
ENDOCRINE DISRUSTERS

Hazard Testing and Assessment Methods

EDITED BY Peter Matthiessen

Contents

C	0	V	e	r

<u>Title Page</u>

Copyright

Preface

Contributors

<u>Chapter 1: Ecotoxicity Test Methods for Endocrine-Disrupting Chemicals</u>

1.1 BACKGROUND

1.2 REGULATORY CONCERNS

1.3 INVERTEBRATES

1.4 VERTEBRATES

1.5 TESTING SCHEMES FOR EDCS

REFERENCE

Chapter 2: Endocrine Disruption in Wildlife

2.1 BACKGROUND TO ENDOCRINE DISRUPTION

2.2 EFFECTS OF EDCS ON WILDLIFE

2.3 WEIGHT OF EVIDENCE AND ECOLOGICAL

SIGNIFICANCE OF ED EFFECTS

2.4 IMPLICATIONS FOR EFFECT ASSESSMENT

AND TOXICITY TESTING

2.5 NEED FOR MORE FIELD STUDIES AND AN INTEGRATED APPROACH 2.6 CONCLUDING POINTS REFERENCES

<u>Chapter 3: The Regulatory Need for Tests</u> to Detect EDCs and Assess Their Hazards to Wildlife

3.1 EMERGING CONCERNS AND POLICY
RESPONSES: FOCUSING ON EDCS AS A LARGE
PSEUDO-UNIFORM GROUP OF SUBSTANCES
3.2 GENERAL APPROACHES IN SUBSTANCERELATED REGULATORY FRAMEWORKS (EU)
3.3 HOW TO MAKE EDC DEFINITIONS
OPERATIONAL FOR SUBSTANCE-RELATED
REGULATORY WORK
3.4 FUTURE PERSPECTIVES
3.5 CONCLUSIONS
REFERENCES

<u>Chapter 4: Techniques for Measuring</u> <u>Endocrine Disruption in Insects</u>

- **4.1 INTRODUCTION**
- 4.2 METHODS
- **4.3 DISCUSSION**
- 4.4 CONCLUSION
- 4.5 ACKNOWLEDGMENTS REFERENCES

Cha	<u>pter</u>	5:	Crust	tacea	<u>ns</u>

5.1 INTRODUCTION

5.2 BACKGROUND TO CRUSTACEAN

ENDOCRINOLOGY

5.3 STATE OF THE ART: WHAT DO WE KNOW

ABOUT ENDOCRINE DISRUPTION IN

CRUSTACEANS?

5.4 AVAILABLE SUBCHRONIC/CHRONIC STANDARD TEST PROTOCOLS

5.5 COMPLEMENTARY TOOLS FOR IDENTIFICATION

OF ENDOCRINE DISRUPTION

5.6 SUMMARY AND CONCLUSIONS

REFERENCES

<u>Chapter 6: Endocrine Disruption in</u> Molluscs

6.1 BACKGROUND AND INTRODUCTION

6.2 WHAT CONSTITUTES THE ENDOCRINE SYSTEM IN MOLLUSCS?

6.3 END POINTS AND BIOMARKERS OF

ENDOCRINE DISRUPTION

6.4 CURRENT TEST METHODS USING MOLLUSCS

6.5 PROPOSED TEST METHODS

6.6 CONCLUSIONS

REFERENCES

<u>Chapter 7: Using Fish to Detect Endocrine</u> <u>Disrupters and Assess Their</u> Potential Environmental Hazards

7.1 INTRODUCTION

7.2 INTERNATIONAL EFFORTS TO STANDARDIZE FISH-BASED METHODS FOR SCREENING AND TESTING ENDOCRINE-DISRUPTING CHEMICALS
7.3 FISH-BASED SCREENS DEVELOPED BY OECD FOR ENDOCRINE-DISRUPTING CHEMICALS
7.4 PROGRESS WITH DEVELOPING FISH PARTIAL LIFE CYCLE TESTS FOR ENDOCRINE DISRUPTERS
7.5 PROSPECTS FOR THE STANDARDIZATION OF FISH FULL LIFE CYCLE AND MULTIGENERATION TESTS

7.6 STRENGTHS AND WEAKNESSES OF A HAZARD EVALUATION STRATEGY BASED PARTLY ON AVAILABLE AND PROPOSED FISH SCREENS AND TESTS

7.7 CONCLUSIONS
REFERENCES

<u>Chapter 8: Screening and Testing for Endocrine-Disrupting</u> <u>Chemicals in Amphibian Models</u>

- 8.1 INTRODUCTION
- 8.2 POTENTIAL USES OF AMPHIBIANS IN ENDOCRINE DISRUPTER SCREENING AND TESTING PROGRAMS
- 8.3 EMBRYONIC DEVELOPMENT
- **8.4 HATCHING**
- 8.5 LARVAL DEVELOPMENT
- 8.6 HIGHER-TIER TESTS WITH AMPHIBIANS
- **8.7 OTHER AND EMERGING TEST METHODS**

8.8 SUMMARY AND CONCLUSIONS REFERENCES

Chapter	<u>9:</u>	<u>Endocrine</u>	<u>Disru</u>	<u>ption</u>	and
Reptiles				-	

- 9.1 INTRODUCTION
- 9.2 APPROACHES TO EXAMINE EFFECTS OF EDCS
- 9.3 INDUCTION OF SEX REVERSAL IN OVO
- 9.4 ANALYSIS OF SEX-REVERSED ANIMALS
- 9.5 CONCLUSIONS

REFERENCES

Chapter 10: Birds

- **10.1 INTRODUCTION**
- 10.2 DIFFERENCES BETWEEN BIRDS AND

MAMMALS AND AMONG BIRD SPECIES

- 10.3 IN VITRO TECHNIQUES
- **10.4 STUDIES WITH EMBRYOS**
- 10.5 IN VIVO TECHNIQUES
- 10.6 EXAMPLES OF EDC EFFECTS FROM FIELD

STUDIES

- 10.7 PROPOSED TWO-GENERATION TEST
- 10.8 CONCLUSIONS

REFERENCES

<u>Chapter 11: Mammalian Methods for Detecting and Assessing Endocrine-Active Compounds</u>

11.1 INTRODUCTION

11.2 MAMMALIAN TIER 1 SCREENING ASSAYS
11.3 TIER 2 TESTS
11.4 HUMAN AND WILDLIFE RELEVANCE OF
ESTROGEN, ANDROGEN, AND THYROID
SCREENING ASSAYS
11.5 POTENTIAL FUTURE ASSAYS FOR
ENDOCRINE SCREENING
REFERENCES

<u>Chapter 12: Application of the OECD</u>
<u>Conceptual Framework for Assessing the Human Health and Ecological</u>
<u>Effects of Endocrine Disrupters</u>

12.1 INTRODUCTION

12.2 OVERVIEW OF THE OECD REVISED CF

12.3 APPLICATION OF THE KLIMISCH CRITERIA TO

THE EE2 AND VIN CASE STUDIES

12.4 CASE STUDY: DATA EXAMPLES FOR 17α-

ETHYNYLESTRADIOL

12.5 CASE STUDY: DATA EXAMPLES FOR

VINCLOZOLIN

12.6 CONCLUSIONS

REFERENCES

Chapter 13: The Prospects for Routine Testing of Chemicals for Endocrine-Disrupting Properties and Potential Ecological Impacts

13.1 INTRODUCTION

13.2 ARE THERE GAPS IN THE TEST SUITE FOR
EDCS?
13.3 "NEW" MODES OF ENDOCRINE-DISRUPTING
ACTION
13.4 HOW SHOULD TESTS FOR EDCS BE
DEPLOYED IN AN INTEGRATED FASHION?
13.5 USE OF WEIGHT OF EVIDENCE WHEN
ASSESSING POSSIBLE EDCS
13.6 CONCLUSIONS
REFERENCES

<u>Index</u>

ENDOCRINE DISRUPTERS

HAZARD TESTING AND ASSESSMENT METHODS

Edited by

Peter Matthiessen Consultant Ecotoxicologist

Cover photography: Courtesy of Peter Matthiessen and coauthors

Copyright © 2013 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Endocrine Disrupters: Hazard Testing and Assessment Methods / [edited by] Peter Matthiessen.

p. cm.

Includes index.

ISBN 978-0-470-93209-4 (hardback)

1. Endocrine-disrupting chemicals–Toxicity testing. 2. Endocrine-disrupting chemicals–Environmental aspects. 3. Endocrine toxicology. I. Matthiessen, Peter.

RA1224.2.E613 2012 615.3'6-dc23 2012015098

PREFACE

The purpose of this book is to describe the state of the art of in vivo ecotoxicological testing methods for endocrine disruptina chemicals. It includes consideration mammalian methods but addresses in vitro techniques in only a few chapters. The book not only covers methods for all the vertebrate groups as well as several invertebrate phyla but also addresses regulatory issues and possible approaches to hazard assessment and prediction. The book is divided into chapters covering each major taxon as well as the regulatory and hazard assessment topics. Every chapter has been written by acknowledged experts in their respective fields. Furthermore, the main chapters have been subjected to peer review and amended in the light of reviewers' comments.

The book does not claim to be exhaustive, although it does provide a helpful route into the subject. This is still a fastmoving field, but the information contained within this volume will be of assistance to scientists involved in testing chemicals for possible endocrine-disrupting properties as well as to regulatory authorities responsible for deciding whether chemicals can be marketed safely. This volume reflects the current (spring 2012) state of knowledge and thus deals largely with those modalities of endocrine disruption that are reasonably well understood and can be categorized as estrogenic, androgenic, thyroidogenic, or steroidogenic (EATS). It must, however, be recognized that environmental chemicals are probably interacting with many other endocrine systems, and as these mechanisms are gradually uncovered, this book will require substantial updating. I nevertheless hope that readers will find this distillation of current knowledge useful and stimulating.

Peter Matthiessen March 2012

CONTRIBUTORS

Magnus Breitholtz Department of Applied Environmental Science (ITM), Stockholm University, Svante Arrhenius väg 8c, SE-10691 Stockholm, Sweden

Vicki L. Dellarco United States Environmental Protection Agency, 1200 Pennsylvania Avenue, Washington, DC 20460, United States

Tobias Frische Federal Environment Agency (Umweltbundesamt), PO Box 1406, D-06813 Dessau-Rosslau, Germany

John P. Giesy Toxicology Centre and Western College of Veterinary Medicine, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada

Anne Gourmelon Organization for Economic Co-operation and Development, 2 rue André-Pascal, F-75775 Paris Cedex 16, France

Louis J. Guillette Jr. Department of Obstetrics and Gynecology, Medical University of South Carolina and Marine Biomedicine and Environmental Sciences, Hollings Marine Laboratory, 96 Jonathan Lucas Street, Charleston, SC 29425, United States

Markus Hecker Toxicology Centre and School of Environment and Sustainability, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada

Thomas H. Hutchinson Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom

Taisen Iguchi Department of Bioenvironmental Research, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki Aichi 444-8787, Japan

Flemming Ingerslev Danish Environmental Protection Agency, Strandgade 29, DK-1401, Copenhagen K, Denmark

Paul D. Jones Toxicology Centre and School of Environment and Sustainability, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada

Satomi Kohno Department of Obstetrics and Gynecology, Medical University of South Carolina and Marine Biomedicine and Environmental Sciences, Hollings Marine Laboratory, 96 Jonathan Lucas Street, Charleston, SC 29425, United States

Juliette Legler VU University Amsterdam, Institute for Environmental Studies (IVM), De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

M. Sue Marty Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Building 1803, Midland, MI 48674, United States

Peter Matthiessen Consultant Ecotoxicologist, Old School House, Brow Edge, Backbarrow, Ulverston, Cumbria LA12 8QX, United Kingdom **Patricia D. McClellan-Green** North Carolina State University, Center for Marine Sciences and Technology, 303 College Circle, Morehead City, NC 28557, United States

Jenny Odum Regulatory Science Associates, PO Box 9346, Dunoon, Argyll, PA23 7WR, United Kingdom

Daniel B. Pickford Institute for the Environment, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

Mike Roberts Department for Environment, Food and Rural Affairs, Nobel House, Smith Square, London SW1P 3JR, United Kingdom

Hans-Christian Stolzenberg Federal Environment Agency (Umweltbundesamt), PO Box 1406, D-06813 Dessau-Rosslau, Germany

Gary Timm United States Environmental Protection Agency, 1200 Pennsylvania Avenue, Washington, DC 20460, United States (retired)

Dick Vethaak Deltares, Marine and Coastal System Unit and VU University Amsterdam, Institute for Environmental Studies (IVM), PO Box 177, 2600 MH, Delft, The Netherlands

Lennart Weltje BASF SE, Crop Protection—Ecotoxicology, Speyerer Strasse 2, D-67117 Limburgerhof, Germany

Steve Wiseman Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada

CHAPTER 1

Ecotoxicity Test Methods for Endocrine-Disrupting Chemicals

AN INTRODUCTION

PETER MATTHIESSEN

Consultant Ecotoxicologist, Old School House, Backbarrow, Cumbria, United Kingdom

1.1 BACKGROUND

1.2 REGULATORY CONCERNS

1.3 INVERTEBRATES

1.4 VERTEBRATES

1.5 TESTING SCHEMES FOR EDCS

REFERENCE

1.1 BACKGROUND

The issue of endocrine disruption has been something of a cause célèbre since it was first identified as an issue about 25 years ago. Few scientists had previously suspected that certain synthetic chemicals might be able to interfere with the workings of the endocrine system at low concentrations. However, in the mid-1990s, Theo Colborn and others [1] brought this subject to the attention of a wide audience when it became clear that many different wildlife species were experiencing effects that were attributable to

damaged hormone signaling. Since then, endocrine-disrupting chemicals (EDCs) have come to be treated as a special case rather like carcinogens, so that the mere possession of endocrine-disrupting (ED) properties can be enough to trigger precautionary regulatory action in some jurisdictions, irrespective of the probable environmental risks involved. In other jurisdictions, the risks of EDCs are being evaluated in similar ways to non-EDCs, but these chemicals are the subject of much concern irrespective of the regulatory stance being taken.

It is therefore extremely important that EDCs should be unambiguously identified and their hazards accurately measured. This book represents one of the first attempts to describe and critically evaluate the methods that have been developed for studying the effects of EDCs on mammalian and nonmammalian wildlife in the laboratory.

The chapters in this volume are aimed at scientists and chemical companies that wish to investigate ecotoxicological properties of EDCs using cutting-edge and (where relevant) internationally agreed techniques and at chemical regulatory authorities that seek to protect the environment from the adverse effects of EDCs through the use of rigorous hazard evaluation programs that employ scientifically sound methods. This is quite an ambitious aim, given that some standardized assays that use wildlife species to assess the toxicity of EDCs still in are development, and there remain whole classes of EDCs for which assays have not yet been standardized or even designed. However, despite these gaps and limitations, it is hoped that the book will provide useful guidance until a more comprehensive array of test methods becomes available.

Chapter 2 by Dick Vethaak and Juliette Legler describes why some EDCs became recognized as an environmental problem in the 1980s, and summarizes the large amount of

research that has since discovered many features of this disparate group of chemicals. The chapter brings us up to date about the chemicals that have been found to have ED properties and surveys effects observed in the field and in the laboratory. This review makes it clear that, until recently, chemical risk assessment schemes had failed to prevent some EDCs from entering the environment and causing sometimes severe damage to certain ecosystems. Thus, the chapter sets the scene for the ones that follow.

1.2 REGULATORY CONCERNS

In Chapter 3, Hans-Christian Stolzenberg and coauthors explain why regulatory authorities have become concerned about EDCs and describe in detail how several authorities (especially Japan, the United States, and the European Union) have responded with new programs and regulations designed to identify these chemicals and assess their hazards and associated environmental risks. It became apparent from the early 1990s that existing internationally standardized ecotoxicity assays were largely insensitive to EDCs. As a result of this understanding, member countries Organisation for Economic Cooperation Development (OECD) initiated a program to develop and validate new testing methods. The chapter indicates how these methods are likely to be used in chemical regulatory activities in several jurisdictions, although full details are still being developed and many other jurisdictions have yet to act.

1.3 INVERTEBRATES

The regulatory background is then followed by three chapters that describe testing methods with certain invertebrate groups (insects, crustaceans and molluscs) and

five chapters covering methods using vertebrates (fish, amphibians, reptiles, birds, and mammals). At present, regulatory requirements for the testing of suspected EDCs are restricted to vertebrates alone, but this is due mainly to the fact that invertebrate endocrine systems are relatively poorly understood, not because endocrine disruption is not an issue in these phyla.

Chapter 4 by Lennart Weltje concerns testing methods in insects. The endocrine systems of insects, of all the invertebrates, are the best understood due to their overwhelming importance as pests, a fact that has led to the development of pesticides specifically intended to cause endocrine disruption in this group. The chapter not only describes *in vivo* testing methods covering key endocrine-mediated processes such as growth and reproduction but also a range of *in silico* and *in vitro* mechanistic techniques that show promise for the understanding of certain modes of action. This aspect is important given that generally agreed definitions of EDCs require that an apical effect *in vivo* needs to be plausibly linked to an ED mechanism.

Crustacean test methods are covered by Breitholtz in Chapter 5. This invertebrate group belonging to the arthropods shares many endocrine similarities with insects and is also economically important, but in this case as a food source. The chapter goes into the endocrinology of various crustacean taxa in considerable detail, and it is clear that a range of mechanistic assays will be developed in the near future. At present, however, available methods include apical endpoints (especially several with in vivo reproductive success) which do not in themselves reveal modes of action. The chapter also includes consideration of some newer techniques including toxicogenomic methods which show promise for the future.

In Chapter 6, Patricia D. McClellan-Green addresses possible endocrine testing methods involving molluscs. In

comparison with the invertebrate groups discussed in Chapters 4 and 5, less is known about the endocrine systems in this phylum, although there is good evidence that endocrine disruption can be caused by a variety of substances, some of which (e.g., organotins) are much more potent than in other phyla. For this reason, in vitro techniques are still in their infancy, and we are not yet in a position to standardize mechanistic in vivo molluscan screens, although some biomarkers (e.g., vitellogenin and imposex induction) show promise. Perhaps surprisingly, no mollusc-based toxicity tests of any kind have yet been internationally standardized, but an OECD project led by the United Kingdom, Germany, France, and Denmark is now developing partial and full life cycle apical tests with gastropods that will be useful for the assessment of both EDCs and non-EDCs.

1.4 VERTEBRATES

Throughout the evolution of the vertebrates, there has been a high degree of conservation of their endocrine systems, with many hormones and receptors being identical or very similar across the vertebrate groups. However, despite these similarities, tests with sensitivity to EDCs are needed for most of the major vertebrate groups because of differences in exposure, metabolic competence, and downstream hormonal interactions. Chapters 7 to 11 address methods involving all vertebrate groups from fish to mammals.

Peter Matthiessen discusses toxicity tests for EDCs using fish in Chapter 7. Some of the earliest widespread effects of EDCs observed in the field involved this group of vertebrates (feminization of male fish exposed to estrogens), and considerable progress has been made in developing and standardizing fish-based test methods with

sensitivity not only to (anti)estrogens but steroidogenesis disrupters. (anti)androgens and different fish-based screening assays have now published by OECD that are able to provide mechanistic information about the potential of a chemical to interfere with different aspects of the steroid hormone system in vivo, and one of these also provides some apical information about possible effects on reproductive success. A partial life cycle test (the Fish Sexual Development Test) has also been published, providing mechanistic and apical information concerning possible impacts on phenotypic sex ratio. Another partial life cycle test covering the reproductive phase of the life cycle is in development, as are full and multiple life cycle tests. When these are complete, a comprehensive suite of tests for EDCs using fish will be in place.

Chapter 8 by Daniel B. Pickford covers testing of EDCs using amphibians. This group is particularly sensitive to thyroid system disrupters, and the chapter goes into detail about the development and standardization of larval-based screens that are responsive to these chemicals. An amphibian in vivo mechanistic screen (the Amphibian Metamorphosis Assay) has now been published by OECD and shows sensitivity to several different types of thyroid interference. The chapter then goes on to describe possible partial and full life cycle testing in this group, although standardization of such higher-tier tests is still ongoing. Research has already shown that the sexual development of some amphibians can be disrupted by exposure to several different types of EDC including estrogens. However, at present there are no plans to standardize full life cycle tests with amphibians due to the difficulty and expense of culturing the currently used species in the laboratory.

Chapter 9 by Satomi Kohno and Louis J. Guillette Jr. discusses reptiles, for which no internationally standardized

tests for EDCs are currently being considered. Reptiles have not traditionally been used in ecotoxicity tests, but several members of this group possess an interesting physiological trait that can be exploited to study endocrine disrupters. In brief, the sex of many young reptiles (e.g., turtles and alligators) is determined by the temperature at which the eggs are incubated, and this process can be subverted by example, in crocodilians. For EDCs. produce females alone. intermediate temperatures temperatures produce both sexes, and higher temperatures produce males alone; administration of low estrogen doses at male-producing temperatures leads to the induction of females. The chapter describes both the use of estrogen receptor transactivation assays that employ receptors derived from reptiles to measure estrogenic activity in vitro and in vivo assays that exploit interference with sex determination in species such as the American alligator. The drawback of the in vivo methods is that reptile eggs are generally produced only seasonally and are available commercially in relatively small numbers, which may explain why there has been no attempt at standardization to date.

Testing for EDCs using birds is considered in Chapter 10 by Paul D. Jones, Markus Hecker, Steve Wiseman, and John P. Giesy. Life cycle characteristics such as egg laying may make birds particularly sensitive to some EDCs, although the avian endocrine system has many similarities with those of other higher vertebrates. However, although the mechanism of sex determination is not fully understood, it is known that estradiol is the sex-differentiating hormone in birds (testosterone plays this role in mammals), so administration of estrogens to birds during development may cause more profound changes than in mammals. This chapter covers *in vitro* techniques with avian cell lines and *in vivo* methods using both embryos and adult birds. Dosing

methods comprise egg injection and feeding, and studies can include both partial and full life cycles. An avian partial life cycle reproduction test was published by OECD many years ago, but an avian two-generation test is currently being validated by that organization, and aspects of the test are considered in this chapter.

Chapter 11 by M. Sue Marty covers methods for studying endocrine disruption in mammals. Due to the importance of mammalian tests for predicting chemical effects in humans, they have been more extensively developed than those with lower vertebrates, although some with particular sensitivity to EDCs were standardized and published only recently. This chapter describes an array of five standardized mammalian tests with rodents that can be used to identify ED activity in vivo and indicates how they can be integrated into a screening program for estrogens, androgens, and thyroidacting compounds. Consideration is then given to more extended rodent-based assays (the two-generation and extended one-generation tests), which could be used at a higher level of testing in order to reveal a fuller range of possible apical effects. The chapter concludes with a discussion of the relevance of these tests for predicting the effects of EDCs in humans and mammalian wildlife.

1.5 TESTING SCHEMES FOR EDCS

Chapter 12 by Thomas H. Hutchinson, Jenny Odum, and Anne Gourmelon describes the five-level OECD Conceptual Framework (CF) that was developed to guide the standardization of screens and tests for EDCs. The CF levels move from Level 1 (data gathering), through Level 2 (*in vitro* assays), to Levels 3 to 5 covering *in vivo* assays of increasing complexity. Standardized *in vivo* assays for both mammals and nonmammals are now available at each of Levels 3 to 5, but it is clear that these levels are not

necessarily to be followed in a linear testing scheme. The authors explain why a weight-of-evidence approach is required to assess whether substances have ED properties, and if so, whether those properties are able to cause adverse apical effects. They use two case studies to illustrate how weight-of-evidence assessments might work using the assays in the CF and conclude that the framework provides a logical process for critically evaluating studies that show either positive or negative results. Overall, the assays in the CF are found to provide useful data for identifying EDCs and measuring the type and magnitude of their effects in mammals and other wildlife.

In the final chapter (Chapter 13), Peter Matthiessen continues the discussion of possible testing approaches for EDCs and reiterates the need for weight-of-evidence assessments. Remaining gaps in the testing tool box are identified, but it is clear that a reasonably complete set of assays for so-called EATS modalities (i.e., EDCs with estrogen/androgen/thyroid/steroidogenic action) will available within the next few years. However, current standardized testing procedures do not account for several of endocrine disruption that will consideration in due course. The chapter then discusses possible integrated procedures for testing EDCs presents a draft scheme for assessing the hazards posed by chemicals to fish recently discussed at an OECD workshop. This scheme covers all chemicals, not just EDCs, and attempts to integrate the new fish-based tests for EDCs into a wider framework.

To summarize this book, it is clear that the development and standardization of ecotoxicity tests for EDCs remains a work in progress, but great strides have been made during the first decade of the twenty-first century. Enough validated assays are now in place (or will shortly be agreed) to permit the routine operation of hazard assessment schemes for suspected EDCs, providing that the limitations of these assays are borne in mind.

REFERENCE

1. Colborn, T., Dumanoski, D., Myers, J. P. (1996). Our Stolen Future. Penguin Books, New York. 306 pp.

CHAPTER 2

Endocrine Disruption in Wildlife

BACKGROUND, EFFECTS, AND IMPLICATIONS

DICK VETHAAK

Deltares, Marine and Coastal System Unit, Delft, The Netherlands and VU University Amsterdam, Institute for Environmental Studies (IVM), Amsterdam, The Netherlands

JULIETTE LEGLER

VU University Amsterdam, Institute for Environmental Studies (IVM), Amsterdam, The Netherlands

2.1 BACKGROUND TO ENDOCRINE DISRUPTION

- 2.1.1 Introduction
- 2.1.2 Brief Account of the History of Endocrine Disruption
- 2.1.3 What Are Endocrine-Disrupting Chemicals?
- 2.1.4 Vertebrate Endocrine System
- 2.1.5 Invertebrate Endocrine System
- 2.1.6 Mechanisms of Endocrine Disruption
- 2.1.7 Endocrine Disrupters in the Environment

2.2 EFFECTS OF EDCS ON WILDLIFE

- 2.2.1 Mammals
- 2.2.2 Birds
- 2.2.3 Reptiles and Amphibians

2.2.4 Fish
2.2.5 Invertebrates
2.3 WEIGHT OF EVIDENCE AND ECOLOGICAL
SIGNIFICANCE OF ED EFFECTS
2.4 IMPLICATIONS FOR EFFECT ASSESSMENT
AND TOXICITY TESTING
2.5 NEED FOR MORE FIELD STUDIES AND AN
INTEGRATED APPROACH
2.6 CONCLUDING POINTS
REFERENCES

2.1 BACKGROUND TO ENDOCRINE DISRUPTION

2.1.1 Introduction

is now well recognized that endocrine-disrupting chemicals (EDCs) pose a potential risk affecting both wildlife and human health on a global scale [1,2]. EDCs are generally defined as substances in our environment, food, and consumer products that can disrupt hormonal balance and result in adverse health effects. An EDC elicits adverse health effects primarily by its interaction with an endocrine mechanism (endocrine disruption), given the right dose and timing of exposure. In the last decades, field and laboratory studies have shown that some EDCs, including natural hormones, pharmaceuticals, some pesticides, and industrial contaminants, can cause developmental, reproductive, neural, immune, and other problems in a range of wildlife taxa [1,3-11]. Nowadays there is clear evidence that a growing number of environmental chemicals may possess endocrine-disrupting (ED) activity and that ED effects can occur at very low concentrations, concentrations that are

similar to current exposure levels. ED effects may occur at much lower doses than other types of toxicants that act through different mechanisms. In addition to having adverse effects on wildlife, there are growing indications for associations of certain persistent organic pollutants (POPs) with ED effects in humans at the relatively low doses typically found in the environment—for example, male dysgenesis syndrome (lower sperm increases in hypospadias [urogenital abnormalites in male babies], and cryptorchidism [the absence of one or both testes from the scrotum]) and certain cancers [12-14]. Recent research also links human EDC exposure with obesity, metabolic syndrome, and type 2 diabetes (reviewed by [15-17]). The scope and magnitude of EDC harm to wildlife populations and possibly to humans are becoming increasingly apparent, as our knowledge and understanding increase, and demonstrate the need for prompt policy actions and the need for regulation and testing of EDCs.

In this introduction and background chapter, we provide at the risk of repeating earlier publications—a general description of the issue of endocrine disruption in the environment with particular reference to wildlife. We do not intend to be complete (which is almost impossible given the rapid development in this field), but instead we focus on new developments, the wildlife-human connection, and implications for field monitoring and effect assessment and toxicity testing.

2.1.2 Brief Account of the History of Endocrine Disruption

The effects of EDCs have been evident since the 1940s [18]. Originally reported in peregrines (*Falco peregrinus*), around 1946, DDE-induced reproduction failure due to eggshell thinning and broken eggs has been described in a large

number of raptor species [19]. This is probably also the first example of endocrine disruption in wild populations, even though a plausible mechanism of action has not been elucidated until recently (reviewed by [20]). Since the appearance of Rachel Carson's Silent Spring in 1962 [21] and the diethylstilbestrol (DES) story [22], the public has been increasingly concerned about those chemicals that could have harmful effects on wildlife and human health. The potential environmental impacts of synthetic hormones, industrial by-products, pesticides, and other chemicals introduced to the environment led in 1979 to the start of a successful and still-continuing series of conferences on estrogens in the environment organized by the U.S. National Institute of Environmental Health Sciences (NIEHS) [23-25]. In 1991, a group of expert scientists at the Wingspread Conference titled "Chemically Induced Alterations in Sexual Development: The Wildlife/Human Connection" presented a review of the scientific literature from the 1950s through the 1980s, where they found a wide number of pathologies and other abnormalities in wildlife and humans that seemed to be connected to endocrine system dysfunction. A consensus statement released from that group stated:

Many compounds introduced into the environment by human activity are capable of disrupting the endocrine system of animals, including fish, wildlife, and humans. The consequences of such disruption can be profound because of the crucial role hormones play in controlling development. [26, page 1].

This alarming statement of the potential dangers posed by EDCs provided a major impetus for further studies and the discovery of numerous new cases of adverse effects of EDCs in wildlife and humans worldwide. In 1996, Theo Colborn and coworkers Dianne Dumanoski and John Peterson Myers published *Our Stolen Future* [27] and introduced the endocrine disruptor hypothesis, in which they pointed out