to autocrine factors. Intracrine signaling has occasionally been used to describe factors that are produced and active within the same cell. In juxtacrine signaling, exoplasmic components of plasma membrane bind and act on adjacent cells through direct cell contact. However, same molecule can work for endocrine, paracrine and autocrine functions. Within testis, paracrine communication comprises not only signaling between neighbouring cells but also between the testicular compartments and among cells far from being in close proximity to each other. In testis, the paracrine mechanisms occur between immune cells, fibroblasts and Leydig cells in the interstitium, between interstitial cells and peritubular cells, between peritubular cells and Sertoli cells, between Sertoli cells and germ cells and among germ cells themselves. Sertoli cells are closely linked by tight and gap junctions from puberty onwards. This structure is known as the 'blood-testis barrier', which represents a tight diffusion barrier dividing the testis into two functional compartments (basal and adluminal) within each seminiferous tubules. Sertoli cells, the only cell type extending into two compartments have the important role of coordinating the secretion of signaling factors into tubular compartments (Fig. 1.1). Sertoli cells also are endowed with a variety of structural features, which enable them to establish and maintain contact with the adjacent germ cells. It is evident that communication between the compartments is essential for functioning of the testis although the precise mechanisms of these interactions are less evident. Presently, more than 100 local factors have been identified and considered to be important for the testis function, but little is known concerning the relevance of these factors in human male infertility. Hence it would seem necessary to distinguish between local factors that are essential for spermatogenesis and those that show redundancies.

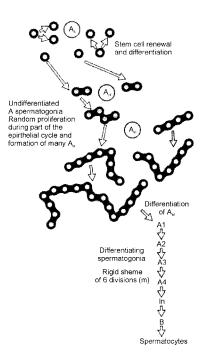
1.1.2. Seminiferous Tubules

Seminiferous tubules are enclosed by one or more layers of adventitial cells derived from primitive connective tissue elements of the interstitium. In rodents, a single layer of polygonal cells form a continuous epitheloid sheet surrounding the tubule. Because of their atypical shape and epitheloid organization, they are referred to as myoid cells or peritubular cells. In larger species, ram, bull, boar, man and monkey the adventitial cells form multiple layers. The properties of these cells differ from species to species. In adult mammals, the seminiferous tubules are lined by a complex stratified epithelium composed of two major categories of cells, supporting cells and spermatogenic cells. Supporting cells of single kind, called Sertoli cells uniformly spaced on the basal lamina with germ cells occupying expanded intercellular spaces between them. Sertoli cells cease to divide at the time of puberty but persist for whole life of an individual. The three dimensional configuration of Sertoli cells is extraordinarily complex.

The spermatogenic cells include severed morphologically defined cell types: spermatogonia, primary spermatocytes, secondary spermatocytes, spermatids and spermatozoa. Ontogenetically these spermatogenic cell types are not distinct but are successive stages of a process which after proliferation and differentiation lead to formation of mature differential spermatozoon. The proliferative activity in epithelium is confined to spermatogonia and spermatocytes near the base. The earlier cells, speramatogonium rests on the basal lamina propria or boundary tissue. Thus seminiferous epithelium in adults consists of a fixed population of non-proliferating supporting cells and a highly proliferating and differentiating population of germ cells with their stem cells at the base of the epithelium. As they develop, the germ cells are displaced upward along the sides of supporting cells. The topographical relations between germ cells and Sertoli cells change as germ cells move upwards from the base to the lumen, and have important implications in cell adhesion and communications. In seminiferous tubules, typical gap junctions or desmosomes are not found between Sertoli cells and germ cells in the upper two thirds of epithelium, due to free movement of germ cells to move upward as seen in other somatic tissues. However, specialized junctions (occluding junctions), described between adjacent Sertoli cells near the base of the epithelium, form the morphological basis of blood testis permeability barriers. These junctions divide the epithelium into basal compartment containing stem cells of spermatogenesis and adluminal compartment consisting of more advanced stages of spermatogenesis. In addition, these junctions regulate the permeability selective molecules necessary for spermatogenesis, without interruption of the permeability barrier. A number of studies have suggested that the basement membrane (BM) around seminiferous tubules has an important role in supporting testis differentiation, influencing in particular the differentiation of peritubular cells and the proliferation and differentiation of Sertoli cells, and their interaction with germ cells. In addition to compartmentalization, BM of seminiferous tubules acts as substrate for cells in contact and also provides important signals for differentiation, maintenance, and remodeling of tissues.

1.2. SPERMATOGENESIS

Spermatogenesis is a process by which spermatozoa are formed from spermatogonial stem cells during adult's reproductive phase. The process of sperm formation is initiated in the mouse embryo at around day 11.5 postcoitum (pc), when primordial germ cells (PGC) colonise the genital ridge. Under the influence of Y chromosome bearing Sertoli cells, the PGCs proliferate, some of which undergo apoptosis, while the remainder convert to gonocytes. The gonocytes


proliferate for a few days and then arrest in G /G phase of cell cycle. After remaining quiescent until after birth, gonocytes are reactivated, and differentiate into spermatogonia to initiate the process of spermatogenesis. In rat and mouse the gonocytes resume proliferation (first wave of proliferation) within a few days after birth to form adult type spermatogonia. In mice the first wave of spermatogenesis occurs on day 5 after birth and at 6 months of age after birth in men. While some spermatogonia become self-renewing spermatogonial stem cells, most of them differentiate into spermatocytes, and meiosis begins at approximately day 10 pp in mice and at puberty in man. In the mouse, haploid spermatids are generated by day 20, and spermatozoa first appear in seminiferous tubules by approximately day 35. The onset of puberty and associated increase in gonadotrophin and androgen levels result in the progression of spermatocytes and the appearance of haploid spermatids. Thus, the entire process of spermatogenesis occurs in three sequential phases of cell proliferation and differentiation called: i) mitotic phase, ii) meiotic phase, and iii) post-meiotic phase, which involves stepwise progression of morphologically undifferentiated spermatids to highly differentiated spermatozoa. In mouse spermatogenesis, the mitotic phase lasts for 10 days, meiotic phase for 11 days, while post-meiotic phase lasts for 14 days. The final division produces preleptotene spermatocytes, which begin meiotic phase and undergo last cell cycle S-phase of spermatogenesis..

1.2.1. Mitotic Phase

In mitotic phase, also called spermatocytogenesis, primitive spermatogonia proliferate by mitosis to give rise to several successive generations of spermatogonia, each generation being more differentiating than the preceding one. Traditionally spermatogonia have been divided into two types of spermatogonia (A and B type). These can be distinguished with little difficulty. The type A spermatogonia do not have heterochromatin, whereas type B spermatogonia possess abundant heterochromatin in their nuclei. In human testis, the type A spermatogonium has a spherical or ellipsoid nucleus and one or two nucleoli attached to inner part of nuclear envelope. The type B spermatogonium has spherical nucleus containing a single nucleolus and the chromatin of varying size (heterochromatin), many of which are distributed along the nuclear envelope. In rats and mice intermediate type spermatogonia can also be observed. The A type spermatogonia undergo a series of divisions that result into other type A spermatogonia. During spermatogonial division, A single (A_), a paired (A_) and A aligned (A_{a}) spermatogonia can be seen according to their arrangement on the basal side of seminiferous tubules. Single spermatogonium (A,) is the stem cell for spermatogenesis. On division, A produces two new stem cells, where as A spermatogonia are connected through intercellular cytoplasmic bridges, the functional significance of which is not clear. The paired spermatogonia (A_{a}) further divide to form chains of 4, 8 and 16 A_{a} spermatogonia (Fig.1.2). The A_{al} spermatogonia undergo five successive divisions giving rise to A2, A3, A4, intermediate and finally B spermatogonia. B spermatogonia further divide to give primary spermatocytes, which are produced by last mitotic division during spermatogenesis (de Rooij and Grootegoed, 1998). Type A spermatogonia express a very high level of telomerase (Ravindranath et al., 1997). The expression of telomerase decreases with further stages of spermatogenesis and disappears in late spermatids.

4

Fig.1.2. Scheme of spermatogonial multiplication and stem cell renewal, which probably applies to all mammals except humans. Stem cells (A_{a}) proliferate, renewing the stem cell pool and also producing undifferentiated A type paired spermatogonia (A_{a}), joined together by intercellular cytoplasmic bridges. Further division of A_{a} produce chains of aligned spermatogonia (A_{a}), which differentiate through six mitotic divisions into A1, A2, A3, A4, intermediate (In), and B spermatogonia to become primary spermatocytes. Reproduced with permission from de Rooij DG, Grootgoed JA.Curr Opin Cell Biol 10; 694-701: 1998 © Elsevier

1.2.2. Meiotic Phase

Most of the somatic cells contain chromosomes in pairs and hence called diploid, while gametes (sperm and ovum) possess only one of each pair. Such cells are called haploid. Haploidy of mammalian gametes is essential, since after fertilization, the zygote establishes the diploid character of chromosome number. The special type of nuclear division, which forms haploid gametes, is termed 'Meiosis'. The meiotic phase terminates at the primary spermatocytes, which at first resembles the cytological characteristics of spermatogonia from which they arise. Primary spermatocytes enter into prophase I of maturation or meiotic division. Their chromatin reorganizes into thread like chromosomes, characteristic of leptotene stage of meiosis. During meiotic phase (leptotene, zygotene, pachytene, diplotene and diakinesis) chromosomes condense. Two important events in meiosis are: linear pairing of chromosomes and interchange of genetic segments between homolgous chromatids during zygotene stage through formation of synaptonemal complex. This is followed by two meiotic divisions that occur in rapid succession without DNA replication to produce spermatids, which are re-modeled into spermatozoa. The process of meiosis and formation of synaptonemal complex has been discussed in more details in Chapter 6. During meiosis a wide variety of genes are up-regulated in spermatocytes. Some of these genes are transcribed only in spermatogenic cells, whereas others produce transcripts specific or unique to spermatocytes. The expression and regulation of several of these genes during meiosis has been recorded during last decade (McCarrey, 1998; Eddy and O'Brien, 1998) (see Chapter 14). The RNA synthesis is low at preleptotene, leptotene, zygotene and early pachytene spermatocytes. However, RNA synthesis increases rapidly in pachytene spermatocytes of mouse, rat, hamster, and human testes. Nuclear RNA synthesis is highest at zygotene stage in both mouse and human spermatocytes suggesting that RNA synthesis occurs during meiosis (Eddy and O'Brien, 1998).