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Preface

The term small systems denotes objects composed of a limited, small number of
particles, as is typical for matter on meso- and nanoscales. The interest of the
scientific community in small systems has been boosted by the recent advent of
micromanipulation techniques and nanotechnologies. These provide scientific
instruments capable of measuring tiny energies in physical systems under non-
equilibrium conditions, that is, when these systems are exposed to external
forces generated by gradients or fields. Prominent examples of small systems
exhibiting nonequilibrium dynamics are biopolymers stretched by optical tweez-
ers (as shown in the lower picture on the book cover), colloidal particles dragged
through a fluid by optical traps, and single molecules diffusing through meso-
and nanopores.
Understanding the statistical physics of such systems is particularly challenging,

because their small size does not allow one to apply standard methods of statistical
mechanics and thermodynamics, which presuppose large numbers of particles.
Small systems often display an intricate interplay between microscopic nonlinear
dynamical properties and macroscopic statistical behavior leading to highly non-
trivial fluctuations of physical observables (cf. the upper picture on the book cover).
They can thus serve as a laboratory for understanding the emergence of complexity
and irreversibility, in the sense that for a system consisting of many entities the
dynamics of the whole is more than the sum of its single parts.
Studying the behavior of small systems on different spatiotemporal scales

becomes particularly interesting in view of nonequilibrium transport phe-
nomena such as diffusion, heat conduction, and electronic transport. Under-
standing these phenomena in small systems requires novel theoretical concepts
that blend ideas and techniques from nonequilibrium statistical physics, ther-
modynamics, stochastic theory, and dynamical systems theory. More recently, it
has become clear that a central role in this field is played by fluctuation relations,
which generalize fundamental thermodynamic relations to small systems in
nonequilibrium situations.
The aim of this book is to provide an introduction for both theorists and

experimentalists to small systems physics, fluctuation relations, and the associ-
ated research topics listed in the word cloud diagram shown below. The book
should also be useful for graduate-level students who want to explore this new
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field of research. The single chapters have been written by internationally recog-
nized experts in small systems physics and provide in-depth introductions to
the directions of their research. This approach of a multi-author reference book
appeared to be particularly useful in view of the vast amount of literature availa-
ble on different forms of fluctuation relations. While there exist excellent
reviews highlighting single facets of fluctuation relations, we feel that the field
lacks a reference that brings together the most important contributions to this
topic in a comprehensive manner. This book is an attempt to fill the gap. In a
way, it may act itself as a complex system, in the sense that the book as a whole
ideally yields a new picture on small systems physics and fluctuation relations
emerging from a synergy of the individual chapters. Along these lines, our
intention was to embed research on fluctuation relations into a wider context of
small systems research by pointing out cross-links to other theories and experi-
ments. We thus hope that this book may serve as a catalyst both to fuse existing
theories on fluctuation relations and to open up new directions of inquiry in the
rapidly growing area of small systems research.

Accordingly, the book is organized into two parts. Part I introduces both the
theoretical and experimental foundations of fluctuation relations. It starts with a
threefold opening on basic theoretical ideas. The first chapter features a peda-
gogical introduction to fluctuation relations based on an approach that was
coined “stochastic thermodynamics.” The second chapter outlines a fully deter-
ministic theory of fluctuation relations by working it out both analytically and
numerically for a particle in an optical trap. The third chapter generalizes these
deterministic ideas by also establishing cross-links to the Gallavotti–Cohen fluc-
tuation theorem, which historically was the first to be established, with mathe-
matical rigor, for nonequilibrium steady states. After this theoretical opening,
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the following two chapters summarize groundbreaking experimental work on
two fundamental types of fluctuation relations. Along the lines of Gallavotti and
Cohen, the first subset of them is often referred to as “fluctuation theorems”
generalizing the second law of thermodynamics to small systems (see the first
formula on the book cover). This type of fluctuation formulas is tested experi-
mentally in systems where particles are confined by optical traps under non-
equilibrium conditions. “Work relations,” on the other hand, generalize an
equilibrium relation between work and free energy to nonequilibrium (see the
second formula on the book cover). The result is tested in experiments where
single DNA and RNA chains are unzipped by optical tweezers. The remaining
three chapters of Part I elaborate on aspects of fluctuation relations that moved
into the focus of small systems research more recently. The first one introduces
the nonequilibrium thermodynamics of information processing by using feed-
back control. The second one reviews quantum mechanical generalizations of
fluctuation relations applied to electron transport in mesoscopic circuits. The
third one discusses generalizations of fluctuation relations for stochastic anom-
alous dynamics with cross-links to experiments on biological cell migration.
Part II goes beyond fluctuation relations by reviewing topics that, while centered

around nonequilibrium fluctuations in small systems, do not elaborate in particu-
lar on fluctuation relations. It starts with a discussion of fluctuation–dissipation
relations, which are intimately related to, but may not be confused with, fluctuation
relations. A cross-link to the foregoing chapter is provided in terms of partially
studying anomalous dynamics, a topic that becomes particularly important for heat
conduction in nanostructures, as is demonstrated from both an experimental and a
theoretical point of view in the subsequent chapter. Fluctuation relations bear an
important relation to large deviation theory, as is outlined in the next chapter, with
applications to interacting particle systems. The book concludes with a summary
about Lyapunov modes, which provide important information about the phase
space dynamics in deterministically chaotic interacting many-particle systems,
and experiments about diffusion in meso- and nanopores by performing single-
molecule spectroscopy.
We finally remark that the various points of view expressed in the single chapters

may not always be in full agreement with each other. This became clear in lively
discussions between different groups of authors when the book was in preparation.
As editors, we do not necessarily aim to achieve a complete consensus among all
authors, as differences in opinions are typical for a very active field of research
such as the one presented in this book.
We are most grateful to Heinz-Georg Schuster, the editor of the series Reviews of

Nonlinear Dynamics and Complexity, in which this book is published as a Special
Issue, for his invitation to edit this book, and for his help in getting the project
started. We also thank Vera Palmer and Ulrike Werner fromWiley-VCH Publishers
for their kind and efficient assistance in editing this book. C.J. gratefully
acknowledges financial support from the National Science Foundation (USA)
under grant DMR-0906601. W.J. is grateful for support from the British EPSRC by
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grant EP/H04812X/1. We finally thank all book chapter authors for sharing their
expertise in this multi-author monograph. Their strong efforts and enthusiasm for
this project were indispensable for bringing it to success.

Summer 2012

London Rainer Klages
London Wolfram Just
College Park, MD Christopher Jarzynski
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Figure 4.1 (a) The torsion pendulum. (b) The magnetostatic forcing. (c) Picture of the
pendulum. (d) Cell where the pendulum is installed.
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Figure 4.12 (a) Distribution of classical workWcl for different numbers of period n ¼ 1, 2, 4, 8,
and 12 (f ¼ 0:25 Hz). Inset: Same data in lin-log. (b) Normalized symmetry function as a function
of the normalized work for n ¼ 1 (þ), 2 (�), 4 (^), 8 (D), and 12 (&).
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Figure 4.14 (a) Dependence of the parameter
a on the standard deviation of the Gaussian
exponentially correlated external force f 0 acting
on the colloidal particle. Probability density
functions of the work wt for (b) a ¼ 0:20, (c)

a ¼ 3:89, and (d) a ¼ 10:77. The symbols
correspond to integration times t ¼ 5 ms (�),
55ms (&), 105ms (^), 155ms (3),
205ms ("), and 255ms (�). The solid black
lines in (b) and (c) are Gaussian fits.
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Figure 4.16 (a) Dependence of the parameter
a on the standard deviation of the Gaussian
white external force f 0 acting on the cantilever.
Probability density functions of the work wt for
(b) a ¼ 0:19, (c) a ¼ 3:03, and (d) a ¼ 18:66.

The symbols correspond to integration times
t ¼ 97ms (�), 1:074ms (&), 2.051ms (^),
3.027ms (3), 4.004ms ("), and 4.981ms (�).
The black dashed lines in (b)–(d) represent the
exponential fits of the corresponding tails.

Figure 5.3 The Crooks fluctuation relation. (a)
Work distributions for the hairpin shown in
Figure 5.1 measured at three different pulling
speeds: 50 nms�1 (blue), 100 nm s�1 (green),
and 300 nms�1 (red). Unfolding or forward
(continuous lines) and refolding or reverse work
distributions (dashed lines) cross each other at
a value of 81.0� 0.2 kBT independent of the

pulling speed. (b) Experimental test of the CFR
for 10 different molecules pulled at different
speeds. The log of the ratio between the
unfolding and refolding work distributions is
equal to ðW � DGÞ in kBT units. The inset
shows the distribution of slopes for the different
molecules that are clustered around an average
value of 0.96. (Figure taken from Ref. [19].)
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Figure 8.8 Spatiotemporal probability
distributions Pðx; tÞ. (a and b) Experimental data
for both cell types at different times in
semilogarithmic representation. The dark lines,
labeled FKK, show the long-time asymptotic
solutions of our model (Eq. (8.31)) with the same
parameter set used for the MSD fit. The light
lines, labeled OU, depict fits by the Gaussian

distributions (Eq. (8.11)) representing Brownian
motion. For t ¼ 1 min, both Pðx; tÞ show a
peaked structure clearly deviating from a Gaussian
form. (c) The kurtosis kðtÞ of Pðx; tÞ (cf.
Eq. (8.30)) plotted as a function of time saturates
at a value different from that of Brownian motion
(line at k ¼ 3). The other two lines represent kðtÞ
obtained from the model (Eq. (8.31)) [43].
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Figure 9.1 (a) hx2ðtÞi0=L versus t=L2 plotted for several values of L in the comb model.
(b) hx2ðtÞi0 and the response function dx ðtÞ for L ¼ 512. Inset: The parametric plot of dx ðtÞ versus
hx2ðtÞi0.

Figure 12.18 Variation of the normalized projection error sðn; rÞ=r with the distance to the
reference state r with n ¼ 7, 8, 9, and 11, respectively. To improve the statistics, data from 200
reference states are presented together. A line with slope 1 is shown to guide the eyes.
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Figure 12.19 The normalized average projection error Sðn; rÞ=r versus the distance to the
reference state r with n from 4 to 11. Linear fittings of data for n < M confirms the saturation of
Sðn; rÞ=r to a nonzero constant value.
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Figure 13.3 (a) Overlay of TEM image (gray)
and FFT directors (black bars) with single-
molecule trajectories (dark blue). The
polystyrene beads, used for the overlay, are
indicated by the yellow (TEM) and red (SMM)

crosses. The light blue boxes show the
positioning error of the SM trajectories. (b–f)
Possible movement patterns of a single
molecule in various structural features found in
the hexagonal mesoporous films.
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