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Preface

Overview

Just like building physics, performance based building design was hardly an issue before the
energy crises of the 1970s. With the need to upgrade energy efficiency, the interest in overall
building performance grew. The volume on applied building physics discussed a performance
rationale and performance requirements at the building and building enclosure level, with
emphasis on heat, air, moisture checks. As in the third volume, volume four continues this
rationale for structural aspects, acoustics, fire safety, maintenance and buildability. And as
with volume three, it is the result of thirty-eight years of teaching architectural, building and
civil engineers, coupled to more than forty years of experience in research and consultancy.
Where and when needed, input and literature from around the world has been used, with a list
of references and literature at the end of each chapter.

The book can be used by undergraduates and graduates in architectural and building engineer-
ing and also building engineers who want to refresh their knowledge may also benefit. The
level of discussion assumes a sound knowledge of building physics, along with a background
in structural engineering, building materials and building construction.
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0 Introduction

0.1 Subject of the book

This is the second part of the third volume in a series of books on building physics, applied
building physics and performance based building design:

¢ Building Physics: Heat, Air and Moisture

e Applied Building Physics: Boundary Conditions, Building Performance and Material
Properties

e Performance Based Building Design 1
¢ Performance Based Building Design 2

Performance Based Building Design 2 continues the application of the performance based
engineering rationale, discussed in ‘Applied Building Physics: Boundary Conditions, Building
Performance and Material Properties’ to the design and construction of building assemblies. In
order to do that, the text considers the performance requirements presumed or imposed, their
prediction during the design stage and the technology needed for realization.

Performance Based Building Design 1 ended with massive outer walls. Performance Based
Building Design 2 begins with lightweight building and outer wall systems: timber-framed
and metal-based. Then low-sloped, pitched, and metal roofs follow to finish the enclosure-
related subjects with glazed surfaces and windows. Attention then turns to balconies, chimneys,
shafts, staircases, inside partitions, and finishes. The volume closes with a chapter on risk
analysis. Of course, for principals acceptable risk is an important issue. As in Performance
Based Building Design 1, the impact of performance requirements on design and execution
is highlighted. For decades, the Laboratory of Building Physics at the KULeuven not only
tested highly insulated massive fagade assemblies, but also lightweight fagade assemblies and
roofs. The results are used in the discussions.

0.2 Units and symbols

The book uses the SI-system (internationally mandatory since 1977). Base units are the meter
(m), the kilogram (kg), the second (s), the Kelvin (K), the ampere (A) and the candela. Derived
units of importance are:

Unit of force: Newton (N); IN =1kg-m-s?

Unit of pressure: Pascal (Pa); 1Pa=1N/m?>=1kg-m's?
Unit of energy: Joule  (J); 1] =1N-m =1kg-m? s?
Unit of power: Watt  (W); 1W=1J-s!=1kg-m?s>

For the symbols, the ISO-standards (International Standardization Organization) are followed.
If a quantity is not included in these standards, the CIB-W40 recommendations (Interna-
tional Council for Building Research, Studies, and Documentation, Working Group ‘Heat
and Moisture Transfer in Buildings’) and the list edited by Annex 24 of the IEA, ECBCS
(International Energy Agency, Executive Committee on Energy Conservation in Buildings
and Community Systems) are applied.



Table 0.1. List with symbols and quantities.

0 Introduction

Symbol Meaning Units

a Acceleration m/s?
Thermal diffusivity m%/s
Thermal effusivity W/(m?- K - %)

c Specific heat capacity J/(kg - K)

c Concentration kg/m?®, g/m’
Emissivity -

f Specific free energy Jkg
Temperature ratio -

g Specific free enthalpy J/kg

g Acceleration by gravity m/s?

g Mass flow rate, mass flux kg/(m?-s)

h Height m

h Specific enthalpy J/kg

h Surface film coefficient for heat transfer W/(m? - K)

k Mass related permeability (mass may be moisture, air, salt ...) s

[ Length m

/ Specific enthalpy of evaporation or melting J/kg

m Mass kg

n Ventilation rate shht!

2 Partial pressure Pa

q Heat flow rate, heat flux W/m?

r Radius m

s Specific entropy J/(kg-K)

t Time S

u Specific latent energy J/kg

v Velocity m/s

w Moisture content kg/m’

X, ¥,z Cartesian co-ordinates m

A Water sorption coefficient kg/(m? - s%%)

A Area m?

B Water penetration coefficient m/s%?

D Diffusion coefficient m%/s

D Moisture diffusivity m%/s

E Irradiation W/m?



0.2 Units and symbols

Table 0.1. (continued)

Symbol Meaning Units

F Free energy J

G Free enthalpy J

G Mass flow (mass = vapour, water, air, salt) kg/s

H Enthalpy J

1 Radiation intensity J/rad

K Thermal moisture diffusion coefficient kg/(m-s-K)
K Mass permeance s/m

K Force N

L Luminosity W/m?

M Emittance W/m?

P Power w

P Thermal permeance W/(m? - K)
P Total pressure Pa

(0] Heat J

R Thermal resistance m? - K/W
R Gas constant J/(kg - K)
S Entropy, saturation degree JK, -

T Absolute temperature K

T Period (of a vibration or a wave) s, days, etc.
U Latent energy J

U Thermal transmittance W/(m?-K)
vV Volume m’

w Air resistance m/s

X Moisture ratio kg/kg

VA Diffusion resistance m/s

a Thermal expansion coefficient K

a Absorptivity -

B Surface film coefficient for diffusion s/m

B Volumetric thermal expansion coefficient K

n Dynamic viscosity N-s/m?

0 Temperature °C

A Thermal conductivity W/(m - K)
u Vapour resistance factor -

v Kinematic viscosity m%/s
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Symbol Meaning Units

p Density kg/m?

yo) Reflectivity =

o Surface tension N/m

T Transmissivity -

¢ Relative humidity -

a, ¢, 0 Angle rad

g Specific moisture capacity kg/kg per unit of
moisture potential

v Porosity =

'4 Volumetric moisture ratio m’/m?

D Heat flow w

Table 0.2. List with suffixes and notations.

Symbol Meaning

Indices

A Air

c Capillary, convection
Outside, outdoors

h Hygroscopic

i Inside, indoors

cr Critical

CO,, SO, Chemical symbol for gases

m Moisture, maximal

r Radiant, radiation

sat Saturation

S Surface, area, suction

rs Resulting

v Water vapour

w Water

) Relative humidity

Notation

[ ], bold Matrix, array, value of a complex number

Dash Vector (ex.: @)
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1 Timber-framed construction

1.1 In general

In the Low Countries on the North Sea, timber was the common construction material for rural
and municipal dwellings until the 13— 14" century. Brick construction was an aristocrat’s
privilege. Many devastating town fires, the sociological fact that bricks stood for wealth and
growing wood shortages slowly turned brick building into the new standard.

Timber construction still is the reference in many countries worldwide, like the US, Canada,
Norway, Sweden, Finland, Russia, Japan and other countries rich in forests and often with a
cold climate. There, the framed type has an important advantage compared to massive construc-
tion: it is easy to insulate, which is why even in northwest Europe timber-frame construction
has regained popularity, now for passive houses. However, the disadvantages also deserve
mentioning: hardly any thermal inertia, air tightness critical and less moisture tolerant than
brick construction.

In timber framing, load- and non-bearing outer and partitions walls consist of a framework
of timber studs and crossbeams, called plates. The outer wall frames are externally finished
with structural sheathing. Where the studs bear all vertical loads and the outer wall ones have
also to withstand the wind component, normal to the fagade, the sheathing provides overall
stiffness against horizontal loading. It also prevents buckling of the studs parallel to their
lowest inertia radius. From the three common framing approaches — platform, balloon, post
and beam — the platform type, composed of storey-high stud walls and timber floors is the
most popular (Figure 1.1).

Construction looks as follows: once the foundations and foundation walls are ready, the
ground floor is laid, in humid climates preferably a concrete deck, though in dry climates also
timber joists with plywood or OSB (oriented strand board) deck apply, the crosscut end sides
being closed with header plates. In such case, ripped half-width standard timber beams form
the floor joists with struts at half-span excluding lateral buckling. Then one fixes the bottom
plates, after which the studs are nailed and coupled with top plates. To stabilize the frame
corners, doubling these is an option. After, a plywood, OSB or stiff insulation board (XPS)
sheathing is nailed to the outer wall frames. The joists of the second floor, which are fixed at
the top plates then follow. Header plates again close the crosscut end sides and plywood or
OSB forms the running surface. The same cycle restarts for the second storey: bottom plate,
studs, top plates, sheathing, floor joists, running surface, etc.

A timber framework or rafters, axis to axis at the same distance as the studs, shape the load-
bearing roof structure with an external sheathing once more providing stiffness. Timber framing
ends with wrapping up the outer walls with waterproof, wind tight building paper, stapled from
bottom to top on the sheathing with the higher strips overlapping the lower ones. Platform
framing lends itself to modular construction and prefabrication.

From inside to outside the outer wall assembly looks like (Figure 1.2): inside lining (gypsum
board); (service cavity); air (always) and vapour (when necessary) retarder; bays between
studs filled with insulation (mineral wool or cellulose); plywood, OSB or stiff insulation board
sheathing; building paper; outside finish (timber siding, brick veneer, EIFS, etc).

Aside from timber framing, also metal framed construction exists, with metal studs and plates
replacing the timber ones.

Performance Based Building Design 2. From Timber-framed Construction to Partition Walls.
First Edition. Hugo Hens.
© 2013 Ernst & Sohn GmbH & Co. KG. Published 2013 by Ernst & Sohn GmbH & Co. KG.
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Figure 1.1. Platform type (1: joists, 2: header plate, 3: running surface, 4: top plates, 5: sheathing,
6: studs, 7: bottom plates).

Figure 1.2. Timber-framed outer wall, reference assembly (1: inside lining, 2: service cavity,
3: air and vapour retarder, 4: thermal insulation; 5: sheathing, 6: building paper, 7: outside finish).
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1.2 Performance evaluation
1.2.1  Structural integrity

Timber-framed buildings are so lightweight that anchoring in the foundation walls is necessary
to prevent displacement under extreme wind load (Figure 1.3).

Waterproofing

Anchoring

Thermal cut

Figure 1.3. Timber-framed construction, anchoring in the foundation walls.

Wind loading and buckling of the outer and partition wall studs demands proper attention. The
sheathing or inside finishes block it in the lowest moment of inertia direction. The direction
normal to the walls needs a control. Table 1.1 gives the buckling factors vertical loads have
to be multiplied by, as a function of the stud’s slenderness (7):

i=— (1.1)

A

with L the effective stud span (in timber framed construction equal to the distance between
bottom and top plates), / the moment of inertia around the neutral axis of the combination
stud/sheathing (if shear-stiff coupled) and A4 total active cross section.

If this product gives stresses in the timber beyond acceptable, or, if for a given span the
stud’s radius of inertia is too low, then two options are left: diminishing the centre-to-centre
distance between studs or using deeper ones. The first is disadvantageous in terms of whole
wall thermal transmittance whereas the second allows larger insulation thicknesses, thus, a
lower whole wall thermal transmittance.

Table 1.2 summarizes the mechanical properties of softwood and plywood. For the stiffness
against horizontal loads, the same rules as for massive construction hold: the floors as rigid
horizontal decks, at least 3 sheathed or wind-braced walls whose centre planes do not cross
in one point, the stiff walls preferentially distributed in a way the resulting wind load vector
crosses their stiffness centre.
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Table 1.1. Buckling factors (slenderness vertically in steps of 10, horizontally in steps of 1).

Slenderness 0 1 2 3 4 5 6 7 8 9
0 1 1 1.01 1.01 1.02 1.02 1.02 1.03 1.03 1.04
10 1.04 1.04 105 105 1.06 106 1.06 107 1.07 1.08
20 .08 1.09 1.09 110 1.11 1.11 .12 113 113 1.14
30 .1s 116 117 1.18 1.19 120 121 122 124 125
40 126 127 129 130 132 133 135 136 138 140
50 142 144 146 148 150 152 154 156 158  1.60
60 1.62 164 167 169 172 174 177 180 182 1.85
70 1.88 191 194 197 200 203 206 210 2.13 2.16
80 220 223 227 231 235 238 242 246 250 2.54
90 258 262 266 270 274 278 282 287 291 295
100 3.00 3.06 312 3.8 324 331 337 344 350 357
110 3.63 370 376 3.83 390 397 4.04 411 418 425
120 4.32 4.39 4.46 4.54 4.61 4.68 4.76 4.84 4.92 4.99
130 507 515 523 531 539 547 555 563 571 580
140 588 596 605 613 622 631 639 648 657 6.66
150 675 684 693 7.02 7.1 721 730 739 749 7.8
160 7.68 7.78 7.87 7.97 8.07 8.17 8.27 8.37 8.47 8.57
170 8.67 877 883 898 9.08 919 929 940 9.61 9.6l
180 9.72  9.83 994 10.05 10.16 1027 10.38 10.49 10.60 10.72
190 1083 1094 11.06 11.17 11.29 11.41 11.52 11.64 11.76 11.88
200 12.00 12.12 1224 1236 1248 12.61 12.73 12.85 1298 13.10
210 1323 1336 1348 13.61 13.74 13.87 14.00 14.13 1426 14.39
220 1452 14.65 1479 1492 1505 1519 1532 1546 15.60 15.73
230 1587 16.01 16.15 1629 1643 16.57 16.71 16.85 1699 17.14

240 17.28 17.42 1757 17.71 17.86 18.01 1815 1830 1845 18.60
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Table 1.2. Mechanical properties of softwood and plywood.

Property Softwood Plywood

Class1 Class2 Class3 / fibres + fibres
outer outer
laminates laminates

Modulus of elasticity MPa

/ fibres 11 000 7 000
1 fibres 300 3000
Shear modulus MPa 500

Allowed stress

Bending / fibres MPa 7 10 13

1 plywood  MPa 13 5

/ plywood  MPa 9 6
Tension / fibres MPa 0 8.5 10.5

/ plywood  MPa 8 4
Compression / fibres MPa 6 8.5 11

1 fibres MPa 2 2

1 plywood  MPa 3 3

/ plywood  MPa 8 4
Shear / fibres MPa 0.9 0.9 0.9

1 plywood  MPa 1.8 1.8

/ plywood  MPa 0.9 0.9

1.2.2  Building physics: heat, air, moisture

1.2.2.1 Air tightness

Air tightness of timber-framed envelopes is not taken for granted. The outside finish, the
building paper, the sheathing, as well as the insulation, all are air-permeable. Contributing
factors are, for the building paper, the overlaps between the strips, for the sheathing the joints
between boards and for the thermal insulation the material itself and the gaps between insulation,
studs and plates. It is the inside finish to guarantee air-tightness. Non-perforated gypsum board
linings without cracks between boards have an air permeance of (K,) = 3.1 - 10~ AP, !°. For
an air pressure difference of 10 Pa, that value limits air leakage to 0.43 m*/(m? - h). However,
when sockets and others perforate the lining and cracks form between boards, this value may
increase by a factor of 10, which is why inclusion of an additional air barrier deserves re-
commendation. In moderate and cold climates, one used a PE-foil, stapled against the timber
frame, preferentially with a service cavity left between foil and inside lining. Recently, OSB
with taped joints emerged as an alternative (Figure 1.4). But also with additional air barrier,
perfect air-tightness is hard to realize. Even excellent workmanship did not result in tested air
leakages below 3 dm?/(m?- h) at 1 Pa air pressure difference. In hot and humid climates, it is
up to the outside finish to guarantee air-tightness.



