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Introduction 
1

This study of environmental hydraulics is made up of five

volumes. The first two volumes are concerned with

describing the principle processes in physical domains

which can be observed and measured.

The first volume is dedicated to mathematical modeling

for hydrology and fluvial hydraulics.

It is completed by a volume dedicated to mathematical

modelization for oceanic hydraulics for models of transport

and conceptual models.

This is followed by two volumes dedicated to numerical

modelization. One is on the presentation of operational

software and the two volumes are on the various

applications of software in case studies.

This present volume draws mathematical theories which

enable us to present these processes and simulate them.

There is no one unified theory which describes with a unique

system the many physical processes occurring within the

field and this book.

Most scientific disciplines began with a period of

experimentation (be it in hydraulics at the open surface or

hydrogeology) in order to understand and research of laws

of behavior and draw from these observable correlations.

In contrast there were a number of important theories on

the mechanics of fluids which blossomed in the 18th

century, notably Euler and his studies. Empirical and

theoretical approaches did not go hand in hand until the end

of the 19th century.

Today the majority of scientific disciplines we will look at in

this book abandoned pure empirical methods and replaced

them with theoretical ones. These deal with many different

things, some made up from complex mathematics while



others retain their roles as very simple models. What they

have in common is that they all deal with natural

environments adhering to the laws of conservation: mass,

quantity of movement and energy.

Our objective in this book is to give the reader a vision

which incorporates the many disciplines and laws on water.

The main thread of this book charts the development of

numerical models in each scientific discipline. In effect there

has been a pendulum movement between complexity and

simplicity since the 1960s. With the coming of computer

technology, the first objective was to simplify the complex

3D mathematical models as much as possible whilst making

sure they could still be used in engineering. As time went on

and methods progressed, there was a reverse movement

away from the former simplified models and towards more

sophisticated ones which now form the basis of the latest

models. These days, models are continually being made

ever more sophisticated. This iterative step is common to all

scientific disciplines, and along the way, a multitude of more

or less simplified mathematical models were created. We

shall present these later on.

This book is made up of sixteen chapters:

Chapter 1: Reminders for the mechanical properties of

fluids

Chapter 2: Navier-Stokes’ Equations

Chapter 3: Atmospheric models

Chapter 4: Hydrologic Models

Chapter 5: Fluvial currentology and oceanic models

Chapter 6: Urban hydrologic models

Chapter 7: Tidal model and tide streams

Chapter 8: Swell generation and coastal current models

Chapter 9: Solid transport models and evolution of the

seabed

Chapter 10: Oil spill models



Chapter 11: Conceptual, empirical and other models

Chapter 12: Reservoir models in hydrology

Chapter 13: Reservoir models in hydro-geology

Chapter 14: Formal neural network models

Chapter 15: Model coupling

Chapter 16: Different categories of hydrology models

Using a mathematical format, Chapter 1 presents the

principles behind mechanical properties of fluids. It

introduces the main rules of this discipline in a brief and

theoretical manner which can studied quickly if desired. It

recalls the theorem for quantity of movement, the

fundamental notations of kinetic energy, enthalpy and the

first principles of thermodynamics — Newton’s Law

concerning the forces in a moving fluid. The theoretical

corpus we incorporate establishes the following

presentations by discipline.

Chapter 2 deals with Navier-Stokes equations, allowing us

to exactify the system of equations which form the basis of

great developments in the mechanics of fluids. These are

particularly used in their tridimensional form in meteorology

as well as for underground flows and swells. It is likely in the

next few years that this trend will move progressively

towards fluvial hydraulics, water quality and sedimentology.

Naturally this chapter is followed with a presentation of

atmospheric models (Chapter 3) which are used by national

meteorological services. In order to establish the first

models and resolve them by computer, a number of

simplifications were necessary to create the barotrope1

model from 1950 onwards. These consisted of one layer and

zero divergence. The coming of calculators enabled more

complicated models further removed from the previous

simplified hypotheses. Models filtered with several layers of

altitude (known as filtered barocline models baroclines2)

came into being. It was not until recently that non-



hydrostatic 3D models were created, allowing studies of

planes with scales of several kilometers. As illustrated by

Figure i.1, these models enabled weather forecasting and by

consequence provided additional parameters for other

models: rain and temperature for hydrologic models and

wind and pressure to complete oceanic models looking at

the state of the sea.

For hydrologists the task is not so simple. Apart from rain

they also need to represent what is happening in the soils

under the surface. These two types of flows come together.

As we will later see, hydrological models are of a conceptual

nature. On the other hand, flows in the soil are well

understood from hydrogeological models (Chapter 4). These

provide hydrologists and hydraulicists with flows and layers.

Hydrogeologists use Navier-Stokes’ equations but also draw

on Darcy’s law of macroscopic behavior. Even in this

discipline developments were made progressively, first

dealing with saturated then non-saturated flows. The latest

are the most sophisticated, but still draw on the empirical

laws in representing water retention and permeability.

After presenting hydrogeologic models, we will move on to

models for fluvial and oceanic currentology (Chapter 5). In

the same way as in meteorology, models began as simple

as possible and gradually became more complex. 1D models

drawn up by the research offices in the 1960s were

replaced, bit by bit with 2D models. These models extended

their domains towards the river’s upper reaches, as in the

case of hydrology, but also towards the lower reaches and

ocean where we meet our oceanographer colleagues who

use similar, if 3D models. These models draw on empirical

relations essentially to represent roughness. The closing

models that were used to represent turbulence were again

less than satisfactory.

We must then make a detour towards urban hydrogeology

(Chapter 6) where we use the same models but in two



different manners. Firstly to simulate flow in networks of

drainage pipes, and secondly above ground on the roads

and sidewalks where excess water flows as a result of rain

and overflowing drains. This discipline converges with as

hydrogeology as it is concerned with small pools which are

strongly impermeable to complex fluid behavior and classic

hydraulics. It therefore uses the two types of tools.

By reaching the estuaries, the waters of the rivers get in

contact with the tide (Chapter 7) and some tidal currents.

Oceans and seas are subjected to the movement of the

Earth and to the influence of celestial bodies. The tide is

considered as the consequence of a succession of actions

which get linearly superposed: a hypothesis which remains

valid in high waters, but which becomes quite wrong close

to the shore. The various models used for the representation

of this process are the models in shallow waters belonging

to the Saint-Venant type. However, some recent and highly

accurate measurements led to the detection of the

irregularities and of the anomalies in the propagation of this

phenomenon and especially in the vertical profiles of the

rates. This suggests then that some 3D models will be

developed in the near future.

To complete the consideration of the phenomena which

occurs next to the shoreline, the swell phenomenon

(Chapter 8) will be studied. This phenomenon is quite

complex and hard to model. Made of several waves, the

swell is quite sensitive to the bathymetry of the beds and to

geometry of the coasts generated in high waters by the

wind. It develops on large areas and is always changing due

to diffraction and reflection phenomena. The first models

limited to the refraction of the beds were designed in the

1960s in the research and development offices, but it was

only in the 1980s that new and more complex models could

be proposed, considering the diffraction processes of the

structures and the reflection of the shoreline. Regarding the



generation and the propagation of the swells, the models

were still until recently quite empirical but thanks to the

international WAM (WAve Model) group, some new second

and third generation models appeared, so the empirical

equations are used less often. Going back to the use of the

complex theoretical models has occurred for the last few

years in order to finely reproduce the transformation

conditions of the swells close to the shoreline. However,

some empirical equations are still used, like in the case of

the modeling of breaking of waves.

All these fields dealt with the flowing process in the waters

of the considered domains as being fixed in time and space.

However, it is well known that this is not the truth:

everything depends on how things are observed, both in

time and space; waters loaded of sediments will become

concentrated in the water currents, spreading to the rivers

and are then thrown into the sea by the rivers. With a time

scale of a few days, the violence of the flowing processes is

quite striking during a flood, due to their consequences,

such as the breaking of meanders or also by the movement,

or even the destruction of some structures in the rivers. In

some cases, beaches can get entirely swept away by

coastal currents. A presentation of the fluvial and maritime

sedimentology (Chapter 9) is then necessary. The

corresponding models are based on the main conservation

principles, but depend more on empirical laws: which is due

to the evolution of the quality of the sediments during their

transport, to the complex interactions with the bed, the

banks and the coasts. After some quite unsatisfactory tests

based on a 1D modeling process, 2D models did not lead to

much improvement: a new generation of 3D hydrodynamic

and sedimentological models is being developed and will be

able to better understand the evolutions of the rivers and

coastal areas in the future.



To complete this part, the transport models of some

materials and especially of oil spills (Chapter 10), usually

due to some accidental pollutions, will be presented in real

time.

A presentation, limited to these physical processes, shows

that most of them are quite similar to each other and that

the theories used still remain in the frame of the main

theories of fluid mechanics. Indeed, this is not really true

because some physical mediums are so complex that these

theoretical models could not be applied everywhere yet.

For instance, the evapotranspiration process (Chapter 11)

is a fundamental process which regulates the interactions

between the ground and the atmosphere. There actually are

some very localized processes, which are necessary for any

modeling, but which are analyzed locally by some empirical

equations dealing with the exchange process between

different mediums.

Another large category of models which ensure the

conservation of water within the catchment areas is made of

the conceptual reservoir models in hydrology (Chapter 12)

and in hydro-geology (Chapter 13). These models do not

deal with the infiltration or superficial flowing models very

precisely, but they represent them on a very large scale.

Without any knowledge regarding the real path of the water

within the catchment areas, and without any adapted and

global measuring systems, these models still have to be

used. However, some recent developments have enabled us

to show that some kinematical wave model from some

hydraulic and hydro-geological models are beginning to give

good results…

Finally, when the behavior of a physical model is too

complex for the description of its own components (these

empirical models cannot really represent the dynamics of

the basin), the neural network model (Chapter 14) can be a



really useful tool and can always be improved in new

situations.

The last chapters deal with the coupling process of these

models (Chapter 15) and with the different categories of

codes (Chapter 16). When a river, an estuary, or a coastal

area is studied, water is only one of the components which

influence the environment: some behaviors integrate a lot,

like pollution, morpho-dynamics, the impact of storms,

tsunamis or low waters. Their interactions then have to be

modeled. The chapter dealing with this topic specifies the

principles and the main issues related to this topic.

Figure i.1 illustrates the various equations and interactions

between the models. The upstream meteorological models,

simulate the atmosphere and provide the time parameters

to the hydrologic, hydraulic and hydro-geological models

which deal with the flowing water. In addition, they interact

with themselves in most of the natural situations. The third

layer model leads to the representation of the flowing

effects on the fluvial or maritime medium as well as of the

issues of the pollution of water.

We encourage the reader to cover all of these

developments and take note of the coherence that exists

between the many disciplines. Many draw from the same

theories, whilst specializing in specific areas of study.

Whether it pools with complex soils, rivers with their

changing beds and water levels, urban spaces with

heterogeneous occupation of soils, coastal interference from

swelling and sediment moving with the current — all these

environments are yet to reveal their secrets.

Jean-Michel TANGUY

Figure i.1. Diagram of links between models



1Introduction written by Jean-Michel TANGUY.

1 Of a state or a forecasting model in which constant

surface pressures (isobares) are parallel to these of constant

density. The corresponding models are bidimensional.



Chapter 1

Reminders on the Mechanical

Properties of Fluids 1

1.1. Laws of conservation,

principles and general

theorems
In this chapter, we will go back over the different theorems

and principles of mechanics and thermodynamics and

express them through Euler’s variable using the rules

defined in previous volumes for a material domain.

1.1.1. Mass conservation,

continuity equation

1.1.1.1. Mass conservation

PRINCIPAL 1.1 (Figure 1.1). Mass in a material domain is

conserved over the course of time.

Figure 1.1.



Taking D as a place for observation, noting that the

material product for the mass of the domain is zero, we fully

accept that the term for accumulation is balanced by the

flow crossing the boundaries ∑.

We call  the surface effort at every point of ∑ of

perpendicular angle .

Note. As a rule, the perpendicular angle  will always be

pulled toward the outside.

CLASSIFICATIONS. An integral as defined by volume is

represented by ∫D φdω, a surface integral ∫D φdσ and a

vector .

Faithful to Liebniz’ rule, the global equation is written as

follows:

Liebniz’ rule: if D(t) is a deformable domain we can write:

 therefore represents the localized velocity of

displacement for all or part of the interface (boundary or

component of the boundary) for D.

We notice that on the level of a mobile surface, the local

flow  is zero by definition as the control’s surface

sets the boundaries for the domain. This signifies that even

if the fluid runs over the surface with a relative velocity

above zero, it will not cross the surface, where the domain D

is fixed:

represents the rate of accumulation (or loss) for

mass in the domain.

represents the flow of mass crossing the

boundaries of the domain.

The conservation of mass for a domain is expressed as the

void sum of a term of accumulation (or loss) of mass in the



domain and as a fixed term representing flow of mass to the

boundaries of the domain.

The term for flow is represented by  , using the

following theorem.

Theorem for divergence

We will often have the need to pass between localized

scripture to global scripture and vice versa. It is therefore

important to be able to pass between integrals for volume

and integrals for surface reciprocally. We therefore use the

theorem of divergence: .

This expression shows us that the integral for volume of a

greater divergence is equal to the surface flow of the same

size.

The pseudo-vector nabla is written as

It represents the gradient of the size we are considering.

The point  represents the contracted product of two tensors

(or the scalar product when applied to two vectors). The

divergence is therefore equal to the scalar product of the

operator nabla by the size being considered.

We can therefore consider that the divergence

corresponds to the diffusion of a surface term on the inside

of the liquid domain. In a more general way, every time we

will meet a term for divergence in a localized equation, we

will interpret it as the diffusion of an issued term from a

surface action.

The theorem for divergence applies itself equally as well to

vectors as to tensors:



A tensor is represented by . It is said to be of second

order if it is represented in the form of a 3 × 3 matrix. Its

scalar product by a vector is a vector.

Figure 1.2.

EXAMPLE 1.1 (Figure 1.2). We consider a cylinder inside of

which a piston moves at velocity V0. Calculate the debit on

entry of an incompressible fluid.

Let us write the conservation of mass for a mobile domain.

If we call L(t) the direction in which the piston moves, the

volume D is SpL. The term for accumulation is

. On the other hand, the flow for mass

which reduces to the flow of entry is represented by 

. By calling V the velocity on

entry and considering the flow crossing the inner surfaces of

the cylinder is zero such that the flow crossing the piston

moves at the speed of fluid which wets it (V = W at the level

of the piston, W = 0 for everywhere else).

We therefore deduce that the flow on entry is equal to Q

=Vss =V0SP.

1.1.1.2. Continuity equation

The local equation which we call the continuity equation is

written as , once we have taken account of the

height of the domain of integration as equal zero.



The equation at a fixed Cartesian point with Einstein’s

grading is as follows:

For convenience we often use the notation of Einstein. In

order to reduce the amount of writing, each time an index is

doubled we have a sum on each index. We will note from

now on by convention: s =AiBi instead of s =∑3
i=1AiBi. The

gradient of a vector is a tensor and is written as , so

that the gradient of a scalar is a vector  The

divergence of a vector represents the scalar product of

pseudo-vector nabla by the vector being considered. It is

written as follows: div  (not to be

confused with the gradient of a vector which is its tensor).

1.1.1.3. Incompressible fluid

By definition a fluid is incompressible if ; that is to say

if:

The divergence of velocity is zero in the case of an

incompressible fluid. We establish that the divergence

represents the rate of compression/dilation in the domain,

therefore its variation in volume. By consequence, an

incompressible fluid will allow no variation in volume.

COMMENT 1.1. We are used to considering a fluid as

incompressible if its volumic mass is constant. The previous

definition encompasses incompressibility of a fluid in

permanent movement such that the velocity is

perpendicular to the gradient of the volumic mass. It is for

example in cases where atmospheric conditions affect the

flow where we can consider quasi-horizontal movements of



incompressible air on a large scale. (The gradients of

volumic mass are important but essentially vertical.)

1.1.2. Theorem for the

conservation of momentum

1.1.2.1. Assessment for the momentum

THEOREM 1.1. The product in relation to time for the

momentum in a material domain is equal to the sum of

exterior forces which act in the domain. This also concerns

volumic forces (such as weight and electromagnetic forces)

and surface forces.

The densities of volumic forces  are densities of forces of

distance which act in every part of the fluid. Usually it

concerns the action of weight but we should also take into

account electromagnetic forces.

We will now do a checklist of surface forces.

As by definition, pressure acts perpendicularly to the

surface of the control, and we know that the effort of

pressure is represented by  . (The minus sign

indicates that the pressure moves toward the interior of the

domain.)

The forces of friction  depend on the orientation of the

surface of contact. We can therefore consider that they are

the product of a tensor of friction (represented by ) by local

orientation of the normal at the surface. We write 

The total surface forces  therefore correspond to action

on the surface of the domain. They also correspond to a

tensor called a stress tensor, which is represented by 

.They clearly break down the constraints in pressure and the

friction:

We can also write:



The effort of normal pressure on a section element is

written as follows:

is called the unitary tensor or Kronecker’s

tensor for an element, where:

We find again that in the first member the term for

accumulation is a temporal variation for the momentum in

the domain. The term for flowing is the difference between

the sum of quantities of momentum entering and leaving.

This product is balanced by the action at every point of

weight and/or the electromagnetic forces as well as by the

forces of the surface (pressure and friction).

NOTE 1.1. The theorem for conservation of momentum is a

vectoral equation. In other words, it must be projected on

the three axes and correspond with the three scalar

equations.

The application of the theorem for divergence allows the

following equation:

or for a fixed domain:

Taking into account the expression for Kronecker’s tensor,

we have:

Figure 1.3.



EXAMPLE 1.2. Flowing over an inclined plain.

We consider flowing as permanent and parallel to an

incompressible (water-based) liquid on an inclined plain at

angle a instead of horizontal. Let us take h as its height. The

air is immobile above the water and the pressure is equal to

the atmospheric pressure.

Calculating the friction on the bottom

Let us take the reasonable assumption that there is no

point knowing the nature of flow (laminar or turbulent). It

will suffice to choose a domain (e.g. between the bottom,

the free surface and the two distant sections Δx) and to

apply to this domain the general theorems:

– mass conservation, we have Q = cte (balanced between

the flow of mass entering and leaving);

– momentum in a horizontal projection. The equation is as

follows:

In effect, the profile for velocity only varies with z once the

running plain has been determined (see later on the

justification with the local resolution). The momentum in the

flow leaving the domain is thus equal to the flow entering.

Otherwise, pressure is also independent of x, and the forces

of pressure on the entry and exit sections are balanced. We

find the following result: τp = −ρgh sin α.



If we consider a vertical projection, we find that p(x ,0) =

ρgh cos α + atm as in this case the weight balances the gap

in pressure between the surface and the bottom.

1.1.2.2. Momentum equation

The previous equation harks back to the local form of the

equation that takes into account the continuity equation.

This is in a Cartesian marker with Einstein’s formulae:

This equation demonstrates the fundamental principles of

mechanics. We assert that acceleration equals the sum of

external forces. The surface contact forces contribute to the

balance of the divergence which is demonstrated by their

diffusion within the fluid.

1.1.3. Theorem of kinetic

energy

1.1.3.1. Assessment of kinetic energy

THEOREM 1.2. The variation in kinetic energy in a domain

is balanced by the multitude of external and internal forces

which act in the area.

The first member still represents the product of the larger

one we are looking at. In this case, it concerns the kinetic

energy in the domain.

The power of the external forces is created as a product by

the velocity of each of the external forces (of both surface



and volumic forces). This is therefore the power developed

by each of the external forces defined previously.

The integral for power of the internal forces is at this point

unknown, even if we conceive that the power is the product

of the internal forces of cohesion and/or agitation.

Let us take again the example of the flow of fluid on an

inclined plain:

The kinetic energy flux entering and leaving is zero. The

power of the forces of pressure is balanced and in this

instance friction is zero (zero friction at the surface and

velocity is zero at the bottom). We deduce that the work of

the weight is dissipated by the internal friction. From this we

have PD = −pgQh sinαΔx.

1.1.3.2. Generalized Bernoulli theorem

In an incompressible and constant system, the total

variation of mechanical energy (kinetic + potential +

pressure energy) in a domain is equal to the loss of charge

in the domain.

We can already affirm in going back to the equation for the

assessment of kinetic energy that in the case of

incompressible fluids:

As the velocity is zero on the inner surfaces, ,

we deduce that there is a permanent movement between

the two sections of flow:


