APPLIED · QUANTITATIVE · FINANCE

I. RUIZ

XVA Desks – A New Era for Risk Management

Understanding, Building and Managing Counterparty, Funding and Capital Risk XVA Desks – A New Era for Risk Management

Applied Quantitative Finance series

Applied Quantitative Finance is a new series developed to bring readers the very latest market tested tools, techniques and developments in quantitative finance. Written for practitioners who need to understand how things work 'on the floor', the series will deliver the most cutting-edge applications in areas such as asset pricing, risk management and financial derivatives. Although written with practitioners in mind, this series will also appeal to researchers and students who want to see how quantitative finance is applied in practice.

Also available

Chris Kenyon, Roland Stamm
DISCOUNTING, LIBOR, CVA AND FUNDING
Interest Rate and Credit Pricing

Marc Henrard
Interest rate modelling in the multi-curve framework
Foundations, Evolution and Implementation

Adil Reghai QUANTITATIVE FINANCE Back to Basic Principles

Leo Krippner zero lower bound term structure modelling A Practitioner's Guide

XVA Desks – A New Era for Risk Management

Understanding, Building and Managing Counterparty, Funding and Capital Risk

Ignacio Ruiz Founder and Director, iRuiz Consulting, UK

© Ignacio Ruiz 2015

All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission.

No portion of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

The author has asserted his right to be identified as the author of this work in accordance with the Copyright, Designs and Patents Act 1988.

First published 2015 by PALGRAVE MACMILLAN

Palgrave Macmillan in the UK is an imprint of Macmillan Publishers Limited, registered in England, company number 785998, of Houndmills, Basingstoke, Hampshire RG21 6XS.

Palgrave Macmillan in the US is a division of St Martin's Press LLC, 175 Fifth Avenue, New York, NY 10010.

Palgrave Macmillan is the global academic imprint of the above companies and has companies and representatives throughout the world.

Palgrave® and Macmillan® are registered trademarks in the United States, the United Kingdom, Europe and other countries.

ISBN 978-1-349-68622-3 ISBN 978-1-137-44820-0 (eBook) DOI 10.1057/9781137448200

This book is printed on paper suitable for recycling and made from fully managed and sustained forest sources. Logging, pulping and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

A catalogue record for this book is available from the British Library.

A catalog record for this book is available from the Library of Congress.

To Carmen Macho, for her love, wisdom and never-ending enlightenment, that I will carry with me all my life

This page intentionally left blank

Extra content available at xvadesks.com

This page intentionally left blank

Disclaimer

The views and opinions expressed in this book are solely those of the author, and do not necessarily reflect the official policy or position of any of his present or past employers, nor of any of this book's contributors.

This page intentionally left blank

Contents

	List	Figures		xix
	Ackı	wledgements	2	xxiii
Pa	rt I	he Context		1
1	The	anking Industry, OTC Derivatives and the New XVA Challange		3
	1.1	A simple bank's balance sheet		3
		1.1.1 The banking book		3
		1.1.2 The trading book		5
		1.1.3 Off balance sheet assets		7
	1.2	The role of banks in the economy		7
		1.2.1 Leverage in the balance sheet		8
	1.3	The business of finance		9
		1.3.1 Risk management		10
	1.4	The role of the trading book and OTC derivatives		11
	1.5	The XVA desk challenge		13
		1.5.1 Adjustments needed	• • •	14
Pa	rt II	quantitative Fundamentals		17
2	The	oots of Counterparty Credit Risk		19
	2.1	Key elements of counterparty credit risk		19
	2.2	Exposure metrics, netting sets and collateral		20
		2.2.1 EPE, ENE, PFE, and CESF		21
		2.2.2 Netting sets		23
		2.2.3 Collateralised vs. uncollateralised netting sets		25
	2.3	Different approaches for calculating exposure		32
3	Exp	ure Measurement for Uncollateralised Portfolios		33
	3.1	The Brownian Monte Carlo simulation		33
	3.2	Risk factor evolution (RFE)		33
		3.2.1 Interest rate models		36
		3.2.2 Foreign exchange models		37
		3.2.3 Equity models		38
		3.2.4 Volatility models		39
		3.2.5 Credit models		40
		3.2.6 Inflation models		43
		3.2.7 Commodity and utility models		43
		3.2.8 Other niche risk factors		43

xii C	ontents
] -	

		3.2.9 Dependency structures	43
	3.3	Pricing	45
	3.4	Risk metric calculation	46
		3.4.1 Netting risk	46
		3.4.2 Adding risk	48
		3.4.3 Aggregating risk	49
	3.5	Simulation time points	50
	3.6	The biggest quantitative challenge the financial industry has ever seen	51
	3.7	Scenario consistency	52
	3.8	•	53
		3.8.1 Market-implied vs. historical	53
		3.8.2 Two models to calibrate	54
			54
		· ·	56
	3.9	<u> </u>	56
	3.10		56
	3.11	- •	58
	3.12		59
	3.13		63
			64
			65
		•	67
			67
		•	69
4	Evno		70
4	4.1		70
	4.1		70
		· · · · · · · · · · · · · · · · · · ·	72
		0.0 1	73
	4.2	· -	73
	4.3		74
	4.4		75
	4.5		76
	4.5	-	76
			78
5	Expos		85
	5.1	· · · · · · · · · · · · · · · · · · ·	85
		1	86
			86
		1	86
	5.2		88
			90
	5.3	Convexity of risk metric allocations	90

			Contents	xiii
6	Proxi	es for Exposure Measurement		93
	6.1	Mark-to-market + add-on		
	6.2	Mark-to-market + add-on with time profiles		
	6.3	Standard approach for counterparty credit risk		
	6.4	Default profile add-ons		
	6.5	When pricers are not available		
	6.6	Simplified collateral algorithm		
	6.7	Collateralised exposures from a VaR engine		
	6.8	Analytical PFE exposures		
	6.9	Collateralised exposures from historical analysis		
	6.10	EPE and ENE as the price of an option		
	6.11	Netting set P&L analysis		
	0.11	6.11.1 Analytical version		
		6.11.2 Historical MC version		
		6.11.3 Some comments		
		6.11.5 Some comments		103
7	Defau	ult Probability, Loss Given Default, and Credit Portfolio Models		
	7.1	Market implied calibrations		
		7.1.1 PD calibration		105
		7.1.2 LGD calibration		106
	7.2	Historical calibration		106
		7.2.1 PD calibration		107
		7.2.2 Key features of a PD model		109
		7.2.3 LGD calibration		113
		7.2.4 Summary of steps		115
	7.3	External credit agencies		116
	7.4	Calibration for pricing		116
		7.4.1 Liquid names		117
		7.4.2 Illiquid names		117
	7.5	Calibration for risk management and regulatory capital		
	7.6	A primer on credit portfolio models		
		7.6.1 Expected and unexpected loss		
		7.6.2 Economic capital		
		7.6.3 The Vasicek ASRF model		
0	D''			
0		ng Counterparty Credit Risk		
	8.1	CVA demystified		
		1		
		8.1.2 CVA has been in the banking industry since their beginnings		
		8.1.3 CVA monetisation	• • • • • • •	131
		8.1.4 Monetising via my own downgrade: the "perversity" of accounting rules?		122
		8.1.5 Negative CVA. What does it mean?		
		8.1.6 CVA and netting sets		
		8.1.7 Summarising		
	8.2	CVA definition		
	0./-	V/V/V OCHUHIOH		1.74

xiv	Contents

		8.2.1	Unilateral vs. bilateral CVA	135
		8.2.2	Some details of the computation	136
	8.3	CVA ap	pproximations	142
9	Regula	atory Ca	apital	143
-	9.1	•	history of regulatory frameworks	
		9.1.1	Basel I	
		9.1.2	Basel II	
		9.1.3	Basel II.5	146
		9.1.4	Basel III	147
		9.1.5	Further developments	
	9.2	The reg	gulatory capital calculation	149
		9.2.1	An overall perspective	149
		9.2.2	VaR (or ES)	150
		9.2.3	IRC	151
		9.2.4	Counterparty credit risk	152
		9.2.5	CVA VaR	162
		9.2.6	Issuer credit risk	165
		9.2.7	Operational risk	165
10	Right	and Wr	ong Way Risk	167
	10.1		s right and wrong way risk?	
			Specific and general DWR	
			Key elements of an optimal DWR model	
			What if we do not have a DWR model?	
		10.1.4	In this chapter	170
	10.2	Review	y of existing methodologies	170
		10.2.1	Basel framework	170
		10.2.2	Change of risk measure in RFE model	170
		10.2.3	Brute force approach	171
		10.2.4	Change of risk measure in exposure metric calculation	171
		10.2.5	Stressed scenario	173
		10.2.6	Critique and preferred model	173
	10.3		llustrative examples of the market-credit dependency	
	10.4		nastic correlation model	
			Correlation implied by the empirical analysis	
			A stochastic correlation model	
	10.5		t of DWR	
			An FX forward in an emerging market economy	179
			Commodities	181
			Sensitivities	184
			Some insight into the problem	185
			A few practical points	
	10.6	Conclu	asions	188

Contents

xvi	Contents	

	100	12.8.3 Arbitrage	
	12.9	Summary	
13	Calcul	ating and Managing FVA	
	13.1	Analytical Black–Scholes pricing with collateral and funding	
	13.2	Key elements of an FVA calculation	242
	13.3	The FVA calculation: a Monte Carlo simulation	243
		13.3.1 A practical solution	
		13.3.2 The Monte Carlo simulation	243
		13.3.3 Recycling the CVA calculation for FVA	244
		13.3.4 Calculating FVA	247
		13.3.5 A few simplified cases	248
	13.4	Personalising FVA	250
		13.4.1 Asymmetric FVA	250
		13.4.2 Symmetric FVA	
	13.5	Fine-tuning the calculation	251
		13.5.1 Risky collateral	251
		13.5.2 Secured vs. unsecured borrowing	252
		13.5.3 Settlement risk	
		13.5.4 Funding with right and wrong-way risk	253
	13.6	Managing funding risk	
		13.6.1 FVA calibration and funding liquidity risk	
	13.7	Summary	256
14	KVA D	Pesk, Capital Management, and RAROC	257
	14.1	Another healthy disclaimer	
	14.2	An economic capital model	
		14.2.1 Expected and unexpected loss	
	14.3	RAROC	259
		14.3.1 The cost of capital	260
	14.4	The case for a KVA charge	261
		14.4.1 KVA as the price of unexpected losses	261
		14.4.2 KVA as the cost of manufacturing	263
		14.4.3 KVA and CVA _{liab}	263
		14.4.4 KVA allocation	263
	14.5	Calculation of the expected capital	264
		14.5.1 Economic vs. regulatory capital	264
		14.5.2 KVA based on regulatory capital	265
		14.5.3 KVA beyond financial institutions	268
	14.6	The KVA desk	268
		14.6.1 Hedging capital risk	269
		14.6.2 KVA as the price of a contingent capital swap derivative	269
		14.6.3 KVA as a tool to manage risk	270
		14.6.4 KVA and RAROC	270
		14.6.5 KVA on the balance sheet	270

		Contents	s xvii
	14.7	Key KVA challenges	
	14.8	Conclusions	272
15	XVA	Desks: A New Era for Risk Management	274
	15.1	Moving on from Black–Scholes pricing	274
		15.1.1 A history of XVAs	
	15.2	Derivative valuation	277
		15.2.1 Relative size of CVA, FVA, and KVA	279
		15.2.2 XVA and price competitiveness	280
	15.3	Optimal XVA management	281
		15.3.1 Actually, XVA desks generate a risk-neutral trade for the dealing desks	282
		15.3.2 XVA payments	284
		15.3.3 A grid of XVA charges	
		15.3.4 XVA desk mandate	285
	15.4	A new era for risk management	286
		15.4.1 The difference between hedging and not hedging risk	
		15.4.2 The path towards the optimal XVA set-up	
		15.4.3 A massive technology challenge	
	15.5	Conclusions	289
Paı	t IV	Further to XVA	291
16	Mod	el Risk Management	293
	16.1	From model validation to model risk management	
	16.2	The fundamentals of model validation	
	16.3	Checking pricing models	
		16.3.1 Validating prices	
		16.3.2 Validating sensitivities	
		16.3.3 CVA pricing model validation	
	16.4	Checking risk models	
17	Rack	testing Risk Models	
1/	17.1	Market risk backtesting	
	17.1	17.1.1 The backtesting methodology	
		17.1.2 The probability equivalent of colour bands	
		17.1.2 The probability equivalent of colour bands	
		17.1.4 Market risk backtesting of CVA	
	17.2	Counterparty risk backtesting	
	17.2	17.2.1 Splitting the problem into manageable sub-problems	
		17.2.2 Backtesting via percentile envelopes	
		17.2.3 Backtesting via distance metric of distribution functions	
10	C 4		
18	5yste 18.1	ems and Project Management	
		The scale of the problem	
	18.2	What is and isn't required	
		18.2.1 Dos	
		10.4.4 Duli to	, ⊃∠∪

xviii	Contents

	18.3	The basic architecture of an XVA system	320
		18.3.1 Data input	321
		18.3.2 The Monte Carlo engine	323
	18.4	Save-and-use vs. on-the-fly calculation	
	18.5	Internal development vs. third-party systems	
	18.6	Project management	
		18.6.1 RFE model development	
		18.6.2 Pricing model development	
		18.6.3 Beyond RFE and pricing models	
19		al Clearing and the Future of Derivatives	
	19.1	Central counterparties	
		19.1.1 Risk transformation through central counterparties	
		19.1.2 CCP structure and implications	
	10.2	19.1.3 Calculation of exposures	
	19.2 19.3	The banking environment	
	19.3	What will make the financial industry stable and safe?	
_		•	
		ppendices	
A	The M	Ioney Multiplier	347
В	Overe	stimation of the Exposure Metric under the Adding Rule	349
	B.1	EPE and ENE	
	B.2	EEPE	
	B.3	PFE	
	B.4	CESF	350
C	Calcul	ation of Exposure Contributions	352
D	Coher	ent Risk Metrics	355
E	The M	Tarket-Credit Link in the Merton Model Approach for DWR	356
F	Stress	ed Scenario DWR Model	357
G	The M	Ierton Model Equity–Credit Dependency	358
Н	Right	and Wrong-Way Risk in Equity Options	361
I		XVA Valuation Framework	
•	I.1	Risk-neutral pricing with counterparty risk	
	I.2	Derivative valuation with counterparty, funding, and capital risk	
	Notes		375
	Bibliog	graphy	393
	Index		396

List of Figures

1.1	Example of a simplified banking book	4
1.2	Example of a simplified bank's balance sheet	7
1.3	The hedging mechanism for OTC derivatives	12
2.1	Example of EPE, ENE, PFE at 90%, and CESF at 90%, profiles for a 1-year FX forward	22
2.2	Estimated collateral in the financial system, 1999–2013	26
2.3	Type of collateral received	27
2.4	Eligible and actual posted collateral for rehypothication	27
2.5	Illustration of the funding risk facing a collateralised facility	30
3.1	Simulated risk factors of the example, for each time point and scenario	34
3.2	EPE uncollateralised profiles for an IR swap, modelled with a constant volatility model	
	(top left), and a stochastic volatility model (top right)	40
3.3	EPE profiles for a 3-year forward using a model with constant volatility ($\sigma = 30\%$) and	
	with a time varying volatility ($\sigma_0 = 50\%$, $\sigma_\infty = 20\%$, $\gamma = 0.5$)	41
3.4	EPE profiles, uncollateralised and collateralised, of a netting set with two 5-year swaps,	
	where the correlation between the underlyings is 0 and 0.9	44
3.5	Prices of all six trades of the example, for each time point and scenario	47
3.6	EPE and ENE profiles for a portfolio consisting of a 3-year FX forward, a 5-year interest	
	rate swap and a 6-year equity option	48
3.7	Outline of the grids during different steps of a full counterparty credit risk calculation	51
3.8	Display of the effect of numerical noise in PFE profile calculations	59
3.9	CVA pricing error (standard deviation of the price over several calculations) for a 10 year	
	interest rate swap	60
3.10	Typical profiles of a 5-year swap	61
3.11	Typical PFE 95% profiles of a 5-year swap, when "in-", "at-" and "out-of-" the money	61
3.12	Typical PFE 95% profiles of a 5-year forward, when "in-", "at-" and "out-of-" the money	62
3.13	Typical PFE 95% profiles of a 5-year call option, when "in-", "at-" and "out-of-" the money	63
3.14	Typical PFE 95% profiles of a 5-year put option, when "in-", "at-" and "out-of-" the money	64
3.15	Illustration of exposure profiles of a netting set consisting of a 1-year FX forward, 3-year	
0.16	equity call option, and 5-year interest rate swap	65
3.16	Illustrative example of the data of scenarios for a Historical Monte Carlo simulation	66
3.17	Illustrative example of the data of scenarios for a Historical Monte Carlo simulation with	
4 1	multiple step lengths	68
4.1	Display of the risk underestimation when considering uncollateralised risk	77
1.2	without the gap risk	77
4.2	Display of the risk underestimation when considering uncollateralised risk	77
1.2	without the gap risk	77
4.3	EPE profile change from collateralised to uncollateralised, for a 5-year swap	78 70
4.4 4.5	EPE profile change from collateralised to uncollateralised, for a 5-year forward	79 79
4.3	Erg prome change from conateransed to unconateransed, for a 5-year long can option	/9

XX	List of	Figures
----	---------	----------------

4.6	EPE profile change from collateralised to uncollateralised, for a 5-year short call option	80
4.7	EPE profile change from collateralised to uncollateralised, for a 5-year long put option	80
4.8	EPE profile change from collateralised to uncollateralised, for a 5-year short put option	81
4.9	PFE 90% profile change from an ideal CSA to 2-week margining, for a 5-year forward	81
4.10	PFE 90% profile change from an ideal CSA to an increased counterparty threshold, for a	
	5-year forward	82
4.11	PFE 90% profile change from an ideal CSA to an increased own threshold, for a	
	5-year forward	82
4.12	PFE 90% profile change from an ideal CSA to an increased minimum transfer amount, for	
	a 5-year forward	83
4.13	PFE 90% profile change from an ideal CSA to an increased rounding, for a 5-year forward	83
4.14	PFE 90% profile change from an ideal CSA to an increased initial margin, for a 5-year forward .	84
5.1	EPE profiles for two illustrative netting sets	91
5.2	EEPE value as the notional of netting set 1 changes	91
5.3	Maximum of the EPE profile value as the notional of netting set 1 changes	91
6.1	Example of add-on Basel I table for calculation of PFE	94
6.2	Example of exposure calculation for a netting set with the MtM $+$ add-on methodology	95
6.3	Example of exposure calculation for a netting set with the $MtM + add$ -on methodology	
	with an undesired result	95
6.4	Example of exposure profile calculation for a netting set, assigning a flat exposure profile	
	to each trade corresponding to its peak exposure	
6.5	Example exposure profile for a netting set, assigning a flat line to each trade contribution	96
6.6	Gap risk, PFE at 95%, for an at-the-money call option	99
7.1	Simplifed illustration of the payments structure of a credit default swap	
7.2	Historical default rates	
7.3	Illustration of an exponential smoothing technique for PD estimates	
7.4	Default rates per sector in the 1920–2010 period	
7.5	Global corporate average cumulative default rates (1981–2011)	
7.6	Global corporate average marginal default rates (1981–2011)	
7.7	Sample of credit migration matrix	
7.8	Default rate and average recovery rate (1-LGD) (1982–2001)	
7.9	Illustration of a Merton model simulation	
7.10	Dependency of the equity value and default probability under the Merton model	
7.11	Illustrative example of a loss distribution, the expected loss and the unexpected loss	
8.1	Illustration of the history of counterparty credit risk in financial institutions	
8.2	Illustration of the hierarchy of the CVA calculation	
8.3	Illustration of the lattice points for a recursive CVA calculation	139
8.4	CVA pricing error (standard deviation of the price over several calculations) for a 10-year	
	interest rate swap	
8.5	Illustrative term structures of credit spreads	
9.1	Illustration of regulatory capital charge calculation	
9.2	Illustration of the Basel definitions of EE_{reg} , EEE_{reg} , $EEPE_{reg}$ and EPE_{reg}	
9.3	Illustrative default rate profile and expected PD. The UL is the difference between them	
9.4	Illustration of expected and unexpected loss in a probability density graph of losses	159

xxii	List of Figures
xxii	List of Figures

16.1	Illustration of hedging simulations with and without P&L leak	297
16.2	Illustration of the CVA model validation process	298
16.3	Illustration of the focus of both market and counterparty risk analytics in the future	
	distribution of values for a given instrument or portfolio	300
17.1	Illustrative example of a backtesting exercise for a VaR model. Each circle constitutes	
	an exception	303
17.2	Probability distribution of exceptions, at 99% confidence, that a "perfect" model gives in a 12-month period	304
17.3	Illustration of backtesting methodology via percentile envelopes	
17.4	Illustration of backtesting methodology via distance metric of distribution functions	
17.5	Illustrative example of the distribution of <i>Ds</i> compatible with the model	
18.1	Illustration of the calculation hierarchy in an XVA system	
18.2	Illustration of the basic set-up of an XVA system architecture	
18.3	Overall illustration of the process needed to generate the input data for an XVA system	
18.4	Illustration of the difference between save-and-use and on-the-fly architecture in	
	XVA systems	324
19.1	Illustration of the concept of novation that takes place when a derivative is centrally cleared	
19.2	Illustration of counterparty risk interconnections with and without central clearing	
19.3	Illustration of the clearing arrangement with CCP non-members	
19.4	Illustration of the cascade of losses in a CCP when a member defaults	
19.5	Typical default probability and risk weight (RW) for capital calculation, assuming	
	loss-given-default of 40% and a portfolio maturity of five years, with a regulatory PD	
	floor of 0.03%	336
19.6	Illustration of an Initial Margin calculation	338
19.7	Time series of the US Effective Federal Funds Rate	340
A.1	Illustration of money creation through the banking credit system	347
A.2	Time series of the Federal Reserve monetary base (M0) and M2 metrics	
B.1	Example showing how the adding rule overestimates exposure in the regulatory EEPE	
B.2	Example of the adding rule overestimating and underestimating PFE and CESF	351
G.1	Dependency structure implied by the Merton model between equity prices and default	
	probabilities, together with exponential, power, and logarithmic fits	
G.2	Volatility term structure implied by the Merton model	359
H.1	Impact of DWR modelling on counterparty credit risk metrics on an uncollateralised long	
	put option	361
H.2	Impact of DWR modelling on counterparty credit risk metrics in a collateralised long	
	put option	362
H.3	Impact of DWR modelling on counterparty credit risk metrics in a collateralised short	
	put option	363
H.4	Impact of DWR modelling on counterparty credit risk metrics in a uncollateralised long	
	call option	363
H.5	Impact of DWR modelling on counterparty credit risk metrics in a collateralised long	
	call option	364
H.6	Impact of DWR modelling on counterparty credit risk metrics in a collateralised short	
	call option	364

Acknowledgements

The author would like to acknowledge and thank the following people for their contribution to this book, in the form of their insightful conversations, feedback or direct contribution.

Aliki Georgakopoulou Director, Bank of America Merril Lynch.

Chris Morris Director, Credit Suisse.

Ersel Korusoy Director, Royal Bank of Scotland.

John Ovens Managing Director and Head, Resource Management Group, CIBC Wholesale Bank.

Antonio Ruiz Director, Credit Suisse.

Olaf Springer Managing Director, Credit Suisse.

Robert Dargavel Smith Managing Director, Banco Santander.

Part I The Context

The Banking Industry, OTC Derivatives and the New XVA Challenge

Before going into the details of the XVA world, we want to understand where it fits in the whole financial and banking system. In this chapter, we are going to see the basics of how banks work and operate, where the world of derivatives fits in and what is XVA to that world.

Financial institutions are extremely complicated entities these days. Because of that, the overview that is given in this chapter is, purposely, somehow over-simplistic. Otherwise the reader may get lost with details not well understood while missing the broad picture.

1.1 A simple bank's balance sheet

Balance sheets are the accounting tool used to produce a snap shot of a bank's financial position. Let's have a look at them. In order to do this, we are going to build a balance sheet from the ground up. It is going to be a very simplified picture, to ensure that the key points are not missed out.

1.1.1 The banking book

In order to understand how banks operate, let's create a "toy" bank model.

Let's say that a collection of ten investors decide to create a bank from scratch. To do this, each of them provides, say, \$1, and so the starting bank funds are \$10, and ten equal shares are given to those investors. In accounting terms, this translates into the balance sheet of the bank so that it has assets of \$10 (the money given by the investors) and equity of \$10 too (the shares).

As a first line of business, the bank can take deposits from customers and keep their money safe in a vault. It can then provide some useful basic financial services like paying bills directly, debit and credit cards, cheque books, transfer money to another account in another bank on the client's behalf, etc., for which the bank will charge a fee. Let's say that the bank has received another \$15 in deposits. Now the bank's balance sheet has \$25 in assets (the money it has in its vaults), \$15 in money owed to customers (the money deposited by clients), and \$10 in equity.

Now, here comes a second and most important line of business: the bank realises that from the \$15 it has from depositors, it only needs to have readily available, say, \$4; the other \$11 are always sitting in its vaults and nobody ever claims them in practice. So it decides to lend money out and charge for it. It can lend out the \$10 that it had originally from the bank owners, and the \$11 that are never used. In this way, it can lend out to other customers \$21. For the sake of argument, let's say that the rate at which the bank is lending out that money is 10% per year.

Going further, the managers of this toy bank realise that there are lots of potential clients wanting to borrow money at a 10% rate, so it decides to go to other financial institutions and borrow money at, say 4%, and then lend it out at 10%, hence making 6% per year on these operations. Let's say it borrowed \$20, and let's refer to these loans as "bonds".

We are going to illustrate this graphically, but before doing so let's go one step further. In practice, our toy bank faces different sorts of borrowing requirements from clients. For example, some clients want to buy a house with a loan and are happy to secure it with the house itself (a mortgage), so the bank is happy to lend at a lower rate of, say, 6%, as the potential losses it faces in mortgages is lower than in unsecured loans. Also, other customers want to be able to do instantaneous purchases of small items (e.g., buy a TV set) and so they are happy to pay a high interest if the bank can help them buy those purchases whenever they want and pay back to the bank in a few months, without asking any questions, without any fuss. These are credit cards. Our toy bank decides to charge a 20% interest rate on them as the potential losses (i.e., customers not paying back the loan) from those credit card loans are greater than those from common loans.

So, to summarise, the bank is taking money from different sources. It is keeping part of it as cash, to cover the demand for money from the depositors, and it is also lending the rest of the money out to different customers in various forms. The taking of money constitute the bank liabilities (equity from bank owners, deposits, bonds) and what it has and gets with that money are the assets (cash, loans, mortgages, credit cards).

Figure 1.1 illustrates how the balance sheet of our toy bank looks. Readers should note that, always, assets are equal to liabilities.

So far, the picture of our toy bank has been static. That is, we are considering the assets and liabilities of the bank at a given point in time. However, the value of the assets in a bank changes over time. Let's suppose that the bank holds some cash in a foreign currency. In this case the value of that cash will change over time following the exchange rate (FX Risk). Another source of change in value can come from changes in the present value of future money² (Interest Rate Risk). Another source of change in value can come from the fact that, for example, we realise that the default rate of a number of loans that we have in the past is higher than originally expected and, so, the balance sheet should reflect this and decrease the present value of those

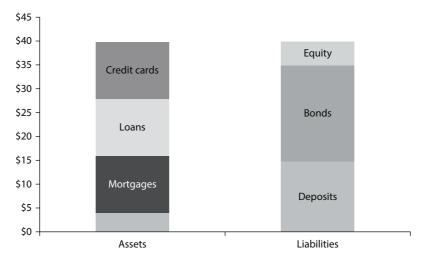


Figure 1.1 Example of a simplified banking book

loans³ (Credit Risk). In general, a bank can have on its balance sheet other assets, like equity for example, that will change in value over time.⁴

Right now, the main point is to realise that the Asset side of the balance sheet of a bank fluctuates in value with time. The statement that reflects the changes in that value is the "Profit and Loss" statement of the bank for the period under consideration. As said, a fundamental law of accounting is that assets must be equal to liabilities. However, the liabilities that the bank has to its creditors (via deposits and bonds in this toy bank) do not change, so any profit or loss on the Asset side of the balance sheet is absorbed by the Equity: keeping the non-equity liabilities constant, when the bank balance sheet increases in value, the equity increases in value with it, and vice versa.

For the sake of completeness, in addition to the balance sheet and the profit & loss statements, a third important piece of information is the cash-flow statement, that states the cash that has gone in and out of the bank. We are not going to use it, but it is good to mention it here for completeness.

Everything seen so far in this section is called the banking book of a bank. We are going to see the different other parts of the balance sheet in the next sections.

1.1.2 The trading book

So far, every one of the assets and liabilities we have seen are "physical" in the sense that they require the transmission of relatively large amounts of money at the beginning and at the end. The bank takes deposits today and will give it back when the clients demand them, in a loan the bank gives the cash today and it will received it back in the future, etc. However, a bank can trade also financial derivatives that are less cash intense, but that can be very important for a bank and can carry a high quantity of risk. Let's give a few examples.

Our toy bank has a car manufacturer in Germany as a client; for example, BMW. BMW sells around 20% of its cars in the US.⁵ Obviously, the price of the cars it sells in the US is fixed each year in US dollars. So, BMW faces foreign exchange (FX) risk in this department: it does not know how many euros it will receive for a given number of cars that it sells in the US. Companies do not like uncertainty, and even less uncertainty that is outside their core business, which is car manufacturing in this case. As a result, BMW will be happy to hedge out this FX risk: they like to know that for every car they sell, they get a fixed amount of euros; then, they will make sure they sell lots of cars, as that is their core business.

So, our toy bank steps in and offers BMW the following product: let's say that today's EURUSD exchange rate is 1.2, and that BMW wants to protect \$120 million of sales, that are €100 million today. Our bank is going to sell to BMW a contract that is settled in 1 year, that is going to compensate for any loss in euros coming from changes in the FX rate. Also, they agree that any gain that BMW has in euros, should the FX rate move in its favour, will be delivered to our bank. In other words, if BMW loses euros because the FX rate goes against them, then the bank gives that loss to BMW, but if it gains euros because the FX rate moves in BMW's favour, then the bank receives that gain from BMW.

In this way, BMW is happy because it knows that if it sells its expected 4,000 cars at an average price of, say, \$30,000, it will receive \$120 million that, then, will transform into €100 million exactly, regardless of what happens to the EURUSD exchange rate during this year. This is, more or less, a very simple derivative called "FX forward".

However, the story does not finish here, as our toy bank may have another client in the US that has the same but symmetric problem: it sells, for example, computers in Europe, but makes its accounts in US dollars, so it likes stability in this later currency. So, our toy bank can sell the same but opposite product to that American company (Apple Computers, for example). In this way, everyone is happy: BMW has hedged out its FX risk,

Apple Computers has hedged it out too, and the bank is sitting in the middle, making a fee for this risk transfer service.

In practice, financial derivatives can be most complicated; this is a very simple and somewhat idealistic example. Banks have developed a whole range of financial derivatives that range from a simple forward to other very sophisticated contracts customised to customers' needs. With these derivatives, banks offer a channel to *transfer and mitigate risk*. Banks can offer these derivatives in all sorts of markets: FX, interest rates, equity, credit, commodities, weather, insurance, etc.

From the bank's point of view, the part of the balance sheet that deals with the value of these assets is called the trading book. As we will see, the value of the trading book can change very rapidly, as it is very sensitive to market variables, that swing around permanently. For this reason, while the banking book is typically marked (that is, it is valued) from time to time (e.g., monthly), the trading book needs to be marked daily.

A key feature of the trading book is that, ideally, a bank uses this type of trade to offer, only, financial services and so it should be, in theory, market neutral. By this it is meant that, following our example, the changes in the value of the FX forward done with BMW will be the same and opposite to the FX forward done with Apple Computers. As a result, in principle, the value of the trading book should be neutral to swings in the market variables. However, things are usually not like that, for a number of reasons. These include that a bank may choose to not be market neutral and have a directional position in some markets (e.g., to benefit if the EURUSD increases at the risk of losing money if it decreases), perhaps the nature of the market it operates does not let the bank be market neutral, perhaps the systems it has in place do not let the bank see the risks it has taken⁶ . . . there could be many reasons.

In practice, banks cannot become market neutral relying only on trades done with clients directly. So, in order to manage these risks, banks have access to a wholesale market of financial products that they can trade with each other to transfer risk between them. This is why this part of the book is call the "trading" book: banks trade these financial derivatives constantly with each other in order to offer the services they are required and to hedge out their risk. As a result, the number and nature of the trades sitting in the trading book is quite unstable, it can change very quickly.

To add some more complexity, the notion of the trading book is usually expanded to some products that can live both on the banking and trading book depending on the bank's intentions with respect to them. For example, a bank can decide to lend money to the US government for ten years by buying a ten-year treasury bond. If it decides to lend that money and wait for ten years to get the money back, then this bond should sit on the banking book. However, the treasury bond market is very liquid (that is, you can sell and buy these bonds very easily), and the bank may decide to buy this bond today, hold it for ten days and sell it again for whatever reason. If so, then this bond typically goes into the trading book of the balance sheet.

So, in reality, the trading book should comprise those products that are "actively" traded. The rest should go into the banking book. With this in mind, the reader may be able to see now how some financial assets go naturally to the banking book (e.g., a mortgage held to maturity) and some others go naturally to the trading book (e.g., an exotic financial derivative that is actively hedged), but there is a range of products that sit in the middle, that go into one or another book depending on the bank's intention with it and whether it is actively traded or not.⁷

The different nature of the trading versus the banking book makes the trading book more sophisticated and, hence, more difficult to risk-manage. As a result, banks need complex risk departments, with sophisticated systems, to quantify, understand and manage the risks lying in the trading book. This book will mostly cover this topic. In particular, counterparty credit and funding risk.

Figure 1.2 illustrates a simplified bank's balance sheet both with a banking and a trading book.

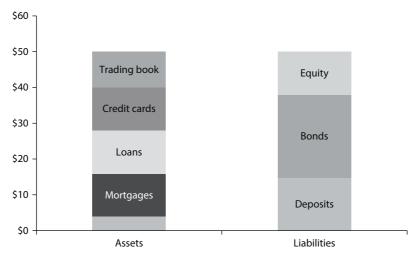


Figure 1.2 Example of a simplified bank's balance sheet

1.1.3 Off balance sheet assets

There is a last type of assets that banks can have but that do not sit on the balance sheet directly and, hence, are called "off ballance sheet" assets.

A financial institution will be holding assets on behalf of its clients, like equities or bonds, but those assets do not belong to the bank. An example is the brokerage unit of a bank. Also, a bank may "securitise" some of its debt-assets and so they will be held as off-balance sheet items. It is not the goal of this book to go into the details of what is asset securitisation in this context, so let's leave it for now saying that these are assets that the bank holds on behalf of another legal entity and, most importantly, to which it does not have direct rights.

1.2 The role of banks in the economy

Once we have understood some basics of the composition of a bank's balance sheet, we can see why banks are so important to an economy. The function that banks provide can be split into three:

1. Money management

The first service they provide is what is most common to all of us: we need a place to put our money, a place that we can be assured will keep it safe, that provides us with easy access to it if we need it via check books and debit cards, and also that facilitates the transfer of money to other banks, countries, etc. This banking service, being most primary to an economy, is not the only one that is relevant.

2. Banks facilitate the provision of credit in the economy

This service is also very important. We have seen how our toy bank was, in fact, a *vehicle* for savers (customers that deposit their money in the bank, and that lend money to the bank) to lend their money to borrowers that want it. This is a crucial role of banks. If banks did not exist, an individual would not have a simple way to borrow money from savers and invest it in a business, a house, etc., and hence economic development would be strongly dampened.