


Table of Contents

Preface

Glossary

Chapter 1. Fundamentals of Testing

1.1. Why is testing necessary? (FL 1.1)

1.2. What is testing? (FL 1.2)

1.3. Paradoxes and main principles (FL 1.3)

1.4. Fundamental test process (FL 1.4)

1.5. Psychology of testing (FL 1.5)

1.6. Testers and code of ethics (FL 1.6)

1.7. Synopsis of this chapter

1.8. Sample exam questions

Chapter 2. Testing Throughout the

Software Life Cycle

2.1. Software development models (FL 2.1)

2.2. Test levels (FL 2.2)

2.3. Types of tests (FL 2.3)

2.4. Test and maintenance (FL 2.4)

2.5. Oracles

2.6. Specific cases

2.7. Synopsis of this chapter

2.8. Sample exam questions



Chapter 3. Static Techniques (FL 3.0)

3.1. Static techniques and the test process (FL

3.1)

3.2. Review process (FL 3.2)

3.3. Static analysis by tools (FL 3.3)

3.4. Added value of static activities

3.5. Synopsis of this chapter

3.6. Sample exam questions

Chapter 4. Test Design Techniques (FL

4.0)

4.1. The test development process (FL 4.1)

4.2. Categories of test design techniques (FL 4.2)

4.3. Black-box techniques (FL 4.3)

4.4. Structure-based techniques (FL 4.4)

4.5. Experience-based techniques (FL 4.5)

4.6. Choosing test techniques (FL 4.6)

4.7. Synopsis of this chapter

4.8. Sample exam questions

Chapter 5. Test Management (FL 5.0)

5.1. Test organization (FL 5.1)

5.2. Test planning and estimation (FL 5.2)

5.3. Test progress monitoring and control (FL 5.3)

5.4. Reporting

5.5. Transverse processes and activities

5.6. Risks management (FL 5.5)

5.7. Defect management (FL 5.6)

5.8. Synopsis of this chapter



5.9. Sample exam questions

Chapter 6. Tools support for Testing

(FL 6.0)

6.1. Types of test tools (FL 6.1)

6.2. Assumptions and limitations of test tools (FL

6.2)

6.3. Selecting and introducing tools in an

organization (FL 6.3)

6.4. Synopsis of this chapter

6.5. Sample exam questions

Chapter 7. Mock Exam

Chapter 8. Templates and Models

8.1. Master test plan

8.2. Test plan

8.3. Test design document

8.4. Test case

8.5. Test procedure

8.6. Test log

8.7. Defect report

8.8. Test report

Chapter 9. Answers to the Questions

9.1. Answers to the end of chapter questions

9.2. Correct answers to the sample paper

questions



Bibliography

Index



I would like to dedicate this book to a number of persons:

– to those who came before me and opened the way in the

field of testing, many of them are listed in the bibliography;

– to those who will follow me, hoping that this book will

provide you with a good start in this wonderful career;

– to my colleagues and dear friends who read the draft

and proposed suggestions;

– to my spouse and children who have to suffer a husband

and father who is too frequently away and quite demanding.





First published 2012 in Great Britain and the United States

by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or

private study, or criticism or review, as permitted under the

Copyright, Designs and Patents Act 1988, this publication

may only be reproduced, stored or transmitted, in any form

or by any means, with the prior permission in writing of the

publishers, or in the case of reprographic reproduction in

accordance with the terms and licenses issued by the CLA.

Enquiries concerning reproduction outside these terms

should be sent to the publishers at the undermentioned

address:

ISTE Ltd

27-37St George’s Road

London SW19 4EU

UK

John Wiley&Sons, Inc.

111 River Street

Hoboken, NJ 07030

USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2012

The rights of Bernard Homès to be identified as the author

of this work have been asserted by him in accordance with

the Copyright, Designs and Patents Act 1988.

Library of Congress Cataloging-in-Publication Data

Homès, Bernard.

Fundamentals of software testing / Bernard Homès.

p. cm.

Includes bibliographical references and index.

ISBN 978-1-84821-324-1

1. Computer software--Testing. I. Title.

QA76.76.T48H674 2012

005.1--dc23

2011040335

British Library Cataloguing-in-Publication Data

http://www.iste.co.uk/
http://www.wiley.com/


A CIP record for this book is available from the British

Library

ISBN: 978-1-84821-324-1



Preface

Why this book

Software testing is becoming more and more important in

the industry, reflecting the increasing importance of

software quality in today’s world.

Due to the lack of formal and recognized training in

software testing, a group of specialist consultants gathered

together in 2002 and founded the International Software

Testing Qualifications Board (ISTQB). They defined the

minimal set of methodological and technical knowledge that

testers should know depending on their experience. This

was gathered into what is called a syllabus. The foundation

level syllabus was reviewed in 2011 and is the basis of an

international certification scheme, already obtained by more

than 200,000 testers worldwide. For testers who wish to

prepare for the ISTQB foundation level exam, this book can

serve as reference material and a study guide. It references

the 2011 version of the ISTQB Certified Tester Foundation

Level syllabus.

This book follows the order and chapters of the syllabus,

helping you to successfully complete the certification exam.

It is a one-stop reference book offering you:

– more detailed explanations than those found in the

ISTQB syllabus;

– definitions of the terms (i.e. the Glossary) used in the

certification exams;

– practice questions similar to those encountered during

the certification exam;

– a sample exam.

For testers who want to acquire a good understanding of

software and system tests, this book provides the



fundamental principles as described by the ISTQB and

recognized experts.

This book provides answers and areas of discussion

allowing test leaders and managers to:

– improve their understanding of testing;

– have an overview of process improvement linked to

software testing;

– increase the efficiency of their software development

and tests.

Throughout this book, you will find learning objectives

(noted FLO-…) that represent the ISTQB foundation level

syllabus learning objectives. These are the topics that

certification candidates should know and that are examined

in the ISTQB certification exams.

Prerequisite

Software testing does not require specific prerequisites.

Although it is not mandatory, a common understanding of

data processing and software allows you to have a better

understanding of software testing.

The reader with software development knowledge,

whatever the programming language, will understand

certain aspects faster, but a simple practice as a user

should be enough to understand this book.

ISTQB, CFTL (Comité Français

des Tests Logiciels) and

national boards

The ISTQB is a not-for-profit international association

grouping national software testing boards covering

approximately 50 countries. These national boards are

made up of software testing specialists, consultants, and



experts, and together they define the syllabi and

examination directives for system and software testers. The

CFTL represents France on the ISTQB and offers the ISTQB

certification in France.

To define the syllabus content for all three software tester

certification levels (i.e. foundation, advanced, expert), and

the applicable exam directives, the ISTQB has created a

number of working groups, each in charge of a specific

subject (i.e. foundation level syllabus, advanced level

syllabus, expert level syllabi, training provider accreditation,

examination specification, etc.). These work groups are, as

the national boards, made up of software testing experts

and specialists, consultants, presenters at conferences,

professors and national or international specialists in

software testing and systems quality. Their combined

expertise enables them to synthesize knowledge from

numerous fields (aeronautics, space, medical, commercial,

rail, telecoms, etc.) and various levels (technicians,

analysts, project leaders, specialists, experts, researcher,

managers, etc.).

A number of prominent authors of software testing books

participate in the creation of the syllabi, ensuring that these

reflect what a tester should know depending on his/her level

of experience (foundation, advanced, expert) and on his/her

objectives (test management, functional testing, and test

techniques, specialization in software security or

performance testing, etc.).

Glossary and syllabus

The ISTQB is aware of the broad diversity of terms used

and the associated diversity of interpretation of these terms

depending upon the customers, countries, and

organizations. A common glossary of software testing terms

has been set up and national boards provide translation of

these terms in national languages to promote better



understanding of the terms and the associated concepts.

This becomes more and more important in a context of

international cooperation and offshore subcontracting.

The syllabi define the basis of the certification exams; they

also help to define the scope of training and are applicable

at three levels of experience: foundation level, advanced

level and expert level. This book focuses on the foundation

level.

The foundation level, made up of a single module, is

detailed in the following chapters.

The advanced level is made up of three modules:

– test manager, which focuses on the test management

and test process improvements aspects;

– test analyst, which focuses on the testing of

characteristics of the software and systems, mostly without

the use of tools; and

– technical test analyst, which focuses on the testing of

non-functional characteristics of software and systems,

mostly with the use of tools.

The expert level focuses on specific aspects, such as test

management, test process improvement, or performances.

ISTQB certification

The ISTQB proposes software tester certifications, which

are recognized as equivalent by all ISTQB member boards

throughout the world. The level of difficulty of the questions

and the exams are based on the same criteria (defined in

the syllabi) and the same terms (defined in the Glossary).

The certification exams proposed by the CFTL and the

national boards of the ISTQB enable the candidates to

validate their knowledge, and assure employers or potential

customers of a minimum level of knowledge from their

testers, whatever their origin.



These certifications are recognized as equivalent

throughout the whole world, enabling international cross-

recognition. In France, more than 1,500 people have

successfully passed the certification, and more than

200,000 have acquired such a certification worldwide. This

shows the need from the industry to have an independent

certification of the software testing activities.

Key for understanding the

content

To be used efficiently, this book has the following

characteristics:

FLO-xxx: text that starts with FLO-xxx is a reminder of the

learning objectives present in the ISTQB foundation level

syllabus for certified testers. Those objectives are expanded

in the paragraphs following this tag.

The titles of the chapters correspond to those of the ISTQB

foundation level syllabus, version 2011. This is often the

case too for the section heads; the syllabus reference is

provided in the form (FLx.y) where x.y stands for the

chapter and section head of the ISTQB foundation level

syllabus. The example below shows that the section of the

book refers to the 2.4 section of the foundation syllabus:

2.4. Tests and maintenance

(FL2.4)

A synopsis closes each of the chapters, summarizing the

aspects covered and identifying the terms of the glossary to

know for the certification exam. Sample exam questions are

also provided at the end of each chapter. These questions

were developed by applying the same criteria as for the

creation of real exam questions.



The sample questions provided in Chapters 1, 2, 3, 4, 5

and 6 are reproduced with kind permission of © Bernard

Homès 2011.



Glossary
The definitions hereafter are extracted from the

International Software Testing Qualifications Board (ISTQB)

Standard Glossary of Terms used in Software Testing. Only

the terms used for the Foundation Level certification exams

are mentioned, so as not to drown the reader in terms that

are used at other levels or in other syllabi.

ACM: (Association for Computer Machinery) professional

and scientific association for the development of information

technology as science and profession.

Acceptance testing: Formal testing with respect to user

needs, requirements, and business processes conducted to

determine whether or not a system satisfies the acceptance

criteria and to enable the user, customers, or other

authorized entity to determine whether or not to accept the

system.

Alpha testing: Simulated or actual operational testing by

potential users/customers or an independent test team at

the developers’ site, but outside the development

organization. Alpha testing is often employed as a form of

internal acceptance testing.

Attack: Directed and focused attempt to evaluate the

quality, especially reliability, of a test object by attempting

to force specific failures to occur.

Beta testing: Operational testing by potential and/or

existing users/customers at an external site not otherwise

involved with the developers, to determine whether or not a

component or system satisfies the user/customer needs and

fits within the business processes. Beta testing is often

employed as a form of external acceptance testing in order

to acquire feedback from the market.

Black-box technique: See black-box testing.



Black-box testing: Testing, either functional or non-

functional, without reference to the internal structure of the

component or system.

Boundary value analysis: A black-box test design

technique in which test cases are designed based on

boundary values.

Branch coverage: The percentage of branches that have

been exercised by a test suite. One hundred percent branch

coverage implies both 100% decision coverage and 100%

statement coverage

Bug: see defect.

CFTL: Comité Français des Tests Logiciels, French

association [LOI 01] for the development of testing in France

and French-speaking countries.

Code coverage: An analysis method that determines

which parts of the software have been executed (covered)

by the test suite and which parts have not been executed,

e.g. statement coverage, decision coverage, or condition

coverage.

Commercial off-the-shelf software (COTS): See off-

the-shelf software.

Compiler: A software tool that translates programs

expressed in a high-order language into their machine

language equivalents.

Complexity: The degree to which a component or system

has a design and/or internal structure that is difficult to

understand, maintain, and verify. See also cyclomatic

complexity.

Component integration testing: Tests executed to

identify defects in the interfaces and interactions between

integrated components.

Component testing: The testing of individual software

components.

Configuration control: An element of configuration

management, consisting of the evaluation, co-ordination,



approval or disapproval, and implementation of changes to

configuration items after formal establishment of their

configuration identification.

Configuration item: An aggregation of hardware,

software or both, that is designated for configuration

management and treated as a single entity in the

configuration management process.

Configuration management: A discipline applying

technical and administrative direction and surveillance to:

identify and document the functional and physical

characteristics of a configuration item, control changes to

those characteristics, record and report change processing

and implementation status, and verify compliance with

specified requirements.

Confirmation testing: See re-testing.

Control flow: An abstract representation of all possible

sequences of events (paths) in the execution through a

component or system.

Coverage: The degree, expressed as a percentage, to

which a specified coverage item has been exercised by a

test suite.

Coverage measurement tool: See coverage tool.

Coverage tool: A tool that provides objective measures

of what structural elements, e.g. statements, branches,

have been exercised by the test suite.

Cyclomatic complexity: The number of independent

paths through a program. Cyclomatic complexity is defined

as: L − N + 2P, where:

– L = the number of edges/links in a graph;

– N = the number of nodes in a graph;

– P = the number of disconnected parts of the graph (e.g.

a calling graph and a subroutine).

Data-driven testing: A scripting technique that stores

test input and expected results in a table or spreadsheet, so

that a single control script can execute all of the tests in the



table. Data driven testing is often used to support the

application of test execution tools such as capture/playback

tools. See also keyword-driven testing.

Data flow: An abstract representation of the sequence

and possible changes of the state of data objects, where the

state of an object is any of creation, usage, or destruction.

Debugging: The process of finding, analyzing, and

removing the causes of failures in software.

Debugging tool: A tool used by programmers to

reproduce failures, investigate the state of programs, and

find the corresponding defect. Debuggers enable

programmers to execute programs step-by-step, to halt a

program at any program statement, and to set and examine

program variables.

Decision coverage: The percentage of decision

outcomes that have been exercised by a test suite. One

hundred percent decision coverage implies both 100%

branch coverage and 100% statement coverage.

Decision table testing: A black-box test design

technique in which test cases are designed to execute the

combinations of inputs and/or stimuli (causes) shown in a

decision table.

Defect: A flaw in a component or system that can cause

the component or system to fail to perform its required

function, e.g. an incorrect statement or data definition. A

defect, if encountered during execution, may cause a failure

of the component or system.

Defect density: The number of defects identified in a

component or system divided by the size of the component

or system (expressed in standard measurement terms, e.g.

lines-of-code, number of classes, or function points).

Defect management: The process of recognizing,

investigating, taking action, and disposing of defects. It

involves recording defects, classifying them, and identifying

the impact.



Defect management tool: See incident management

tool.

Driver: A software component or test tool that replaces a

component that takes care of the control and/or the calling

of a component or system.

Dynamic analysis tool: A tool that provides run-time

information on the state of the software code. These tools

are most commonly used to identify unassigned pointers,

check pointer arithmetic, and to monitor the allocation, use,

and deallocation of memory and to highlight memory leaks.

Dynamic testing: Testing that involves the execution of

the software of a component or system.

Entry criteria: The set of generic and specific conditions

for permitting a process to proceed with a defined task, e.g.

test phase. The purpose of entry criteria is to prevent a task

starting that would entail more (wasted) effort compared to

the effort needed to remove the failed entry criteria.

Equivalence partition: A portion of an input or output

domain for which the behavior of a component or system is

assumed to be the same, based on the specification.

Error: A human action that produces an incorrect result

[IEEE 610]

Error guessing: A test design technique where the

experience of the tester is used to anticipate what defects

might be present in the component or system under test as

a result of errors made, and to design tests specifically to

expose them.

Exit criteria: The set of generic and specific conditions,

agreed upon with the stakeholders, for permitting a process

to be officially completed. The purpose of exit criteria is to

prevent a task from being considered completed when there

are still outstanding parts of the task which have not been

finished. Exit criteria are used by testing to report against

and to plan when to stop testing.



Exhaustive testing: A test approach in which the test

suite comprises all combinations of input values and

preconditions.

Exploratory testing: Testing where the tester actively

controls the design of the tests as those tests are performed

and uses information gained while testing to design new

and better tests.

Failure: Actual deviation of the component or system

from its expected delivery, service, or result (according to

Fenton). The inability of a system or system component to

perform a required function within specified limits. A failure

may be produced when a fault is encountered [EUR 00].

Failure rate: The ratio of the number of failures of a

given category to a given unit of measure, e.g. failures per

unit of time, failures per number of transactions, failures per

number of computer runs.

Fault attack: See attack.

Field testing: See beta testing.

Finite state testing: See state transition testing.

Formal review: A review characterized by documented

procedures and requirements, e.g. inspection.

Functional requirement: A requirement that specifies a

function that a component or system must perform.

Functional testing: Testing based on an analysis of the

specification of the functionality of a component or system.

See also black-box testing.

Horizontal traceability: The tracing of requirements for

a test level through the layers of test documentation (e.g.

test plan, test design specification, test case specification,

and test procedure specification).

IEEE: Institute for Electrical and Electronic Engineers, a

professional, not for profit association for the advancement

of technology, based on the electrical and electronic

technologies. This association is active in the design of



standards. There is a French chapter of this association

providing publications useful for software testers.

Impact analysis: The assessment of change to the layers

of development documentation, test documentation, and

components, in order to implement a given change to

specified requirements.

Incident: Any event occurring during testing which

requires investigation.

Incident report: A document reporting on any event that

occurs during the testing which requires investigation.

Incident management tool: A tool that facilitates the

recording and status tracking of incidents found during

testing. They often have workflow-oriented facilities to track

and control the allocation, correction, and re-testing of

incidents and provide reporting facilities. See also defect

management tool.

Incremental development model: A development life

cycle where a project is broken into a series of increments,

each of which delivers a portion of the functionality in the

overall project requirements. The requirements are

prioritized and delivered in priority order in the appropriate

increment. In some (but not all) versions of this life cycle

model, each sub-project follows a “mini V-model” with its

own design, coding and testing phases.

Independence of testing: Separation of responsibilities,

which encourages the accomplishment of objective testing.

Informal review: A review not based on a formal

(documented) procedure.

Inspection: A type of review that relies on visual

examination of documents to detect defects, e.g. violations

of development standards and non-conformance to higher-

level documentation. The most formal review technique

and, therefore, always based on a documented procedure.

See also peer review.



Intake test: A special instance of a smoke test to decide

whether the component or system is ready for detailed and

further testing. An intake test is typically carried out at the

start of the test execution phase. See also smoke test.

Integration: The process of combining components or

systems into larger assemblies.

Integration testing: Testing performed to expose defects

in the interfaces and in the interactions between integrated

components or systems. See also component integration

testing, system integration testing.

Interoperability testing: The process of testing to

determine the interoperability of a software product. See

also functionality testing.

ISTQB: International Software Testing Qualifications

Board, a nonprofit association developing international

certification for software testers.

Keyword driven testing: A scripting technique that uses

data files to contain not only test data and expected results,

but also keywords related to the application being tested.

The keywords are interpreted by special supporting scripts

that are called by the control script for the test. See also

data-driven testing.

Master test plan: See project test plan.

Maintainability testing: The process of testing to

determine the maintainability of a software product.

Metric: A measurement scale and the method used for

measurement.

Mistake: See error.

Moderator: The leader and main person responsible for

an inspection or other review process.

Modeling tool: A tool that supports the validation of

models of the software or system.

N-switch coverage: The percentage of sequences of

N+1 transitions that have been exercised by a test suite.



N-switch testing: A form of state transition testing in

which test cases are designed to execute all valid

sequences of N+1 transitions (Chow). See also state

transition testing.

Non-functional requirement: A requirement that does

not relate to functionality, but to attributes of it such as

reliability, efficiency, usability, maintainability, and

portability.

Off-the-shelf software: A software product that is

developed for the general market, i.e. for a large number of

customers, and that is delivered to many customers in

identical format.

Oracle: See test oracle

Peer review: See technical review.

Performance testing: The process of testing to

determine the performance of a software product.

Performance testing tool: A tool to support

performance testing and that usually has two main facilities:

load generation and test transaction measurement. Load

generation can simulate either multiple users or high

volumes of input data. During execution, response time

measurements are taken from selected transactions and

these are logged. Performance testing tools normally

provide reports based on test logs and graphs of load

against response times.

Portability testing: The process of testing to determine

the portability of a software product.

Probe effect: The effect on the component or system

when it is being measured, e.g. by a performance testing

tool or monitor. For example performance may be slightly

worse when performance testing tools are being used.

Product risk: A risk directly related to the test object. See

also risk.

Project risk: A risk related to management and control of

the (test) project, e.g. lack of staffing, strict deadlines,



changing requirements, etc. See also risk.

Project test plan: A test plan that typically addresses

multiple test levels. See master test plan.

Quality: The degree to which a component, system or

process meets specified requirements and/or user/customer

needs and expectations.

RAD: Rapid Application Development, a software

development model.

Regression testing: Testing of a previously tested

program following modification to ensure that defects have

not been introduced or uncovered in unchanged areas of the

software, as a result of the changes made. It is performed

when the software or its environment is changed.

Reliability testing: The process of testing to determine

the reliability of a software product.

Requirement: A condition or capability needed by a user

to solve a problem or achieve an objective that must be met

or possessed by a system or system component to satisfy a

contract, standard, specification, or other formally imposed

document.

Requirement management tool: A tool that supports

the recording of requirements, attributes of requirements

(e.g. priority, knowledge responsible), and annotation, and

facilitates traceability through layers of requirements and

requirement change management. Some requirement

management tools also provide facilities for static analysis,

such as consistency checking and violations to predefined

requirement rules.

Re-testing: Testing that runs test cases that failed the

last time they were run, in order to verify the success of

corrective actions.

Review: An evaluation of a product or project status to

ascertain discrepancies from planned results and to

recommend improvements. Examples include management



review, informal review, technical review, inspection, and

walkthrough.

Review tool: A tool that provides support to the review

process. Typical features include review planning and

tracking support, communication support, collaborative

reviews, and a repository for collecting and reporting of

metrics.

Reviewer: The person involved in the review who

identifies and describes anomalies in the product or project

under review. Reviewers can be chosen to represent

different viewpoints and roles in the review process.

Risk: A factor that could result in future negative

consequences; usually expressed as impact and likelihood.

Risk-based testing: An approach to testing to reduce the

level of product risks and inform stakeholders on their

status, starting in the initial stages of a project. It involves

the identification of product risks and their use in guiding

the test process.

Robustness testing: Testing to determine the robustness

of the software product.

SBTM: Session-based test management, an ad hoc and

exploratory test management technique, based on fixed

length sessions (from 30 to 120 minutes) during which

testers explore a part of the software application.

Scribe: The person who has to record each defect

mentioned and any suggestions for improvement during a

review meeting, on a logging form. The scribe has to ensure

that the logging form is readable and understandable.

Scripting language: A programming language in which

executable test scripts are written, used by a test execution

tool (e.g. a capture/replay tool).

Security testing: Testing to determine the security of the

software product.

Site acceptance testing: Acceptance testing by

users/customers at their site, to determine whether or not a



component or system satisfies the user/customer needs and

fits within the business processes, normally including

hardware as well as software.

SLA: Service level agreement, service agreement between

a supplier and its client, defining the level of service a

customer can expect from the provider.

Smoke test: A subset of all defined/planned test cases

that cover the main functionality of a component or system,

to ascertain that the most crucial functions of a program

work, but not bothering with finer details. A daily build and

smoke test is among industry best practices.

State transition: A transition between two states of a

component or system.

State transition testing: A black-box test design

technique in which test cases are designed to execute valid

and invalid state transitions. See also N-switch testing.

Statement coverage: The percentage of executable

statements that have been exercised by a test suite.

Static analysis: Analysis of software artifacts, e.g.

requirements or code, carried out without execution of these

software artifacts.

Static code analyzer: A tool that carries out static code

analysis. The tool checks source code, for certain properties

such as conformance to coding standards, quality metrics,

or data flow anomalies.

Static testing: Testing of a component or system at

specification or implementation level without execution of

that software, e.g. reviews or static code analysis.

Stress testing: A type of performance testing conducted

to evaluate a system or component at or beyond the limits

of its anticipated or specified workloads, or with reduced

availability of resources such as access to memory or

servers. See also performance testing, load testing.

Stress testing tool: A tool that supports stress testing.

Structural testing: See white-box testing.



Stub: A skeletal or special-purpose implementation of a

software component, used to develop or test a component

that calls or is otherwise dependent on it. It replaces a

called component.

System integration testing: Testing the integration of

systems and packages; testing interfaces to external

organizations (e.g. electronic data interchange, the

internet).

System testing: The process of testing an integrated

system to verify that it meets specified requirements.

Technical review: A peer group discussion activity that

focuses on achieving consensus on the technical approach

to be taken. A technical review is also known as a peer

review.

Test: A set of one or more test cases.

Test approach: The implementation of the test strategy

for a specific project. It typically includes the decisions

made that follow based on the (test) project’s goal and the

risk assessment carried out, starting points regarding the

test process, the test design techniques to be applied, exit

criteria, and test types to be performed.

Test basis: All documents from which the requirements of

a component or system can be inferred. The documentation

on which the test cases are based. If a document can be

amended only by way of formal amendment procedure,

then the test basis is called a frozen test basis.

Test case: A set of input values, execution preconditions,

expected results, and execution post conditions, developed

for a particular objective or test condition, such as to

exercise a particular program path or to verify compliance

with a specific requirement.

Test case specification: A document specifying a set of

test cases (objective, inputs, test actions, expected results,

and execution preconditions) for a test item.



Test comparator: A test tool to perform automated test

comparison.

Test condition: An item or event of a component or

system that could be verified by one or more test cases, e.g.

a function, transaction, quality attribute, or structural

element.

Test control: A test management task that deals with

developing and applying a set of corrective actions to get a

test project on track when monitoring shows a deviation

from what was planned. See also test management.

Test coverage: See coverage.

Test data: Data that exists (for example, in a database)

before a test is executed, and that affects or is affected by

the component or system under test.

Test data preparation tool: A type of test tool that

enables data to be selected from existing databases or

created, generated, manipulated and edited for use in

testing.

Test design: The process of transforming general testing

objectives into tangible test conditions and test cases. See

test design specification.

Test design specification: A document specifying the

test conditions (coverage items) for a test item, the detailed

test approach, and identifying the associated high level test

cases.

Test design technique: A method used to derive or

select test cases.

Test design tool: A tool that supports the test design

activity by generating test inputs from a specification that

may be held in a CASE tool repository, e.g. requirements

management tool, or from specified test conditions held in

the tool itself.

Test-driven development: Agile development method,

where the tests are designed and automated before the

code (from the requirements or specifications), then the



minimal amount of code is written to successfully pass the

test. This iterative method ensures that the code continues

to fulfill requirements via test execution.

Test environment: An environment containing hardware,

instrumentation, simulators, software tools, and other

support elements needed to conduct a test.

Test execution: The process of running a test by the

component or system under test, producing actual results.

Test execution schedule: A scheme for the execution of

test procedures. The test procedures are included in the test

execution schedule in their context and in the order in which

they are to be executed.

Test execution tool: A type of test tool that is able to

execute other software using an automated test script, e.g.

capture/playback.

Test harness: A test environment comprised of stubs and

drivers needed to conduct a test.

Test leader: See test manager.

Test level: A group of test activities that are organized

and managed together. A test level is linked to the

responsibilities in a project. Examples of test levels are

component test, integration test, system test, and

acceptance test.

Test log: A chronological record of relevant details about

the execution of tests.

Test management: The planning, estimating, monitoring,

and control of test activities, typically carried out by a test

manager.

Test manager: The person responsible for testing and

evaluating a test object. The individual, who directs,

controls, administers, plans, and regulates the evaluation of

a test object.

Test monitoring: A test management task that deals with

the activities related to periodically checking the status of a


