Quantitative Finance

Adil Reghai

Back to Basic Principles

Quantitative Finance

Applied Quantitative Finance series

Applied Quantitative Finance is a new series developed to bring readers the very latest market tested tools, techniques and developments in quantitative finance. Written for practitioners who need to understand how things work 'on the floor', the series will deliver the most cutting-edge applications in areas such as asset pricing, risk management and financial derivatives. Although written with practitioners in mind, this series will also appeal to researchers and students who want to see how quantitative finance is applied in practice.

Also available

Chris Kenyon, Roland Stamm
DISCOUNTING, LIBOR, CVA AND FUNDING
Interest Rate and Credit Pricing

Marc Henrard
INTEREST RATE MODELLING IN THE MULTI-CURVE FRAMEWORK
Foundations, Evolution and Implementation

Ignacio Ruiz XVA DESKS: A NEW ERA FOR RISWK MANAGEMENT Understanding, Building and Managing Counterparty and Funding Risk

Leo Krippner zero Lower Bound Term Structure Modelling A Practitioner's Guide

Quantitative Finance

Back to Basic Principles

Adil Reghai *NATIXIS*, *France*

© Adil Reghai 2015

Foreword I @ Cedric Dubois. 2015 Foreword II @ Eric Moulines. 2015

Softcover reprint of the hardcover 1st edition 2015 978-1-137-41449-6

All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission.

No portion of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, Saffron House. 6–10 Kirby Street. London EC1N 8TS.

Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

The author has asserted his right to be identified as the author of this work in accordance with the Copyright, Designs and Patents Act 1988.

First published 2015 by PALGRAVE MACMILLAN

Palgrave Macmillan in the UK is an imprint of Macmillan Publishers Limited, registered in England, company number 785998, of Houndmills, Basingstoke, Hampshire RG21 6XS.

Palgrave Macmillan in the US is a division of St Martin's Press LLC, 175 Fifth Avenue, New York, NY 10010.

Palgrave Macmillan is the global academic imprint of the above companies and has companies and representatives throughout the world.

Palgrave® and Macmillan® are registered trademarks in the United States, the United Kingdom, Europe and other countries

ISBN 978-1-349-49028-8 ISBN 978-1-137-41450-2 (eBook) DOI 10.1057/9781137414502

This book is printed on paper suitable for recycling and made from fully managed and sustained forest sources. Logging, pulping and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

A catalogue record for this book is available from the British Library.

A catalog record for this book is available from the Library of Congress.

To my parents, my spouse Raja, and my daughters Rania, Soraya, Nesma & Amira

This page intentionally left blank

Contents

	List of Figures xi
	List of Tables xv
	Foreword I xvii Cédric Dubois
	Foreword II xix Eric Moulines
	Acknowledgments
1	Financial Modeling
2	About Modeling
3	From Black & Scholes to Smile Modeling 28 A Study of derivatives under the Black & Scholes model 28 Methodology 29 The search for convexity 31 Vanilla European option 34 Numerical application 34 Price scenarios 35 Delta gamma scenarios: 35 European binary option 37 Price Scenario 38 Delta and gamma scenarios 38 American binary option 40 Numerical application 40 Price scenario 40 Delta and gamma scenarios 41
	Barrier option

		Asian option
		Numerical application
		Price scenario
		Delta and gamma scenarios
		When is it possible to use Black & Scholes 48
	В	Study of classical Smile models
		Black & Scholes model 56
		Term structure Black & Scholes
		Monte Carlo simulation 61
		Terminal smile model 61
		Replication approach (an almost model-free approach) 64
		Monte Carlo simulation (direct approach) 65
		Monte Carlo simulation (fast method) 65
		Classic example 67
		Separable local volatility
		Term structure of parametric slices 69
		Dupire/Derman & Kani local volatility model
		Stochastic volatility model
	С	Models, advanced characteristics and statistical features 83
		Local volatility model
		Stochastic volatility model
4	Wha	at is the Fair Value in the Presence of the Smile?
	A	What is the value corresponding to the cost of hedge? 94
		The Delta spot ladder for two barrier options
		The vega volatility ladder
		The vega spot ladder
		Conclusion
5	Mon	no Underlying Risk Exploration
		Dividends
		Models: discrete dividends
		Models: cash amount dividend model
		Models: proportional dividend model
		Models: mixed dividend model
		Models: dividend toxicity index
		Statistical observations on dividends
		* 1.11
		Interest rate modeling
		Models: why do we need stochastic interest rates? 109
		Models: why do we need stochastic interest rates?
		Models: why do we need stochastic interest rates?
		Models: why do we need stochastic interest rates?

	Local volatility calibration115Alpha stable process115Truncated alpha stable invariants117Local volatility truncated alpha stable process119
6	A General Pricing Formula
7	Multi-Asset Case
8	Discounting and General Value Adjustment Techniques153Full and symmetric collateral agreement154Perfect collateralization156Applications157Repo market158Optimal posting of collateral158Partial collateralization159Asymmetric collateralization159
9	Investment Algorithms 161 What is a good strategy? 162 A simple strategy 167 Reverse the time 169 Avoid this data when learning 170 Strategies are assets 175 Multi-asset strategy construction 176 Signal detection 176 Prediction model 180 Risk minimization 181
10	Building Monitoring Signals
	A Fat-tail toxicity index

x Contents

В	Volatility signals
	Nature of the returns
	The dynamic of the returns
	Signal definition
	Asset and strategies cartography
	Asset management
C	Correlation signals
	Simple basket model
	Estimating correlation level
	Implied correlation skew
	Multi-dimensional stochastic volatility 208
	Local correlation model
Gene	eral Conclusion
Solu	tions
Bibli	ography 220
Inde:	x

List of Figures

1	rumber of random numbers simulated during a day for a segment	
	of a derivative activity	4
2	Kepler Aires law	12
3	Incremental modeling approach from physics	12
4	Sample implied volatility surface	14
5	Smile slice observation	16
6	Implied volatility slice (Keplerian type of model)	17
7	Fitting the backbone volatility without the interest	
	rates contribution	20
8	Fitting the backbone volatility with the interest rates contribution	21
9	Implied volatility surface obtained from previous dynamic	23
10	Slope as a function of the inverse of the square root of maturity	
11	Curvature as a function of the inverse of time	24
12	FGamma smile calibration with zero mixing weight	25
13	FGamma smile calibration with 50% mixing weight	26
14	FGamma smile calibration with 100% mixing weight	26
15	Convexity search for three extra parameters	33
16	Vanilla call pricing graph	35
17	Vanilla call delta graph	36
18	Vanilla call gamma graph	36
19	European binary call price graph	38
20	European binary call delta graph	39
21	European binary call gamma graph	39
22	American binary pricing graph	41
23	American binary delta graph	41
24	American binary gamma graph	
25	Barrier option pricing graph	
26	Barrier option delta graph	44
27	Barrier option gamma graph	44
28	Asian option pricing graph	
29	Asian option delta graph	47
30	Asian option gamma graph	47
31	Gamma map European call	
32	Gamma map European call with 1 dividend	
33	Gamma map European call with 3 dividends	51

34	Gamma map American call	52
35	Gamma map American call with 1 dividend	52
36	Gamma map American call with 3 dividends	53
37	Gamma map barrier option call up & out with no dividends	54
38	Choice of the time convention and its impact on the theta	
	calculation	57
39	Black & Scholes calibration set	57
40	Term structure Black & Scholes calibration set	59
41	Vega (T) for a five-year Asian option (five fixings)	60
42	Terminal smile calibration set	62
43	Equity-like smile: local volatility versus implied volatility	
44	FX-like smile: local volatility versus implied volatility	64
45	Commodity (Gold)-like smile: local volatility versus implied volatility	64
46	Markov chain calculation representation	67
47	Separable local volatility calibration set	69
48	Dupire local volatility calibration set	71
49	The most likely path	72
50	The fixed point algorithm scheme	74
51	FTSE local volatility as of 1 February 2008	74
52	NKY local volatility surface as of 1 February 2008	75
53	SX5E local volatility surface as of 1 February 2008	75
54	Vega KT of a call up & out	76
55	Vega KT for put down & in	77
56	Vega KT for an Asian option	
57	Dynamic of the at the money volatility	
58	SX5E spot and volatility times series	
59	Volatility evolutions (historical versus the model ones)	87
60	Volatility of volatility under theoretical models and historical	
	observations	
61	SX5E Estimation of the mixing weight per maturity over time	
62	Delta spot ladder for two barrier options	
63	Vega volatility ladder for the barrier option	
64	Vega spot ladder of two different barrier options	
65	Incremental model identification in the presence of the smile	
66	Black & Scholes Spot Path with and without dividends	102
67	Cash amount dividend modeling	
68	Proportional dividend modeling	
69	Mixed dividend modeling	105
70	FTSE index and dividend futures evolution	
71	Trend for the dividend mixing weight as a function of time	
72	Annual dividend yield distribution for the Euro top 600	
73	Quartile dividend yield distribution	108

74	Incremental model identification in the presence of the
	dividend risk
75	The interest rate model fudge approach
76	Incremental model identification in the presence of interest
	rate risk
77	Fast decay of the forward skew SPX
78	Fast decay of the forward skew SX5E
79	A possible path issued from the alpha spot path \ldots
80	Implied 3m forward skew in the alpha stable model
81	$3m$ Forward skew as a function of the volatility level $\ldots \ldots \ldots 119$
82	Dupire local volatility versus alpha local volatility
83	Incremental model identification in the presence of Forward skew $\ \ldots \ 121$
84	Comparison between the historical correlation and the
	basket-implied correlation
85	Basket price spot ladder (correlated and uncorrelated move) 133
86	Basket delta spot ladder (correlated and uncorrelated move) $\ \ldots \ 134$
87	Gamma price spot ladder (correlated and uncorrelated move) 134
88	Cega spot ladder (correlated and uncorrelated move) 135
89	Worst of price spot ladder (correlated and uncorrelated move) 136
90	Worst of delta spot ladder
91	Worst of Gamma spot ladder
92	Cega spot ladder worst of
93	Best of put spot ladder
94	Best of put delta spot ladder
95	Best of put gamma spot ladder
96	Cega spot ladder
97	Fixed point algorithm calibration of the local volatility local 146
98	Super Cega KT for the call on worst of
99	Lambda estimation for a conservative business level 149
100	Lambda estimation for a moderate business level 150
101	Lambda estimation for an acceptance business level 150
102	SX5E spot chart for the period 2007–2013
103	Kelly mean reverting strategy chart compared with the buy and
	hold strategy
104	Kelly strategy performance on reverse SX5E 169
105	Gold path where learning is biased due to the poorness of the
	structure
106	Crude oil where learning is biased due to the presence of a jump 171
107	A good performance obtained randomly
108	Random Sharpe distribution versus Kelly mean reverting
	SX5E strategy

xiv | List of Figures

109	Typical strategy with a region of performance and a region of
	underperformance
110	Kelly Strategy applied to a given VIX future strategy 176
111	Illustration of random matrix theory
112	Autocorrelation results
113	Volatility strategy equity line
114	Comparison of normal volatility and alpha volatility
115	Fat tail toxicity indicator for several stocks
116	Comparison of harmonic volatility swap with the alpha volatility
	and normal volatility
117	q-Gaussian distribution
118	q Estimation for different sectors before and after the crisis 191
119	SPX Prices and returns. Clusters are clearly identified 191
120	SX5E daily returns and Value at Risk under the Gaussian and q
	Gaussian models
121	Trend for the number of Gaussian VaR exceptions for SX5E index 193
122	ARPI indicator filtered by HMM algorithm
123	CSV for a non-linear portfolio
124	HMM model applied to cross sectional volatility
125	Strategies based on the HMM algorithm 200
126	Average historical correlation for the SX5E universe
127	Average Implied correlation using the skew calculation 205
128	Comparison of three different correlation estimators (historical,
	implied from volatilities and implied from skews) 205
129	Ratio of the implied correlations from the skew and the historical
	correlation
130	Proportion of the index skew from the individual skews 211
131	Calculation of the correlation skew premium

List of Tables

1	Black & Scholes pricing formula
2	Stylized facts from data observations
3	Vanilla call payoff and pricing formula
4	European binary 37
5	American binary
6	Barrier option payoff and pricing formula under the Black &
	Scholes model
7	Asian option pricing formula
8	Is Black & Scholes an appropriate model?
9	Gamma smoothing technique 55
10	European binary smoothing (by a call spread) 55
11	Stochastic volatility parameters and their impact on the shape
	of the smile
12	Stochastic volatility model and its local volatility counterpart 81
13	Toxicity index for several products
14	Volatility dynamic for different models
15	Typical mixing weights for different markets
16	Different models and summary of pricing formulae 92
17	Barrier option pricing in two different markets
18	Power law estimates and impact of the 2008 crisis
19	Comparison of prices of a 1y crash put option on SX5E under two
	different models
20	Worst of put and best of call sensitivity analysis
21	Valuation best of put
22	PnL Option and its hedge during a large stress test similar to that
	observed during a crisis
23	Classical measures of performance
24	Buy and hold SX5E from Jan 2007 to Jan 2013 166
25	Table 25 Kelly mean reverting strategy on SX5E from
	Jan 2007 to Jan 2013
26	Good performance obtained on a random path 172
27	Volatility scenario and impact of the strategy on the Sharpe 174
28	Lambda scenario and impact of the strategy on the Sharpe 174
29	Volatility of volatility scenario and impact of the strategy
	on the Sharpe 174

xvi | List of Tables

30	Performance for a volatility index strategy based on VIX futures 176
31	Performance of a Kelly Strategy applied on a volatility
	index strategy 177
32	Central limit theorems under different assumptions 189
33	US and EUR equity market
34	A signal for the Chinese equity market
35	Returns by asset class and regime
36	Volatilities by asset class and regime
37	Cartography of value and growth strategies 199

Foreword I

The valuation of financial derivatives instruments, and to some extent the way they behave, rests on a numerous and complex set of mathematical models, grouped into what is called quantitative finance. Nowadays, it should be required that each and every one involved in financial markets has a good knowledge of quantitative finance. The problem is that the many books in this field are too theoretical, with an impressive degree of mathematical formalism, which needs a high degree of competence in mathematics and quantitative methods.

As the title suggests, from absolute basics to advanced trading techniques and P&L explanations, this book aims to explain both the theory and the practice of derivatives instruments valuation in clear and accessible terms. This is not a mathematical textbook, and long and difficult equations that are not understandable by the average person are avoided wherever possible.

Practitioners have lost faith in the ability of financial models to achieve their ultimate purpose, as those models are not at all precise in their application to the complex world of real financial markets. They need to question the hypotheses that are behind models and challenge them. The models themselves should be applied in practice only tentatively, with careful assessment of their limitations in each application and in their own validity domain, as these can vary significantly across time and place.

This is especially true after the global financial crisis. The financial world has changed a lot and witnesses a much faster pace of crisis. New regulations and their application in modeling have become a very important topic which is enforced through regulatory regimes, especially Basel III and fundamental review of the trading book for the banking industry.

This book nicely covers all these subjects from a pragmatic point of view. It shows that stochastic calculus alone is not enough for properly evaluating and hedging derivatives instruments. It insists on the importance of data analysis in parameters estimation and how this extra information can be helpful in the construction of the fair valuation and most importantly the right hedging strategy.

At first sight, this ambitious objective seems to be tough to achieve. As a matter of fact, Adil Reghai has done it and furthermore treated it in a very pedagogical way.

Finally, the reader should appreciate the overall aim of Adil's book, allowing for useful comparisons – some valuation methods appearing to be more robust and trustworthy than others – and often warning against the lack of reliability of some quantitative models, due to the hypotheses on which they are built.

xviii Foreword I

For all these reasons, this book is a must have for all practitioners and should be a great success.

Cédric Dubois Global Head of Structured Equity and Funds Derivatives Trading Natixis SA London

Foreword II

Quantitative finance has been one of the most active research fields in the last 50 years. The initial push in mathematical finance was the 'portfolio selection' theory invented by H. Markowitz. This work was a first mathematical attempt towards trying to identify and understand the trade-offs between risks and returns that is the central problem in portfolio theory. The mathematical tools used to develop portfolio selection theory resulted in a rather elementary combination of the analysis of variance and multivariate linear regression. This model of assets price immediately leads to the optimization problem of choosing the portfolio with largest return subject to a given amount of risk (measured here rather simplistically as the variance of the portfolios, ignoring fat tails and non Gaussiannity). The work by H. Markowitz was considerably extended by W. Sharpe, who proposed using dimension reduction: instead of modeling the covariance of every pair of stocks, W. Sharpe proposed to identify only a few factors and to regress asset prices on these factors. For these pioneering works, H. Markowitz and W. Sharpe received 1990 Nobel prizes in economics, the first ever awarded to work in finance.

The work of Markowitz and Sharpe introduced mathematics into what was previously considered mainly as the 'art' of portfolio management. Since then, the mathematical sophistication of models for assets and markets increased quite rapidly. 'One-period' investment models were quickly replaced by continuous-time, Brownian-motion driven models of assets (among others, the emblematic geometric Brownian motion, soon followed by more complex diffusion models with stochastic volatilities); the quadratic risk measure was substituted by much more sophisticated increasing, concave utility functions. Most importantly, the early work of R. Merton and P. Samuelson (among others!) laid the foundations of thinking about assets prices, corporate finance, and exchange rate fluctuations with sophisticated mathematical (mostly stochastic) models.

A second revolution was triggered by the appearance in the mid 1980s of the market of derivative securities. The pioneering work in this domain is due to F. Black, R. Merton and M. Scholes, who laid down the theory and the methods to price the value of an option to buy a share of a stock at a given maturity and strike price (a European call option). The basic idea to compute the price of this derivative security (etymologically, which derives its value from the underlying asset) is to construct a hedging portfolio, defined as a combination of a (fraction) of the share on which the call is written and a riskless asset, to replicate the option. The hedging portfolio is constructed in such a way that at any time the option should be

worth as much as the portfolio, to eliminate arbitrage opportunities. Based on the principle of absence of arbitrage (which is highly controversial), Black and Scholes have derived an explicit expression for the price of a European call. This work, soon extended by R. Merton, was also awarded with a Nobel prize in economics.

This initial push was immediately followed by an amazing number of works providing theoretical foundations for the financial world. Most of the early developments were based on stochastic calculus making heavy use of Itô Calculus and continuous diffusion. Later, the much more demanding theory of Levy processes and jump-diffusion enters into the scene. High-frequency trading and the modeling of market microstructure naturally draws attention to discrete-event stochastic models like interacting point processes to model, at a very fine time scale, order book dynamic. Of course, all these financial models need to be calibrated to the observed prices of assets and derivatives securities using sometimes very advanced statistical estimation methods. Derivative securities pricing and arbitrage strategy also rely on accurate and fast numerical analysis. This has naturally led to an escalation in the level of mathematics (probability, statistics, partial differential equation and numerical analysis) used in finance, to a point where research problems in mathematics are completely intertwined with the theory and the practice of finance. This has also caused a proliferation of financial instruments (barrier, binary, American options, among many others), whose complexity and sophistication sometimes defies understanding! There are only a few domains in science in which there exists such an intense cross-fertilization between theory and applications.

As masterfully pointed out by the author, despite their considerable mathematical sophistications the models used today in financial mathematics are in general fragile, being based on over-simplistic models of assets and market dynamics. For example, most financial models will still presuppose the absence of arbitrage opportunities (no trading opportunities yield profit without any downside risk), which implies the existence of an equivalent martingale measure under which discounted prices have the martingale property. These are of course the very beginning of a long list of half plausible assumptions, unverifiable axioms, which in practice have proved to be sometimes devastatingly erroneous! The book proposes novel approaches to pricing and hedging financial products safely and effectively, replacing elegant but erroneous assumptions with more realistic ones, taking into account that we live in a world of more frequent crises and fatter tail risks. Based on many years of academic research and practical trading experience, Adil Reghai convincingly assembles both proven and new approaches to answer the challenges of today's highly volatile financial markets. These models not only take their inspiration from probability and statistics, but also from physics and engineering.

This book very nicely offers an original explanation covering the field. It proposes amazing new insights and techniques and opens exciting avenues of research. The vision developed in this book, questioning the foundations of mathematical finance, is truly unique. I have learned a lot reading this amazing book and I sincerely hope that the reader will enjoy reading these pages as much as I did!

> Eric Moulines Professor at Télécom-Paris Tech

Acknowledgments

I would like to thank Nicole El Karoui, who taught me so much, and Jean Michel Lasry, who introduced me to this fascinating field and with whom I started my career. Also I would like to thank Christophe Chazot. He was my boss back in the late 1990s in London. One day, he asked me to step in for him to give a lecture for the Masters of Finance programme in Nice. I accepted without really knowing what I was in for. This programme is unique. Most of the teachers are practitioners, while students are carefully chosen from the top engineering and business schools. The aim is to provide them with insights into the business and ensure their familiarity with the requisite tools is operative by the end of their training. I am delighted to have taken part in this unique experience, especially as this Masters is currently ranked among the top 10 in the world by the Wall Street Journal. I share this success with my colleagues, especially Tarek Amyuni, head of the Specialized Masters in Financial Markets, Innovations and Technologies (FMIT) at SKEMA. I would like to thank him as a friend and colleague who devotes huge energy to this programme and to working in the interest of his students.

Quant work is collaborative. Progress is achieved by talking to people, reading papers and testing. I would like to thank many of my colleagues and peers. In particular, I would like to mention here some people whom I know well and who have unconsciously shaped the way I present this book.

Nicole El Karoui: for her friendship and advice over the years. She was in favour of mixing stochastics and statistics. On my undergraduate course she insisted on avoiding the perfect fit paradigm in favour of studying errors of fit when using statistical models.

Bruno Dupire: for his friendship and timely explanations and exchanges. I always enjoy talking with Bruno. He is innovative, detail-oriented, focused on creating value, yet modest.

Jim Gatheral: for sharing ideas and concepts and his enlightening explanations on several subjects. Among other things he offers is an excellent best starting point to understand any topic.

Lorenzo Bergomi: as a friend who has brought so much to the discipline. I bear in mind one of his descriptions of a 'quant': "quants are like doctors, they need to prepare the medicine before the patient is sick. If they bring the medicine too late the patient has suffered for too long and it won't work. If the medicine is provided in advance, the patient is unconscious and will not take it. A good quant is one who has the medicine and waits until the patient suffers just a little before delivering it".

Philippe Balland: for teaching me so much when I was in his team at Merrill Lynch. He taught me how to separate technical knowledge (stochastic calculus) from transient issues (statistical nature of the knowledge). Thanks to his teaching and years of work afterwards, I have been able to reconcile the two areas of knowledge in a clear way and effectively produce models for pricing and hedging. I also learnt how to move around with my laptop and undertake fascinating work on the move (I'm not sure my wife much appreciated this!).

Alex Langnau: for a unique and timely friendship beyond description, and for sharing thoughts and exchanging ideas and concepts. His thinking, derived from his background in physics, has profoundly influenced my own. Thanks to him, I have been able to complete the bridge between derivatives quants and investment quants.

I would also like to thank Mohamed El Babsiri, Taoufik Cherif and Michel Crouhy for encouraging me to make the effort to write a book from my lecture notes.

My thanks to many who have helped me in my thinking, exchanged with me on different issues: this book is a synthesis of our common knowledge. Any errors are, however, mine.

I thank the following: M. Messaoud, E. Giraud, A. Ben Haj Yedder, J. Luu, M. Souaille, M. Lakhdar, J.M. Prevost, G. El Boury, G. Boya, L. Jacquel, A. Moulim, F. El Khyari, S. Mielnik, T. Combarel, V. Garcin, M. Irsutti, O. Aw, E Tetard, F Hihi, L. Mathieu, M. Rivaud, L. Tur and A. Ibrahim.

I would like also to express my appreciation of Gisele Masante. She has dealt with a host of administrative and logistical tasks for many years.

Finally, my thanks go to all the students over the years who have attended my classes. They asked questions and helped me progress.

1 Financial Modeling

A Introduction

At the time of writing, the term **model** has been widely overused and misused. The US subprime financial crisis in 2008 and 2009 and its subsequent impacts on the rest of the economy have prompted some journalists and magazines to launch unfair attacks on 'quants', that is the designers of models.

This book presents a clear and systematic approach which addresses the problems of modeling. It discusses old and new models used on an everyday basis by us as practitioners in derivatives and also in quantitative investment.

The proposed approach is incremental as in the exact sciences.

In particular, we show the added value provided by the models and their use in practice.

Each model has a domain of validity and new models, with their added complexity, are only used when absolutely necessary, that is when older models fail to explain the trader's or investor's PnL.

We insist on the philosophy of modeling in the field of derivatives and asset management and offer a valuation and estimation methodology which copes with the non-Gaussian nature of returns, generally known as the Smile.

We suggest a methodology inspired from the exact sciences, allowing students, academics, practitioners and a general readership to understand developments in this field and, more importantly, how to adapt to new situations (new products, markets, regulations) by choosing the right model for the right task at the right time.

Derivatives pricing can be seen as extrapolation of the present (fit existing tradable products like vanilla options to price new ones like barrier options) and that quantitative investment is an extrapolation of the past (fit past patterns to predict the future). In our approach, we argue that derivatives pricing relies on extrapolation of both the present and the past. Our method allows the correct pricing of hedging instruments, as well as control of the **PnL** due to the variability of