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Preface

This volume is a compilation of research and survey papers in number theory,
written by members of the Women in Numbers (WIN) network, principally by the
collaborative research groups formed at Women in Numbers 3, a conference at the
Banff International Research Station in Banff, Alberta, on April 21-25, 2014.

The WIN conference series began in 2008, with the aim of strengthening the
research careers of female number theorists. The series introduced a novel research-
mentorship model: women at all career stages, from graduate students to senior
members of the community, joined forces to work in focused research groups on
cutting-edge projects designed and led by experienced researchers. This model had
tremendous success, branching out not only to WINE (Women in Numbers Europe)
but also to Algebraic Combinatorixx, WIT (Women in Topology), and others. The
Association for Women in Mathematics (AWM), funded by the National Science
Foundation, is now supporting this research-mentorship model under the umbrella
of the Research Collaboration Conferences for Women initiative.

The goals for Women In Numbers 3 were to establish ambitious new collabo-
rations between women in number theory, to train junior participants about topics
of current importance, and to continue to build a vibrant community of women
in number theory. The majority of the week was devoted to research activities.
Before the conference, the participants were organized into nine project groups by
research interest and asked to learn background for their project topics. This led
to more productive on-site research conversations and the groups were able to share
preliminary results on the last day. The workshop also included a lecture series about
arithmetic of curves, including elliptic curves, modular curves, and Shimura curves.

Forty-two women attended the WIN3 workshop, which was organized by the
last three editors of this volume. This included 15 senior and mid-level faculty, 15
junior faculty and postdocs, and 12 graduate students. This volume is the fourth
proceedings to come out of the WIN conference series. It is also the first in the
series published by Springer for AWM.

The editors invited WIN3 research groups and members of the larger WIN3
community to submit articles in 2014. After a thorough referee process by external
experts, we accepted 10 papers for the volume. One interesting attribute of the
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collection is the interplay between deep theory and intricate computation. The
papers span a wide range of research areas: arithmetic geometry, analytic number
theory, algebraic number theory, and applications to coding and cryptography. In
this preface, we point out a few connections between the papers.

A major theme of the volume is the study of rational points on varieties via
cohomological methods. Three papers on this theme are about rational points over
number fields. The paper Insufficiency of the Brauer-Manin obstruction for rational
points on Enriques surfaces (Balestrieri et al.) is about the failure of the Hasse
principle for surfaces. In the paper Shadow lines in the arithmetic of elliptic curves
(Balakrishnan et al.), the authors use information about analytic ranks and Tate-
Shafarevich groups to develop an algorithm for computing anticyclotomic p-adic
heights and shadow lines cast by rational points on elliptic curves over imaginary
quadratic fields. In the paper Galois action on the homology of Fermat curves
(Davis et al.), the authors use topology and the étale fundamental group to study
obstructions for points on Fermat curves defined over cyclotomic fields.

The paper Zeta functions of a class of Artin-Schreier curves with many automor-
phisms over finite fields (Bouw et al.) is a bridge between several of the disparate
topics. It fits in the vein of studying rational points via cohomological methods,
because the £-adic cohomology provides information about points on curves defined
over finite fields. It connects to the topic of applications to coding theory and
cryptography, because the class of Artin-Schreier curves produces large families
of supersingular curves useful for error-correcting codes. Similarly, the paper
Hypergeometric series, truncated hypergeometric series, and Gaussian hypergeo-
metric functions (Deines et al.) draws together several topics. The hypergeometric
varieties are higher-dimensional analogues of Legendre curves and the authors
obtain information about the number of points on these varieties defined over finite
fields. This paper also connects to the more analytic papers in the volume.

There are two other papers with an analytic and geometric focus. The paper A
generalization of S. Zhang’s local Gross-Zagier formula for GL, (Maurischat) is
about Hecke operators and contains a fundamental lemma for some relative trace
formulae. The paper p-adic g-expansion principles on unitary Shimura varieties
(Caraiani et al.) has results about vanishing theorems for p-adic automorphic forms
on unitary groups of arbitrary signature.

The final three papers are about applications of algebraic number theory. The
paper Kneser-Hecke-operators for codes over finite chain rings (Feaver et al.) is
about theta series for lattices for codes over finite fields and an analogue for Hecke
operators in this context. In Ring-LWE cryptography for the number theorist (Elias
et al.), the authors give a survey about attacks on the ring and polynomial learning
with errors problems and discuss connections with open problems about algebraic
number fields. Finally, the volume ends with a survey about arithmetic statistics in
algebraic number theory, Asymptotics for number fields and class groups (Wood).
This survey is an extended version of Wood’s lecture notes for the Arizona Winter
School in 2014, on the topic of counting number fields and the distribution of class
groups.
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Insufficiency of the Brauer-Manin Obstruction
for Rational Points on Enriques Surfaces

Francesca Balestrieri, Jennifer Berg, Michelle Manes, Jennifer Park,
and Bianca Viray

Abstract In Virilly-Alvarado and Viray (Adv. Math. 226(6):4884-4901, 2011), the
authors constructed an Enriques surface X over Q with an étale-Brauer obstruction
to the Hasse principle and no algebraic Brauer—Manin obstruction. In this paper, we
show that the nontrivial Brauer class of Xg does not descend to Q. Together with
the results of Vérilly-Alvarado and Viray (Adv. Math. 226(6):4884—4901, 2011),
this proves that the Brauer—Manin obstruction is insufficient to explain all failures
of the Hasse principle on Enriques surfaces.

The methods of this paper build on the ideas in Creutz and Viray (Math. Ann.
362(3-4):1169-1200, 2015; Manuscripta Math. 147(1-2): 139-167, 2015) and
Ingalls et al., (Unramified Brauer classes on cyclic covers of the projective plane,
Preprint): we study geometrically unramified Brauer classes on X via pullback of
ramified Brauer classes on a rational surface. Notably, we develop techniques which
work over fields which are not necessarily separably closed, in particular, over
number fields.

F. Balestrieri (D<)
Mathematical Institute, University of Oxford, Oxford, OX2 6HD, UK
e-mail: balestrieri @maths.ox.ac.uk URL http://people.maths.ox.ac.uk/~balestrieri/

J. Berg

Department of Mathematics, The University of Texas at Austin, 2515 Speedway,
RLM 8.100, Austin, TX 78712, USA

e-mail: jberg@math.utexas.edu URL http://ma.utexas.edu/users/jberg

M. Manes

Department of Mathematics, University of Hawai’i at Manoa, 2565 McCarthy
Mall Keller 401A, Honolulu, HI 96822, USA

e-mail: mmanes @math.hawaii.edu URL http://math.hawaii.edu/~mmanes

J. Park

Department of Mathematics, University of Michigan, 530 Church Street,
Ann Arbor, MI 48109, USA

e-mail: jmypark@umich.edu URL http://math.mcgill.ca/jpark/

B. Viray
Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195, USA
e-mail: bviray @math.washington.edu URL http://math.washington.edu/~bviray

© Springer International Publishing Switzerland 2016 1
E.E. Eischen et al. (eds.), Directions in Number Theory, Association
for Women in Mathematics Series 3, DOI 10.1007/978-3-319-30976-7_1


mailto:balestrieri@maths.ox.ac.uk
http://people.maths.ox.ac.uk/~balestrieri/
mailto:jberg@math.utexas.edu
http://ma.utexas.edu/users/jberg
mailto:mmanes@math.hawaii.edu
http://math.hawaii.edu/~{}mmanes
mailto:jmypark@umich.edu
http://math.mcgill.ca/jpark/
mailto:bviray@math.washington.edu
http://math.washington.edu/~{}bviray

2 F. Balestrieri et al.

Keywords Hasse principle ¢ K3 surface * Enriques surface ¢ Brauer—Manin
obstruction

2010 Mathematics Subject Classification. 14F22 (Primary), 14J28 (Secondary),
14GO05

1 Introduction

Given a smooth, projective, geometrically integral variety X over a global field &,
one may ask whether X has a k-rational point, that is, whether X(k) # @. Since
k embeds into each of its completions, a necessary condition for X(k) # @ is
that X(A;) # 0. However, this condition is often not sufficient; varieties X with
X(Ay) # @ and X (k) = @ exist, and these are said to fail the Hasse principle.

In 1970, Manin [12] significantly advanced the study of failures of the Hasse
principle by use of the Brauer group and class field theory. More precisely, he
defined a subset X(A;)®" of X(Ay), now known as the Brauer—Manin set, with
the property that

X(k) © X(A)P C X(Ay).

Thus, we may think of an empty Brauer—Manin set as an obstruction to the
existence of rational points.

In 1999, Skorobogatov [14] defined a refinement of the Brauer—Manin set, the
étale-Brauer set X(A;)®P", which still contains X (k). He proved that this new
obstruction can be stronger than the Brauer—Manin obstruction, by constructing a
bielliptic surface X/Q such that X(Ag)®P" = @ and X (Ag)®" # 0.

Bielliptic surfaces have a number of geometric properties in common with
Enriques surfaces: both have Kodaira dimension 0 and nontrivial étale covers. This
raises the natural question of whether the étale-Brauer obstruction is stronger than
the Brauer—Manin obstruction for Enriques surfaces. Harari and Skorobogatov took
up this question in 2005; they constructed an Enriques surface X/Q whose étale-
Brauer set was strictly smaller than the Brauer—Manin set [9], thereby showing
that the Brauer—Manin obstruction is insufficient to explain all failures of weak
approximation' on Enriques surfaces. Their surface, however, had a Q-rational
point, so it did not fail the Hasse principle.

The main result of this paper is the analogue of Harari and Skorobogatov’s result
for the Hasse principle. Precisely, we prove

Theorem 1.1. The Brauer—Manin obstruction is insufficient to explain all failures
of the Hasse principle on Enriques surfaces.

A smooth projective variety X satisfies weak approximation if X(k) is dense in X(A;) in the
adelic topology.
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This theorem builds on work by Virilly-Alvarado and Viray. To explain the
connection, we must first provide more information about the Brauer group. For
any variety X /k, we have the following filtration of the Brauer group:

Bry X := im(Brk — BrX) C Br; X := ker(BrX — BrXg«) C BrX = HZ(X,G,,).

Elements in Bro X are said to be constant, elements in Br; X are said to be
algebraic, and the remaining elements are said to be transcendental. The Brauer—
Manin set X(A;)®" depends only on the quotient Br X/ Bry X (this follows from
the fundamental exact sequence of class field theory, see [15, Sect.5.2] for more
details). As transcendental Brauer elements have historically been difficult to study,
one sometimes instead considers the (possibly larger) algebraic Brauer—Manin
set X(A;)B", defined in terms of the subquotient Br; X/ Bry X.
We now recall the main result of [16].

Theorem ([16, Theorem 1.1]). There exists an Enriques surface X /Q such that
X(Ag)*B =0 and X(Ag)®" # 0.

The proof of [16, Theorem 1.1] is constructive. Precisely, for any a =
(a,b,c) € Z* with

abc(5a+5b+¢)(20a+5b+2c¢) (4a* +b*) (> —100ab) (¢* + 5bc + 10ac+25ab) # 0,

ey
the authors consider ¥, C P°, the smooth degree-8 K3 surface given by
VoV + 5v§ = w(z),
(Vo + v1)(vy + 2v1) = W} — 5w,
av? + bv? + cv? = wi.
The involution 6: P> — P> (vg : vy : Va i W : Wi I W) = (—Vg : —V1 : —Vs :

wo : wi : wy) has no fixed points on Y, so the quotient X, := Y, /0 is an Enriques
surface.

Theorem ([16, Theorem 1.2]). Let a = (a,b,c) € Z2, satisfy the following
conditions:

(1) for all prime numbers p | (5a + 5b + ¢), 5 is not a square modulo p,

(2) for all prime numbers p | (20a + 5b + 2c¢), 10 is not a square modulo p,
(3) the quadratic form avé + bvf + cv% + w% is anisotropic over Qs,

(4) the integer —bc is not a square modulo 5,

(5) the triplet (a, b, ¢) is congruent to (5, 6, 6) modulo 7,

(6) the triplet (a, b, ¢) is congruent to (1, 1,2) modulo 11,

(7) Yalho) 0,
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(8) the triplet (a,b,c) is Galois general (meaning that a certain number field
defined in terms of a, b, c is as large as possible).

Then
Xa(AQ)* B =0 and  X,(Ag)®" # 0.

Virilly-Alvarado and Viray deduce [16, Theorem 1.1] from [16, Theorem 1.2] by
showing that the triplet a = (12, 111, 13) satisfies conditions (1)—(8). Henceforth,
when we refer to “conditions” by number, we mean the conditions given in the
theorem above.

In [16], the authors left open the question of a transcendental obstruction to the
Hasse principle for the surfaces X,, due to the “difficulty [...] in finding an explicit
representative for [the nontrivial] Brauer class of [X,].” Recent work of Creutz and
Viray [4, 5], and Ingalls et al. [10] makes this problem more tractable. Building on
techniques from [4, 5, 10], we prove

Theorem 1.2. [fa = (a,b,c) € Z2, satisfies conditions (5), (6), and (8), then
Br X, = Br| X,. In particular, if a satisfies conditions (1)—(8), then

Xa(AQ)™P =0 and X.(Ag)®" # 0.

1.1 Strategy and Outline

Theorem 1.1 and the second statement of Theorem 1.2 both follow immediately
from the first statement of Theorem 1.2 and [16], since the tripleta = (12,111, 13)
satisfies conditions (1)—(8) [16, Lemma 6.1 and Proof of Theorem 1.1]. Thus, we
reduce to proving the first statement of Theorem 1.2.

For any variety X over a field k, the quotient BrX/Br; X injects into
(Br Xsep ) 541 %*/K) Tn Skorobogatov’s pioneering paper [14], his construction X/Q
had the additional property that (BrX@)Gal(Q/ ® = 0, so BrX = Br; X. Unfortu-
nately, this strategy cannot be applied to an Enriques surface X, as Br Xjseo = 7./27,
[9, p. 3223] and hence the unique nontrivial element is always fixed by the Galois
action.

Instead, we will find a Galois extension K;/Q and an open set U’ C X, such
that

(1) the geometrically unramified subgroup Br#"™ Uy, ~C BrUy, (ie., the
subgroup of elements in Br U}(l which are contained in BrX, C BrU’ upon
base change to @) surjects onto BrX,, and

(2) (Br&"™ Uy /Br K)G4&1/Q s contained in Br; Ug,/ Brk,.

The key step is proving (2) without necessarily having central simple
k(Ug, )-algebra representatives for all of the elements of Br®"™" Uy /BrK.
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Our approach follows the philosophy laid out in [4, 5, 10]: we study geometrically
unramified Brauer classes on Uy, via pullback of ramified Brauer classes on a
simpler surface §’, of which U’ is a double cover. However, in contrast to the work
of [4, 5, 10], we carry this out over a field that is not necessarily separably closed.
In particular, our methods can be carried out over a number field. As we expect this
approach to be of independent interest, we build up some general results in Sect. 2
which can be applied to a double cover of a rational ruled surface, assuming mild
conditions on the branch locus.

Remark 1.3. For convenience, we carry out the above strategy on the K3 surface Y,
instead of on the Enriques surface X,. We then descend the results to Xj,.

Starting in Sect. 3, we restrict our attention to the specific varieties X, and Y,.
After recalling rgevant results fzgm [16], we construct double cover maps 7: Yy —
S and 7: X, — S, where S and S are ruled surfaces, and we study the geometry of
these morphisms. These maps allow us to apply the results of [4] to construct, in
Sect. 4, an explicit central simple k(X,)-algebra representative A of the nontrivial
Brauer class of X,. This representative A will necessarily be defined over a number
field K;, be unramified over an open set U, ,» and be geometrically unramified.
Furthermore, the number field K; and the open set U’ can be explicitly computed
from the representative A.

Section 5 uses the results from Sect.2 to study the action of Gal(Q/K;) on
Bret™ U}q / Br K| and hence prove Theorem 1.2. Namely, by repeated application
of the commutative diagram in Theorem 2.2, we demonstrate that no o-invariant
transcendental Brauer class can exist for Y,. Indeed, if such a class exjsted, the
explicit central simple algebra from Sect. 4 would relate it to a function £ fixed by
the Galois action. However a direct computation (given in the Appendix) shows that
£ must be moved by some Galois action, providing the required contradiction.

1.2 General Notation

Throughout, k£ will be a field with characteristic not equal to 2, with fixed separable
closure k. For any k-scheme X and field extension k’/k, we write X; for the base
change X Xspeck Spec K’ and X for the base change X Xspecx Spec k. If X is integral,
we write k(X) for the function field of X. We also denote the absolute Galois group
of k by Gy = Gal(k/k). For any k-variety W, we use the term splitting field (of W) to
mean the smallest Galois extension of k over which every geometrically irreducible
component of W is defined.

The Picard group of X is Pic X := Div X/ Princ X, where Div X is the group of
Weil divisors on X and Princ X is the group of principal divisors on X; when X is
projective, Pic X is representable by a scheme, called the Picard scheme [7, Cor.
6.6, p. 232—17]. If X is projective, let Pic X denote the subgroup of Pic X that maps
to the connected component of the identity in the Picard scheme of X then; the
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Néron—Severi group of X is NSX := Pic X/ Pic’ X. For a divisor D € DivX, we
write [D] for its equivalence class in Pic X. When X is a curve, the Jacobian of X
satisfies Jac X = Pic” X.

For a k-scheme Y, we write BrY for the étale cohomology group BrY :=
HZ(Y,G,,). If Y is projective, we additionally consider the geometrically unramified
subgroup Br¥"" k(Y) C Brk(Y) consisting of those Brauer classes which are
contained in BrY upon base change to k. For an open subscheme U C Y, we
have Br#"" U := BrU N Br¥""™ k(Y). If A is an étale k-algebra, then we write
BrA for Br(Spec A). Given invertible elements a and b in such an A, we define the
quaternion algebra (a, b) := Ali,j]/(i* = a.j*> = b, ij = —ji). We will identify the
algebra (a, b) with its class in BrA.

Now assume that Y is smooth and quasi-projective. Then the following sequence
is exact:

0= BrY[2] — Brk(n)[2] =2 @D H!(k(y), Z/22), @)
y

where the sum is taken over the set of all codimension-1 points y on Y [8, Theorem
6.1]. As Brk(Y)[2] is generated by quaternion algebras, we will only describe the
residue map d,, on quaternion algebras: for any a, b € k(Y)>, we have

3y (a,b)) = (=1)» @O Op=0@ € k(y)* /k(y)*? = H' (k(y),Z2/2Z) ,

where v, denotes the valuation corresponding to y; as k(y)*/k(y)*? = H!
(k(y),Z/2Z), we move freely between additive and multiplicative notation when
computing residues, depending on the context.

2 Brauer Classes on Double Covers Arising Via Pullback

Let 7°: Y% — S° be a double cover of a smooth, projective, rational, geometrically
ruled surface w:S° — P! defined over k and let B® C S° denote the branch locus
of 7. (Throughout, IP’,I is shorthand for P[ltozt]], with ¢ := fo/t;.) We assume that
B° is reduced, geometrically irreducible, and has at worst ADE singularities. The
canonical resolution [1, Theorem 7.2] v:Y — Y° of #%: Y° — S° has a 2-to-1
k-morphism 7: Y — § to a smooth rational generically ruled surface S; the branch
curve B C S of 7 is a smooth proper model of B°. In summary, we have the

following diagram:
Yy ———— S OB

lu lus

™

yo ™ 4 g0~ RO

Since B® is geometrically irreducible, Pic Y is trivial by [4, Corollary 6.3] and so
we may conflate Pic Y and NS'Y.
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The generic fiber of @ o 7° is a double cover C — IP’}((I) — Spec k(). Since k(¢)
is infinite, by changing coordinates if necessary, we may assume that the double
cover is unramified above co € Sg(t). Then C has a model

y? = 'h(x),

for some ¢’ € k(r) and h € k(¢)[x] square-free, monic, and with deg(h) = 2g(C) + 2,
where g(C) denotes the genus of C. Note that k(B) = k(B®) = k(1)[0]/(h(0)); we
write o for the image of 6 in k(B).

As SO is rational and geometrically ruled, PicS® = Z? and is generated by a
fiber Sgo and a section &, which we may take to be the closure of x = o0. Since
vs: S — SO is a birational map, Pic S is generated by the strict transforms of & and
S9., and the curves Ej, . . ., E, that are contracted by the map S — S°. We will often
abuse notation and conflate & and S, with their strict transforms. In any case, by
S, B, E;, or S%, we always mean the actual divisors and not the divisor classes in
the Picard group.

Let

£ =1{6.5%.E\.....E,}

D00
denote the aforementioned set of n + 2 generators and define
Vi=5\ (BU UE) CSs.
Ee&

Possibly after replacing k with a finite extension, we may assume that all elements
of & are defined over k and, in particular, that Pic § = Pic S. Since vy is defined over
k, we additionally have that S is k-rational and so Br S = Br SO = Brk.

For any £ € k(B)*, we define

Ay 1= Cork))/krn (€, x — @) € Brk(S).
We will be particularly concerned with A, when £ is contained in the subgroup

k(B) :={€ e k(B)* : div({) € im(Z* — Div(S) — Div(B) ® Z/2Z)}
={l e k(B)* : v, div({) € (8, 5%) C Div(B°) ® Z/2Z} .

By [4, Proof of Theorem 5.2], this subgroup is exactly the set of functions £ such
that 7* Ay is geometrically unramified. Note that k(B)} contains k*k(B)*?.
Let

U:=Y\ (U ﬂ_l(E)) cvY.

Ee&
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The goal of this section is to prove the following two theorems:

Theorem 2.1. Let k' be any Galois extension of k. Then we have the following exact
sequence of Gal(k' /k)-modules:

0—

PiC Yk' j k(Bk’);:( i) (Brg~ unr. Uk/) [2] (3)

—
7*Pic S + 2 Pic Yy K*K(By)*? Brk'

where j is as in Sect. 2.3 and B is as in Sect. 2.2. Furthermore, if k' is separably
closed, then the last map surjects onto Br Y[2].

Theorem 2.2. We retain the notation from Theorem 2.1. If Br K — Brk(Sy) is
injective and Pic U[2] = O, then there is a commutative diagram of Gal(k'/k)-
modules with exact rows and columns:

PicY), J D
7 Pic 512 Pic Yy, J (PI(LY’C’)
— Gk/ 1 J6] .unr.
PicY J k(B )e Br® U,
0 = k k
m* Pic S+2PicY E'XKk(B)r)*? Bri Uy,
iﬁoj B
O Br1 Uk’ Br&-unr. Uk’ Br&-unr: Uk’ 0
Brk’ Brk’ Br1 Uy, ’

The structure of the section is as follows. In Sect. 2.1, we prove some preliminary
results about the residues of Ay; these are used in Sect. 2.2 to define the map . Next,
in Sect. 2.3, we define j and prove that it is injective. In Sect. 2.4, we characterize
the elements of BrV that pull back to constant algebras under 7*. In Sect. 2.5, we
combine the results from the earlier sections to prove Theorem 2.1, and, finally, in
Sect. 2.6, we prove Theorem 2.2.

2.1 Residues of A,

In order to define the homomorphism f, we will need to know certain properties
about the residues of A, at various divisors of S°. We first compute residues
associated to horizontal divisors.

Lemma 2.3. Let £ € K(B)*, and let F be an irreducible horizontal curve in S°, i.e.,
a curve that maps dominantly onto P!.

(1) IfF # B, G, then 0p(A¢) = 1 € k(F)*/k(F)*>.
(2) 3p(Ae) = [€] € k(B)*/k(B)**.
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Proof. The arguments in this proof follow those in [5, Proofs of Theorem 1.1 and
Prop. 2.3]; as the situation is not identical, we restate the arguments here for the
reader’s convenience.

Let v be the valuation on k(S°) associated to F. By [5, Lemma 2.1], we have

0r(Ae) = [ [ Normugu ) ((—1)" 0070070 (x — )70 | “4)

wlv

where w runs over all valuations on k(B Xp 5%) extending v. As F is a horizontal
divisor, vy is trivial and hence w|g) is trivial for all w|v. Therefore, (4) simplifies
0 [T,uj Normyguy ey (£447).

By definition of o, Normyg)(x) /x5 (X — @) = h(x). Thus, w(x — ) = 0 for all
wlv if v(h(x)) = 0, or equivalently, if F # B, &. This completes the proof of (1).

Now assume that F = B. We know that /(x) factors as (x—a)h; (x) over k(B) (x),
where h; € k(t)[x] is possibly reducible. Hence, x — o determines a valuation w,_,
on k(B)(x) lying over v; similarly, the other irreducible factors of /; also determine
valuations lying over v. Notice that since h(x) is separable (as B is reduced), we
have that h;(e) # 0, and hence that w(x — o) = 0 for any valuation w over v
corresponding to the irreducible factors of /; (x). Thus, (4) simplifies to

HNormk(W)/k(v)(fW(x_a) ) = Normggy,_o)/kw) (€) = ¢,

wlv

as required. O
Now we compute the residues associated to vertical divisors.

Lemma 2.4. Let{ e k(B)}, 1o € Al ¢ P! be a closed point, and F = Sg). Then,

9r(Ay) € im ( k)™ _, k()" ) .

k()2 k(F)2

Remark 2.5. 1f k is separably closed, then k(#)*? = K(ty)* and the result follows
from [5, Prop. 3.1].

Proof. Tt suffices to show that dp(A¢) € k(F)*?k(ty)*. We repeat [4, Proof of Prop.
3.1] while keeping track of scalars to accommodate the fact that k is not necessarily
separably closed.

By [5, Lemma 2.1], we have

0r(A) = [ Normymm((=1)" 0O 07 (r — )™"O),
F’CS"XPZI B
F’+>F dominantly

®)

where F’ is an irreducible curve and w’ denotes the valuation associated to F’.
The surface S° Xpi B is a geometrically ruled surface over B, so the irreducible
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curves F’ are in one-to-one correspondence with points 5 € B mapping to fo.
Furthermore, k(F') = k(b')(x) and k(F) = k(t)(x), so Normy)/k(r) is induced
from Normy ) k() - Thus, we may rewrite (5) as

0r(A) =[] Normuw)u (=) =0 =0 — )=y (6)

b’ €B.b' 1

By [4, Lemma 3.3], there exists an open set W C A! containing #y and constants
d € k(1)*, e € k(¢) such that

8% = PLx W, s> (dx(s) + e, @ (s))

is an isomorphism. In particular, dx + e is a horizontal function on S,. Consider the
following equality:

Cory gy /k(s0) ((dx + e — (da + e), £)) = A + Corgg) ) /k(so) ((d, £))
= A; + (d,Norm(¥)).

Since (d, Norm({)) € w* Brk(t), we have
aF(A() € aF (Cork(B)(x)/k(SO) ((dx +e— (dO[ + e), 5))) k(to)x.

Thus, we may assume that x is a horizontal function, in particular, that x has no
zeros or poles along F', and that it restricts to a non-constant function along F. It is
then immediate that w'(x — «) < 0, and that the inequality is strict if and only if
w'(a) < 0, which in turn happens if and only if &' lies over B) N .

We first consider the factor of (6) that corresponds to points that do not lie over
B) NS.If b’ does not lie over B) N S, then (as stated above) w'(x — &) = 0, where
w’ denotes the valuation associated to b'. Therefore, the corresponding factor of (6)
simplifies to

1_[ Normk(b/)/k(,o) ((x — Ol(b/))_w,(e)> .

v eB\v~H(BING), b -1

By definition, { € k(B)} implies that for all 4" € B°\ (B" N &), Y beBpio”
w (£) = 0 mod 2. Since a(b’) depends only on the image of &’ in B, this shows
that the above factor is contained in k(F)*2.

Now consider the case that b’ lies over Bg) N &. We claim that, since w'(x) = 0,

Normk(F’)/k(p) ((_l)w’(x—ot)w/(f)gw’(x—a) (x _ a)_w/(£)> (7)
reduces to a constant in k(F). Indeed, if w/(£) = 0, then we obtain £* =), which

reduces (after taking Normy ) /k(r)) to an element of k(#o)™. If w'(£) # 0, let 75
be a uniformizer for F’. Since w'(x) = 0 > w/(«t), we have
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w (x—a) —w({) w (x—a) —w(l)
TN T (—a) =\~ T (—at) mod 7tg
w’ (£) w (x—a) w’(£) w (x—a)
Ty T T T

and so (7) reduces (again, after taking Normy)/k(r)) to an element in k(zp)*. Thus,
every factor of (6) corresponding to points »’ lying over BtOO N & is contained
in k(f9)*, and every other factor is an element of k(F)*2. This completes the
proof. O

2.2 The Morphism B

Proposition 2.6. Let { € K(B)*. There exists an element A" = A'({) € Brk(),
unique modulo Brk, such that

A+ wo*A €BrV.

This induces a well-defined homomorphism

g kBE By

.ka(B)X2—> Bk 2 L (A+w .A),

which is surjective if k is separably closed.

Proof. Recall that V. = §\ (B U Uges E) C S. Therefore, as a subgroup of
Brk(S) = Brk(s"), BrV is equal to Br (SO \(Gus,u B)), since the Brauer
group of a surface is unchanged under removal of a codimension 2 closed
subscheme [8, Theorem 6.1]. Thus, to prove the first statement, it suffices to show
that there exists an element A" € Brk(¢), unique up to constant algebras, such that
Ir(A) = dp(w*A’) for all irreducible curves F C S° with F # &, 5%, B.

If F is any horizontal curve, i.e., F maps dominantly to P!, then dp(w*A’) = 1
for all A" € Brk(¢). If we further assume that F # &, B, then Lemma 2.3 gives
0r(A¢) = 1. Thus, for all A" € Brk(r), we have dp(A;) = dp(w*A') for all
horizontal curves F # G, B.

Now we turn our attention to the vertical curves. Recall Faddeev’s exact
sequence [6, Corollary 6.4.6]:

Dy | 210 Cork(rg)/k .
0 — Brk — Brk() —> @D H'(Gkwy). Q/Z) ———— H'(G,.Q/Z) — 0.
toG]P’,l
(®)
Since the residue field at 7y = oo is equal to k, this sequence implies that

for any element (r,) € @, ecark(o)*/k(19)*?, there exists a Brauer class in
A’ € Brk(t), unique modulo elements of Brk, such that 9, (A") = r, for all
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closed points f, € A!. By Lemma 2.4, for all t, € A!, we have dr(A4;) €
im (k(t0)* /k(to)** — k(F)* /k(F)*?), where F = S) . Hence, there exists an A" €
Brk(t), unique modulo Brk, such that 9 (w*A') = dr(A,) forall F # &,B, 5%,
as desired.

It remains to prove the second statement. The first statement immediately implies
the existence of a well-defined homomorphism

k(B)# N Bra='(V)

K(B) vy 2], £ (Ag—i—w A).

In order to complete the proof, we must prove that

1) n*(Ag + w*A) € Brkifd € k*,
(2) the image lands in Br®""" U/ Brk, and
(3) the image is equal to Br Y[2] if & is separably closed.

We begin with (1). Let d € k™. Then

Aa = Cor(s) ) /i) (d, x — ) = (d, Normyg) () /i (1.0 (X — @)
= (d,h(x)) = (d,'h(x)) + (d, ).

Since \/c’h(x) generates k(Y?)/k(S°), div(c’h(x)) = B + 2Z for some divisor Z on
S°. Thus, (d,c’h(x)) is unramified away from B; in particular, (d, c’h(x)) € BrV.
Since A’ is the unique element in Brk(¢)/ Brk such that A; + w*A’, then A’ =
(d, ") + B for some B € Brk. Hence,

7 (A + o*A) = 7% ((d. 'h(x)) + (d.) + w*(d.c) + »*B),
= 7*(d,h(x)) + n* o *B.

Furthermore, since ¢’h(x) is a square in k(Y?), then 7* (4; + w*A') = n*w*
B € Brk, as desired.

Now we turn to (2) and (3). Since B is the branch locus of 7 and = is 2-to-1, any
2-torsion Brauer class in im (7*:Brk(S) — Brk(Y)) is unramified at 7" (B)q.
Thus, the image is contained in Br U/ Brk. To prove that it is contained in Br#*™" U,
we must show that 7* (A, + w*A’); is contained in BrY. By Tsen’s theorem,
7* (Ay + w* A'); = (7*A¢)z. This element is contained in BrY by [4, Theorem
1], which yields (2). In fact, [4, Theorem I] shows that Br Y[2] is generated by 7* A,
where £ runs over the elements in k(Bg)¢, which proves (3). O

2.3 The Morphism j
In this section, we define the map j and prove that it is injective. The map j will be
induced by the following homomorphism:
j:Div(Y \ 77 (B)) — k(B)* /k*
D +— €| B
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where £ € k(S)* is such that divs(¢) = msD — mE; — -+ — myE, — dS — eS2,.
(Recall that Ey, ... ,E,, G, and Sgo form an integral basis for Pic S = Pic S.)

Lemma 2.7. The homomorphism j induces a well-defined injective homomorphism

PicY k(B)X
— .
7*PicS + 2PicY  k*k(B)<

J:

Proof. For any divisor D € DivY \ n~'(B), the projection formula [11, p.399]
yields

274(D N 7 (B)rea) = 74(D N 27 (B)rea) = 74 (D N 0*(B)) = (m4D) N B.

Thus, for any divisor D € DivY \ 77'(B), we have that [D N 77 (B).q] €

(mmcf’is;_fpw) [2]. By the same argument as in proof of [ 10, Lemma 4.8], this induces

a well-defined injective homomorphism

PicY PicB
%
w*PicS + 2PicY imPic S — PicB

)[2], D] DN Brd. )

One can also check that there is a well-defined injective homomorphism

(imPicS = PicB) ~ k(B

that sends a divisor D which represents a class in (H;B) [2] to a function £

im Pic S—Pic B
such that div({) = 2D+ ~¢pi. s ncCNB. Since j is the composition of (9) and (10),
this completes the proof that j is well-defined and injective. O

2.4 Brauer Classes on V That Become Constant Under *

Proposition 2.8. If A € BrV is such that n* A € Brk C Brk(Y), then there exists
a divisor D € Div Y such that j([D]) = d3(A) in k(B)* /k*k(B)*2.
Proof. Recall that k(Y;) = k(S)(4/c’h(x)). Thus, if 7* A € Brk, then

A= (hx),G) + B (11)

for some G € Kk(S;)* and some B € Brk. Since B is the branch locus of =,
vg(c’h(x)) must be odd. Therefore, without loss of generality, we may assume that
B is not contained in the support of G; write

div(G) = ) " mC; + d(S) + e(S%) + miEy + -+ + myEy,

where C; are k-irreducible curves of S distinct from 6, Sgo, and Ey, ... ,E,.
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Now we consider the residue of A4 at C;. By (11), the residue of A at C;
is [c’h(x)] € Kk(C;))*/K(C;)*%. On the other hand, A € BrV, so the residue
is trivial at C;. Together, these statements imply that 7~ !(C;) consists of two
irreducible components C; and C/’. As this is true for all C;, we have that div(G) =
(3 1iCY) + m(S) + mo(SY,) + mEy + -+ + m,E,, and so j'(3_n;C}) = Glg
modulo k*. Since the residue of A at B is equal to G|g, this completes the proof. O

2.5 Proof of Theorem 2.1

We note that much of this proof is very similar to proofs in [10, Lemmas 4.4
and 4.8].

We will first prove the sequence is exact, and then show that the maps are
compatible with the Galois action. Since all assumed properties of k are preserved
under field extension, we may, for the moment, assume that k = k’. Then Lemma 2.7
yields an injective homomorphism

Pic Yy k(Bi) >
—
7% Pic S + 2 Pic Yy K*k(By)*2’

J:
and Proposition 2.6 yields a homomorphism

k B , X B £. unr. ,
ﬁ: (B )g N r Uk [2]’
K*K(By )*2 Brk’

which is surjective if k’ is separably closed. We now show that im(j) = ker(f).
Let { € Kk(By)g be such that B(£) € Brk’. Recall that B factors through
Br V/ Brk by the map

L A=A +w*A — n*A,
— ——

€BrV/Brk

where A’ € Brk/(¢) is as in Proposition 2.6. By assumption, 7*A € Brk, thus,
by Proposition 2.8, there is some D € DivY; such that j([D]) = 0dz(A) =
dp(Ag)dp(w*.A’) mod k™. However, dg(w*A") = 1 since B is a horizontal divisor,
and dg(A¢) = [€] by Lemma 2.3. Hence, £ € im(j), and so im(j) D ker(f).

For the opposite inclusion, it suffices to prove that 8(j([D])) € Brk’ for any prime
divisor D € Div(Yy \ 7' (B)). Let £ = j'(D); recall that £ is the restriction to B of
a function £y € k(Sy) such that div({s) = w«D — mE; — -+ — muE, —dS — eSOOO.
As above, let A := Ay + w™*A’. We claim that

A= (c'h(x),ls) + B € Brk(Sy) = Brk(s))

for some B € Brk'. Since ¢’h(x) € k(Yy)*?, this equality implies that 7*(A) =
n*B € Brk'. To prove the claim, we will compare residues of A and (c'h(x), £s)
on S°. Repeated application of Faddeev’s exact sequence [6, Corollary 6.4.6] shows



