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This book addresses both fields, multi robot systems and molecular 
robotics, from a unifying point of view, but without leaving aside typi-
cal particularities of both fields. The unifying aspect is based on the 
concept of information minimization whose precise formulation is the 
Haken-Levi-principle.
 Simultaneously, we introduce basic concepts of multi-component 
self-organizing systems such as order parameters and the slaving prin-
ciple. Among explicit examples is the docking manoeuvre of two robots 
in two and three dimensions.
 The second part of the book deals with the rather recently arising 
field of molecular robotics. It is particularly here where nature has 
become a highly influential teacher for the construction of robots. 
The book introduces the reader to these topics, especially by a detailed 
theoretical treatment of the molecular mechanism of muscle contraction. 
 The book concludes with a derivation of the quantum version of the 
Haken-Levi-principle and a detailed model of a molecular robot. 
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Preface

This book presents entirely new vistas in the following two disciplines:

1) For the first time, it applies basic principles of synergetics – the science of
cooperation – to multirobot systems.

2) It applies a modern method developed for active, nonequilibrium quantum
systems to molecular robots – a rapidly developing, fascinating field within
nanoscience and technology.

In both cases (1) and (2), this book deals with active units, that is, robots or
molecules, capable of forming spatiotemporal structures or collective action based on
cooperation. In other words, it deals with synergetic agents.

In order to reach a broad audience, it is written in a pedagogical style that will allow
even nonspecialists to acquaint themselves with our approach. (A fewmore technical
sections are marked by asterisk.)

In fact, both fields, that is, multirobot systems and molecular robots have become
highly interdisciplinary endeavors that comprise disciplines such as robotics,
mechanical and electrical engineering, physics, informatics, chemistry, biology,
medicine, mathematics, and other fields. Our book applies to graduate students,
professors, and scientists. Though occasionally we refer to experiments, our empha-
sis is laid on theoretical approaches. Among our numerous results are

. the Haken–Levi theorem in its classical and quantum mechanical formulation
relating robot motion to probability distribution;

. a whole chapter presenting our quantum theory of muscle contraction based on
actin–myosin interaction;

. a detailed quantum theoretical model of the motion of molecular robots.
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Prologue I: Synergetic Agents: Classical

Self-Organization in Collective Systems

Collective systems in technique and biology move more and more into the focus of
basic research in the fields of natural science such as physics, biology, chemistry, and
engineering science such asmechanical engineering, computer science, cybernetics,
and robotics. In biology, swarms of bees or ants, flocks of fish or birds, and networks
of natural neural networks such as those realized in different kinds of brains
demonstrate very impressively the power and the abilities of such collective systems.
These advantages are also expected in technical collective systems like cooperative
production systems, distributed traffic managements, all facets of internet, and last
but not least swarms of mobile robots (on land, in water, and in air). What are the
dominant features of natural and artificial collective systems that are so fascinating
for all of us?

The two basic scientifically most relevant features of all these aforementioned
collaborative systems that immediately catch our eye are the ability to create
distributed intelligence (meaning the emergence of intelligence; the whole is more
than the sum of all parts) and the competence of self-organization (Levi and
Kernbach, 2010). In addition to the dominant property of an �intelligent� collectivity
generated by self-organization is the increase of adaptation, of reliability, of flexibility,
of self-development, and of self-healing.

In standard artificial collective systems, for example, in traffic management, the
intelligence is brought into the system by engineers, but the interplay that creates the
self-organization and all the other complementary features like reliability is still very
important for inanimate or artificial systems. A very prominent example of a self-
organized technical system that is constructed by physicists and engineers is the
laser. It demonstrates very clearly the phase transition from noncoherent light of a
lamp to coherent light of a laser by self-organization.

The basic concept to define and to implement self-organization is given by the
methods of synergetics (Haken, 2004). It is the theory of the cooperation of parts of a
system that generate by themselves an �order parameter field� that in turn exerts a
strong feedback to itsmany originators (circular causality). In this book, the parts of a
collective system are mainly (but not exclusively) inanimate units.
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All features of an intelligent and self-organized system are the result of the
cooperative interplay between the global structure (organization principle) of the
system, the behavior of the individual units, and the different functionalities
�generated� by individual members. As an example of this assertion, consider a
swarm of bees. Relevant questions are here: how they organize their foraging, how
they perform their navigation and exploration tasks, how they do the foraging, how
they distribute the collected nutrition, how they regulate the homeostatic mechan-
isms, and so on?

The transfer of these features and behaviors to inanimate, artificial swarms of
robots, which was mentioned before, is primarily motivated by the approach to get
answers to these basic, biological questions by picking up these questions of
animated systems and trying to get relevant responses by technical systems. In
view of classical artificial intelligence (AI) and its more philosophically based
connection to cognitive science that are both characterized by a top-down approach
we will present in this book, the new bottom-up approach of collective robotics
(Pfeifer and Scheier, 1999) starts from themicroscopic parts (e.g., robots) and studies
the emergence of intelligence, self-organization, and cognition, for example, in a
swarm or even in an organism that is generated out of such a swarm (Floreano and
Mattiussi, 2008; Levi, 2009; Siciliano and Khatib, 2008).

Such a distinction between a swarm mode (phase) and an organism mode offers
the possibility to analyze the essential features of a part that are inevitable to generate
an intelligent swarm (e.g., swarms of house flies never show swarm intelligence).
What is different if a swarm is going together in order to build an organism (may be
considered a morphogenetic phase transition)? What features of a swarm member
are changed if it �mutates� to a �cell� of an organism? How do these new �cells�
differentiate themselves to different organs or parts of an organism? Such questions
are considered in the so-called symbiotic collective robotics (Levi and Kernbach,
2010). Swarm behavior is also very beneficial in soccer games, for example, in
RoboCup, where the robots are no longer small robot cells (about 5 cm3) but have a
bigger volume of about 20 cm3 (Rajaie et al., 2011).

Besides these basic questions of swarmmode and organismmode, the bottom-up
approach in robotics is characterized by the so-called �embodiment,� meaning that
there can be no intelligence and cognition if there is no body (matter) available;
intelligence and cognition require a body.

This statement is augmented by the concept of �situatedness,� denoting that each
part of such a systemcan acquire information about the current situation under given
environmental conditions, perform an individual interpretation of the existing
situation (e.g., by pattern recognition), and finally it makes an individual decision
concerning its next activities. The bodies and the situations can be simple or complex.
According to the bottom-up approach that is accomplished by our approach, we
consider as the first step simple bodies and nonsophisticated situations. In order to
complete the two strongly interwoven concepts of �embodiment� and �situatedness,�
we include in our approach the additional concept of an agent. This is an active part of
a whole system (the so-calledmultiagent system,MAS) that is afflicted with a corpus,
is autonomous, and is aware of situations (Weiss, 1999). An agent realizes internally
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the two concepts of �embodiment� and �situatedness,� and it is able to learn. An
agent represents a basic concept of robotics and artificial intelligence.

In this book, we create the concept of a synergetic agent. This is an agent that uses
internally the methods of synergetics to calculate the sensor-based acquired infor-
mation and comes to appropriate decisions and actions in response to the calculated
information (situation description). The correct information handling is the engine
of progress of the interplay between the theory of synergetics – here we mean
especially the circular causality of self-organization, the emergence of new qualities
by nonequilibrium phase transitions in open systems, and reduction of complexity –
and the theory of the emergence of cognition and intelligence of an agent that finally
is condensed in intelligent decisions.

The construction and design principles for synergetic agents are based on those of
informatics-based agents, but they must be dominantly extended by a paradigm
change in physical descriptions of synergetic processes and by a new principle of
information.

The paradigmchange can very clearly be explained if we compare the classical laser
paradigm (a nearly inexhaustible source of inspiration) and a multirobot system
(MAS), be it in swarm or in organismmode. Themost dominant commonality is, for
example, the �circular causality�: the participating parts generate one or more �order
parameter fields� that operate recurrently and therefore �enslave� the originating
parts. Another important commonality is the supplement of the principal coupling to
the environment. Here, the following effects have to be considered: damping,
fluctuations, and dissipation processes of open systems.

The essential difference is that all atoms that generate the coherent electromagnetic
field (orderparameterfield) are passive and areneither intelligent nor situated, nor able
to learn. Robots also obey equations of motion, but their real movement must be
generated by controllers for steering (Shen et al., 2004), where an internal force that
mimics an external force constrains them to move on a prescribed trajectory. Such
controllers have to consider details of the transaction type (type of drive system) and
details of the properties of the underground (e.g., land or water) and unforeseen
situations (like obstacles or holes). As a result, the �cognitive� decision making of a
robot (realizedas anagent) generates the appropriate response tounforeseensituations
(Levi, 2010). A good example for this latter statement is the kind of response of a soccer
robot if it is attackedbyoneormore robots of theopponent team.Thisdecision ishighly
influenced by the learned team strategy (how to play the game and if possible to win).

An important supplement for every kind ofmotion is the coupling to environment.
In a classical physical approach, these are the effects of damping,fluctuations (noise),
and dissipation. But for mobile robots, we have also to consider new and different
types of uncertainties. These are failures in sensor data, aged sensor data, and
incorrect steering statements (more generally spoken: degraded information). The
correct handling of such degraded information (also including trustworthiness in
information source) demands implementation of cognitive processes. In human
decision making as part of a cognitive process, the anchoring bias is an example of a
dominant focus on a trait of information that is degraded (Kahneman and
Tversky, 1996).
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This kind of cognitive response has clearly to be distinguished from the elementary
stimulus–response cycle that occurs very often on lower levels in biological systems
(e.g., consider the Braitenberg vehicle (Braitenberg, 1984)).

In view of information theory, the reaction onunexpected situations is dictated by a
minimum of individual information. As bigger the surprise concerning an event the
smaller is the probability for this event or for other features like anchoring.

The close connection between the acquired information of an agent and the
reaction to this information is formulated by the Haken–Levi information principle.

Each individual synergetic agent minimizes its local information.

isðagentÞ ¼ �ln ps ðjs; juÞ; ðI:1Þ
where ps is the joint probability of the value js of the variable of agent �s� and of the
value ju of the order parameter of the whole system.

This implies that each individual synergetic agent disposes of information that
regulates already the feedback caused by the circular causality already mentioned.

This relationship is most clearly expressed when we use the relation

ps js; juð Þ ¼ pu juð Þps jsjjuð Þ; ðI:2Þ
where pu is the probability distribution of the order parameter that is collectively
generated by all the agents of the system, and ps jsjjuð Þ the conditional probability that
the enslaved variable js acquires that value provided the value ju is given. By using
(I.1) and (I.2), we define the conditional information is;c of agent s:

is;c ¼ �ln ps jsjjuð Þ: ðI:3Þ
If we consider the whole system (e.g., let it be an organism assembled by robot

cells), the total system information ismaximized. Thismeans the expectation value of
all individuals, where information is maximized

Information i ðsystemÞ ¼ iu þ
X

s

hisi; ðI:4Þ

where

iu ¼ �
X

ju

pu ln pu ðI:5Þ

is the information of the order parameter and

hisi ¼
X

ju;js

ps js; juð Þis;c ðI:6Þ

the expectation value of is;c(I.3) (Haken, 2006).
Bymeans of the local information (I.1), wemay express the equation ofmotion (or

more generally the behavior) of an agent (a robot vehicle):

m j
..

d þ c j
.

d ¼ � Q=cð Þris þ FsðtÞ: ðI:7Þ
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(This is a special case of the H-L principle). In (I.7), js is – in general – the three-
dimensional position vector, m the mass of the robot, c a damping constant, Q the
strength of the random force FsðtÞ acting on the robot, andr the nabla operator. (For
details, cf. Chapter 2.)

There are three main effects attributable to agents. First, we can formulate the
circular causality of self-organization by the combined application of the H-L
principle to each individual robot and to the system of all robots. Second, we can
formulate the equations of motion for one robot or for all robots by the calculation of
the gradient of information. Third, we can store the individual and total information
gain by the calculation of the Kullback measure. If we perform this calculation by
iteration and store each information gain or information loss, then we have
implemented a dedicated method to learn.

At first sight, Equation I.7 might look like a simple rewriting of the equation of
motion of a robot agent (as part of a multirobot system), namely, instead of using a
potential function V jsð Þ directly, we write it in a somewhat disguised form. In other
words, (I.7) seems to rest onsome tautology. Inmathematics, tautologies are surelynot
a crime; rather the individual steps used there are just a sequence of tautologies! In the
present case, the situation is different, however. First of all, the concepts of the
equations of (mechanical) motion and of information in its scientific, mathematical
form stemming from information theory originate from two conceptually quite
different scientific disciplines. Thus, (I.7) provides us with a qualitatively new insight.
As a consequence, wemay interpret anduse information i under entirely new aspects.
Namely, in practice, a robot must acquire the appropriate information by its own
activities and rather limited preprogramming. Since it does not �know� the positions
of the other robots and objects (e.g., obstacles) beforehand, it must measure their
relative directions anddistances. It then has to attribute to these quantities appropriate
artificial potentials. To this end, it has to distinguish between other robots, obstacles,
and attractive objects (e.g., energy sources). In specific situations, for example, soccer
games, it must distinguish between friend and foe. All these cases require specific
preprogrammed potentials (leaving aside aspects of robot learning and evolution).

Aswe shall see in detail, for instance, whenwe study dockingmaneuvers, the robot
information may switch from one kind of information to another, depending on the
situation. Tomention a simple example, the information may switch from the use of
one potential function to another one.

Clearly, higher order programs may also be installed in the expression for the
information. We will discuss some examples in our book, for example, the self-
organized formation of letters by suitable configurations of robots.

Let us discuss how the robot uses the instructions enfolded in the information
is js; juð Þ, (I.1), or, in other words, how it unfolds its information. In principle, it may
solve its equation ofmotion according to (I.7) and use a controlmechanism to secure
the realization of the wanted motion. In practice, the situation is quite different, at
least in general in a multirobot system. First of all, to calculate its future path, the
robot must be informed on the future paths of all other robots and vice versa. This
requires the action of a �master� computer of very high capacity outside the multi-
robot system.
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In a swarm situation, such a procedure is not possible at all and contradicts the
principle of self-organization. The practical procedure must be quite different. Based
on its measurements of distances and directions to all other objects (including the
other robots), the robot under consideration acts on its actuators from moment to
moment in such a way that for a given, measured value of the r.h.s. of (I.7) the robot
accelerates or decelerates, including damping. Because the robot relies on the
measured r.h.s., it can even act if slip is present. It may follow its path, though with
some time delay. In this way, the artificial potential appears as an evaluation function
of the quality of reaching the robot�s goal.

As we know from the theory of swarms, an essential ingredient of their collective
behavior is the requirement that each individual keeps a mean distance to all its
nearest neighbors.

There is yet another aspect to our approach: The whole system altogether acts as a
parallel computer (in contrast to a sequential computer). All its components (the
agents!) collect their information in parallel and act in parallel. This information
acquisition may be active (e.g., measuring distances to objects) or both active and
passive (e.g., communication among agents in collective pattern recognition; see
Chapter 3). We believe that our information-based approach opens new vistas to
dealing with multirobot or, more generally, multiagent systems. For readers who
wish to learn more about the scientific concept of information, we include the
following section.

The Tricky Concept of Information (Shannon)

�Information� inordinary sense is amessage (e.g., birth of a child, accident,winning of
an election, etc.), an instruction, a set of data, and so on. Inmore technical terminology,
information is essentially a measure of probabilistic uncertainty (not of principal
uncertainty, for example, in quantum mechanics (Genz, 1996)). In terms of the
discipline of stochastics, the appropriate methodological terms are stochastic events
(e.g., unexpected obstacle during an exploration tour of a mobile robot), stochastic
variables (e.g., set of sensor data), and stochastic �functions� (e.g., instructions and
algorithms). In our book, �information� is a terminus technicus that allows a quantitative
treatment in terms of the three aforementioned basic definitions. However, the
meaning of information is often not very clearly defined, and we will try in the first
step to elucidate this meaning before we present it as a useful concept in robotics.

Let us start with the first step by explaining Shannon information ((Shannon, C.E.,
1948), (Shannon, C.E., Weaver, W., 1949)) (originally conceived as a measure of the
capacity of data transmission channels). We begin our �explanation route� by a set of
discrete events labeled by an index l, whereN is a fixed number. Typical examples of
such events are tossing of a coin that yields the two events head or number, rolling a
die with six outcomes (i.e., events are l¼ 1, . . ., 6). Amore sophisticated example that
is for our wanted robot applicationsmore illustrative is the exploration tour ofmobile
robots in an unknown environment as a task that is a typical part of probabilistic
robotics (Thrun, Burgard, and Fox, 2005). This new methodology imposes weaker
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restrictions on the accuracy (greater uncertainty) of sensor data than the classical
deterministic interpretation of measurement data. Typical events during such an
exploration tour are the emergence of unexpected obstacles, possibilities of several
navigation paths with different lengths (stochastic variable), and the stability (robust-
ness) of the internal power supply (stochastic function in the sense of a homeostasis).

We consider now a very frequent repetition of trials. The probability (frequency) of
outcome of event l is defined by

pl ¼ number of positive outcomes
number of all possible trials

;

where we require the normalization of the distribution function p ¼ ðp1; p2; . . . ; pNÞ
by X

l

pl ¼ 1:

The information that a positive occurrence of an individual event delivers is called
information of event l and is defined by

il ¼ �ln pl: ðI:8Þ
We can also use log2 instead ln because log2 ¼ c ln, where c ¼ log2 e, and both

logarithmic expressions differ only by a constant factor c.
Shannondefined information as the expectation value of all individual information

isðpÞ ¼ �
X

l

pl ln pl ¼
X

l

pl il: ðI:9Þ

Formula (I.9) calculates information as a measure of stochastic uncertainty. This
term is also called information entropy. The reason for this other naming is the fact
that (I.9) is the same mathematical expression as it is used in thermodynamics for
entropy. Therefore, von Neumann suggested to Shannon not to use two different
names for the identical formula. Today, this argument is no longer fully accepted
since the relationship between the information as a measure of (probabilistic)
uncertainty and the physical meaning of entropy as the number of microstates, for
example, in gases, is clearly distinguished (Penrose, 2006). If wewant to point out the
equality of the same expression for two different approaches andmeanings, (I.9) will
be called information entropy in order to accentuate the nonphysical aspect.

Furthermore, in this book we focus on nonequilibrium phase transitions that are
characteristics of many dissipative, open systems that not only include living beings
but also, for example, robots as artificial �ingredients� of inanimate nature. In open
systems, the information can even be increased if a nonequilibrium phase transition
occurs and a final system is generated after a bifurcation that has an increased order
(Haken, 2006). An example for this declaration is the transition from a lamp (below
the bifurcation threshold) to a laser (well above the bifurcation threshold). In closed
systems, the opposite effect occurs. In an equilibrium state (constant energy) phase
transition, the information entropy decreases if (after the bifurcation) amore ordered
system state is achieved.
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Maximum and Minimum Principles of Information

We get a feeling on the significance of individual information (I.1) and the total
system information of Shannon (I.2) if we treat the following two examples:

1) All but one pl are zero: pl ¼ 0; pK ¼ 1, ln 1 ¼ 0, then the individual event
information and the total system information are both zero:

is ¼ il ¼ 0:

Thismeans that there is no uncertainty, no surprisewith respect to the outcome
of a trial. Or, in other words, there is complete certainty as long as we use the
information available to us.

2) All pl are equal. The considered probability distribution is given by the uniform
distribution p ¼ p1 ¼ ð1=NÞ; . . . ; pN ¼ ð1=NÞð Þ, pl ¼ 1/N. In this case, the
system information is maximal: isðpÞ ¼ lnN.
This is the case if there are no additional constraints besides the standard

restriction of normalization of the probability distribution. The uncertainty is
maximal since all outcomes are equally likely. Laplace called it the �principle of
insufficient reason,� which states that all outcomes are equally likely if there is no
reason to the contrary (Kapur and Kesavan, 1992). In physics, this result
corresponds to the equipartition theorem.

The Kullback measure K(p, q) (Kullback, 1951) calculates the difference between
two probability distributions

p ¼ ðp1; . . . ; � pNÞ and q ¼ ðq1; q2; . . . ; qNÞ :
Kðp; qÞ ¼

X

l

plln
pl
ql

; ðp; qÞ � 0;

where each probability distribution (density) is separately normalized to 1, andK(p, q)
is nonnegative and vanishes if and only if p ¼ q. Usually, the Kullback measure can
also be called �information gain� since q is a fixed a priori distribution and p is a
probability distribution that is searched with the aid of K in order to maximize the
divergence of p from q. But this expression can also be used to minimize the
difference (�information adjustment�). Closer the distance from p to q, the more the
probabilities of the different observed events confirm the a priori experiences
(knowledge of the experimenter). The application of this method is then directed
to find a distribution p that is closest to q and fulfills the same restrictions as q.

However, despite the existing conceptual differences of Shannon measure and
Kullbackmeasure there is a central relation between both approaches. There is a tight
connection between the maximization of isðpÞ and the minimization of K(p, q) if we
assume that q is given by the uniform probability distribution u:

Kðp; uÞ ¼
X

l

pl ln
pl
1=N

¼ lnN�isðpÞ: ðI:10Þ
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Maximizing isðpÞ is identical to minimizing K(p, q) if the a priori probability
distribution is uniform (q ¼ u). By maximizing the uncertainty, we minimize the
probabilistic distance to a given distribution.

We close this short excursion to two often used expressions for information
calculation by the remark that the Shannon approach is not invariant under
coordinate transformations, whereas the Kullback approach is invariant under
coordinate transformations.

After these remarks, we address ourselves again to the further investigation of the
Shannon information in the light of the �maximum information principle� of Jaynes
(Jaynes, 1957). This theorem postulates that we are looking for probability distribu-
tion p that guarantees isðpÞ ¼ maximum is fulfilled under all given constraints that
also include normalization. In more details, this means that a system tries to realize
all �allowed� configurations, that is, configurations that obey the constraints.

For more illustration, we treat another example. Let N ¼ 2, l ¼ 1; 2 be and
p ¼ ðp1; p2Þ ¼ ðx; 1�xÞ; 0 � x � 1. We introduce again the information of event l:
il ¼ �ln pl.

We discuss two questions that are basic for understanding Jaynes� principle by
analyzing the results of Figures I.1–I.3:

1) For which x does becomes isðpÞ a maximum?
According to Figure I.3, we find x = 1/2, p1 ¼ p2; isðpÞ ¼ ln 2

2) For which x does p1 or (p2) get a maximum?
According toFigures I.1 and I.2, wefind x¼ 1, p1 ¼ 1; i1 ¼ 0. Theprobability p1 is
maximum if the information for event 1, i1, is a minimum.

These two resulting answers lead us to the formulation of two principles that will
be important in our book. We start with the general case:

isðpÞ ¼ �
X

l

pl ln pl;
X

l

pl ¼ 1 ðI:11Þ

Figure I.1 pl versus x; l.h.s.: l ¼ 1, r.h.s.: l ¼ 2.
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and additional constraints that all together will be taken care of by the use of Lagrange
multiplicators to maximize isðpÞ (for more details, consult Section 1.4). We consider
Figure I.4 and reformulate the two questions put above into one similar, combined
question.

Figure I.2 –ln pl versus x; l.h.s.: l ¼ 1, r.h.s.: l ¼ 2.

Figure I.3 i versus x.

Figure I.4 Discrete probability distribution pl as function of l.
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Which pl is(are) maximum or which il ¼ �ln pl is minimum? The answer is: a
maximal pl minimizes the individual event information il. Or, to turn the argument
around, a small pl means that the event l is rare or unexpected, which implies that il
must be large. This is the reasonwhy some scientists call the event information il also
�surprise,� which is another more seldom used terminus technicus.

In conclusion, we may state that we have to distinguish between the maximum
information principle (minimumKullbackmeasure), according towhichwemaximize
the total information isðpÞ, and the minimum information principle, to which we
minimize the information il of a specific event l.

In order to elucidate the relation between the two information principles and,
eventually, the role played by synergetics, let us consider some typical cases.

Motion of Multirobot Cells

We first describe the motion of a robot in a multirobot cell example that tries to build
an organism. Each robot cell is furnished by adequate sensors for the extraction of
environmental features that are relevant for navigation. Here, js might be the free
path length. We denote the probability that in the presence of an obstacle l the free
path length is js by pl jsð Þ. In this way, a robot can calculate every time its individual
information il and it will navigate by minimizing il jsð Þ – maximum probability
pl jsð Þ. This means that it will try to find such a path where the probability of an
unexpected �obstacle event� is small since this event is rare. It favors that route where
it knows the positions of obstacles (a priori) and it experiences as few as possible
surprises. Each individual information constraint is defined by maximum pl jsð Þ.

The maximum principle of information chooses those probability distributions
that maximize the total information iSðpðjsÞÞ ¼

P
l ilðjsÞplðjsÞ. Indeed, this for-

mula looks like the simple summation and weighting of the aforementioned local
information, but we maximize now by other constraints like

p1j1 þ p2j2 þ � � � þ pNjN ¼ ĵ; ðI:12Þ
where ĵ is the expected path length (mean path length) of a robot. Under this
constraint and the normalization constraint, we obtain as a result for the probability
distribution pl jsð Þ the famous Boltzmann distribution of statistical mechanics,
where we just must replace energy level 2l by path length js. The resulting
movement of the individual robots will now be dictated by their endeavor to fix the
total expected path length ĵ. Here, we know that this kind of maximal system
information is not directed toward our original goal to assemble an organism.

Assembly of an Organism

To fulfill this requirement,wehave to consider further constraints (moments) like the
normalization

X1

m¼0

plm ¼ 1; l ¼ 1; 2; . . . ;N ðI:13Þ
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and

XN

l¼0

X1

m¼0

m plm ¼ A; ðI:14Þ

where each of theN robot cells (l¼ 0, . . .,N) can occupy only one or no position (m¼
0, 1, like in the Fermi–Dirac distribution), and let plm be the probability that robot l is
on an organism position or not (considered as an event). A defines the expectation
value how many robots are in a position that is part of the organism. In addition, we
have to claim for a stability constraint, an energy constraint, and so on for the case of a
stable and �viable� final organism (Levi and Haken, 2010).

For the calculation of the total information, all participating robots have to
exchange the individual results among each other as in a classical distribution
system that might be very time consuming. Another approach is a centralized
approach where the maximized probability distribution is calculated at one local
computer system and then distributed to all robots.

Up to now, a connection between the maximum and the minimum information
principle has not been established in our description. This missing link can be
defined by the synergetic method of self-organization (slaving principle) that we will
deal with later on in this section and inmore detail in our book. In a natural parlance
such a self-regulating process can be pictured as follows. Assume that the individual
robot cells have not enough power to continue their exploration tour, and then they
can start to signal to each other that they should begin to lump together in a kind of
organism in order to decrease the total power consumption and in this way a change
arises that all together can survive. In basic biological systems, such an assembly
process increases the concentration of a chemical field (e.g., concentration of cyclic
adenosine monophosphate (cAMP) for slime molds) that operates as an order field
(organisator) since the increasing gradient of this field (concentration wave) guides
the individual cells to a center where the slime mold organism is formed.

Let us go back to our two information principles and transfer this biological
example to a higher and more general level. A few of the independent navigating
robots stop their tour since the local power supply goes rapidly down and by the
support of some fluctuating forces they lump together. Such an unstable small body
may launch the generation and calculation of the total maximum information of the
stochastic assembled body. The resulting system information imaxðpÞ chooses then
such a probability distribution that not only stabilizes themean path length ĵ but also
fixes the mean energy consumption, and furthermore the relative distance between
two neighboring robot cells will be and themaximum information can be involved to
obviate that two cells are on the same position (expression (I.7)).

The circularity in this process is started by the task of the individual robots, the
external events are the obstacles (the corresponding stochastic variable js defines
the path length) and an internal event might be the status of the power supply
(stochastic variable 2l). So the extended local information can be written
il ¼ �ln pðjs;2lÞ ¼ �ln ðpð2lÞpðjsj2lÞÞ, where the energy status will be considered
as a local order parameter (see below), and this information will be minimized. If we
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sum up all these local minimal information
P

lplil to minimal mean information,
then we must notice that this formula looks, in fact, like the one that is used for
maximum information calculation, but the meaning is completely different. The
maximum information principle picks up the two stochastic variables js and2s but it
considers additional constraints like the requirements of (I.12) and the total energy
balancing

XN

l¼0

2l

X1

m¼0

mplm ¼ B: ðI:15Þ

In addition, in the next formula (I.16) where only one ju is mentioned as an order
parameter, we must also introduce additional order parameters like the power
status 2l.

The global maximized distribution function has been already shown by
expression (I.11) for one variable ju (e.g., distance between two roboter cells) and
one roboter cell�s path length js (or roboter position). As is known from probability
theory, the relation between joint probability plðjs; juÞ, conditional probability
plðjsjjuÞ, and probability plðjuÞ is given by (cf. also (I.2))

plðjs; juÞ ¼ plðjuÞplðjsjjuÞ: ðI:16Þ

Some Basic Concepts of Synergetics (Haken, 2004)

In synergetics, formula (I.16) and its variables acquire a specific meaning, and in
many cases, themethods of synergetics allow us to calculate the expression on the r.h.
s of (I.16) as we will show in our book. The basic idea behind (I.16) is this: in a system
composed of (in general) many interacting components (e.g., robots) specific spatial
or spatiotemporal configurations (an �organism�) can be formed spontaneously by
self-organization (i.e., without an external ordering hand). Rather, the system itself
establishes one or several collective variables ju that are the order parameters.

These order parameters enslave the individual components with their variables js,
that is, they determine the behavior of the latter. This is expressed by p jsjjuð Þ, (slaving
principle). By means of their cooperation, in turn the components determine the
dynamics of the order parameters (circular causality). In a number of cases, the
variables js can be eliminated from the fundamental equations of motion so that
closed equation for ju result. This is reflected by p juð Þ. As we will show in our book,
the slaving principle allows us to bridge the gap between the concepts ofminimal and
maximal information principles. To be sure, this little sketch represents only a small,
though characteristic, part of the synergetic methodology. After this interlude, let us
continue the previous section.

The mathematical expression (I.16) demonstrates that the individual navigation
that can be represented by a maximum probability pl jsð Þ is replaced by a different
maximized total probability pl js; juð Þ that describes the behavior (movement) of a
robot cell under the control (�slaving�) of the maximal information generated by the
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participating agents that exercise a strong feedback (causal circularity). In the light of
the presented information principles, we consider the maximum information as a
superior organizing field that controls the local minimal information of the indi-
vidual agents.

As an important consequence, this means we do not need a centralized system in
order to describe self-organization phenomenon, but after an establishing phase
(generation of the maximum information) the agents can immediately move around
without any continuous exchange of partial information values of the totalmaximum
information. Like in a gravitation field that is generated only by the participating
masses, the individual masses behave coordinated (synchronized) without any
explicit information exchange in order to calculate the total information.

The synergetic-based interaction between both optimization principles of infor-
mation can be extended to objects (organisms) of higher complexity than a puremass
object might represent. The appeal of our approach is the fact that on every
hierarchical level (higher semantic level) the same mathematical expression must
be calculated; however, the meaning of the information expressed by the probability
distribution that minimizes the local information and another one that maximizes
the global information is on every hierarchical level entirely different. The scientific
challenge is here to formulate the correct restrictions and to find the adequate
probability distribution (indeed not a simple task).

Even if we find the correct probability distributions, we must express their
dependence on the external or internal event l by the involvement of the so-called
control parameters.

Awell-knownexample for suchdependence is the laser distribution function of the
order parameter ju

pðjuÞ ¼ Nuexp faj2u�bj4ug: ðI:17Þ

Here, a and b are both control parameters, where the sign of a defines a
�bifurcation� of ju. An example for the probability distribution that minimizes the
local information is

psðjsÞ ¼ Nsexpf�cðjs�f ðjuÞÞ2=Qsg; ðI:18Þ

where Qs is the strength of fluctuating forces (corresponding to a constant diffusion
coefficient), c a damping constant, and f a third-order polynomial in ju. Since the
maximum of (I.18) lies at

js ¼ f juð Þ;
this clearly demonstrates the slaving principle: the enslaved variable js is fixed by the
order parameter ju (up to a finite uncertainly due to fluctuations as expressed by the
width of the Gaussian).

The synergetic combination of both information principles will be of particular
interest to robotics. In order to formulate a motion equation from the minimal or
maximal information principle, we consider the probability distribution, in the first
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step, as the stationary solution of a Fokker–Planck equation (cf. e.g. (Risken, 1989)).
This means that we use the following fundamental equation for the local infor-
mation isðjsÞ:

FsðjsÞþQsrisðjsÞ ¼ 0; ðI:19Þ

with the solution isðjsÞ ¼ VðjsÞ=Qs þ constant, and with the force Fs ¼ �rVsðjsÞ,
where r is the nabla operator.

By this approach, we obtain using the principle of minimum information the
equation of motion, for example, for an individual robot by the expression

js

.

¼ �QsrisðjsÞ; where isðjsÞ ¼ �ln psðjsÞ: ðI:20Þ

For sake of consistencey with the fully stochastic equation of motion, the r.h.s. of
(I.20)must be supplemented by a stochastical force of strengthQs. We formulate this
special result in a more general way by the following principle.

Haken–Levi Principle

In a multirobot system (multiagent system), each robot moves (behaves) in such a
way that itminimizes its local information, if itsmotion is overdamped and subject to
a fluctuating force (Langevin equation).

This is a special case of theHaken–Levi principle that we formulated above (I.7) for
the general motion of a robot with mass, subject to a fluctuating force and damping
(H-L II). For massless agents, the acceleration term disappears, or this term can be
neglected if the motion is overdamped (H-L I).

The great advantage of expression (I.7) is that robots can immediatelymove (e.g., in
a swarm mode) if their local information is available without any or (a minimal
amount) of additional time-consuming message exchanges. In the organism mode,
when artificial creatures with higher complexity grow up, we still assume that
formula (I.7) is correct and applicable if we consider stochastic variables that do
not describe positions or distances between agents but adaptability (fitness) to the
change of different environmental factors such as pressure, temperature, humidity,
and slippery ground. All these parameters are directly connected to self-regulation
problems of homeostasis or foraging. On higher levels, we have also to consider
differentiation processes (definition, for example, of �organs� or body parts) or
cognitive and decision processes. In the view of H-L principle, we postulate that we
describe all these more sophisticated processes finally by information-based activity
patterns that can be deduced from adequate potentials, where we do not exclude that
our scalar potentialsmust be replaced by vector potentials or even by gauge potentials
A. In the latter case, the forces have to be replaced by corresponding local field
strength F (Naber, 1997).
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