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Introduction

What is wave propagation?

In a kitchen or in a bathroom, the number of times we turn

a tap every day is countless. So is the number of times we

watch the liquid stream impacting the sink. The circular flow

pattern where the fast and shallow water film diverging from

the impact point changes into a deeper, bubbling flow is too

familiar to deserve attention. Very few people looking at the

circular, bubbling pattern – referred to as a hydraulic jump

by hydraulics specialists – are aware that they are

contemplating a shock wave.

Closing the tap too quickly may result in a thud sound.

This is the audible manifestation of the well-known water

hammer phenomenon, a train of pressure waves

propagating in the metal pipes as fast as hundreds or

thousands of meters per second. The water hammer

phenomenon is known to cause considerable damage to

hydropower duct systems or water supply networks under

the sudden operation of valves, pumps or turbines. The

sound is heard because the vibrations of the duct system

communicate with the ambient atmosphere, and from there

with the operator’s ears.

Everyone has once thrown stones into a pond, watching

the concentric ripples propagate on the surface. Less visible

and much slower than the ripples is the moving

groundwater that displaces a pollutant front in a journey

that may last for years.

As ubiquitous and familiar as wave propagation may be,

the phenomenon is often poorly understood. The reason

why intuition so often fails to grasp the mechanisms of wave

propagation may lie in the commonly shared, instinctive



perception that waves are made of matter. This, however, is

not true. In the example of the hydraulic jump in the sink,

the water molecules move across an immobile wave. In the

example of the ripples propagating on the free surface of a

pond, the waves travel while the water remains immobile.

Waves appear when an object or a system (e.g. the

molecules in a fluid, a rigid metallic structure) reacts to a

perturbation and transmits it to its neighbors. In many

cases, as in the example of the water ripples, the initially

perturbed system returns to its initial equilibrium state,

while the waves keep propagating. In this respect, waves

may be seen as information. The ripples propagating in a

pond are a sign that the water molecules “inform” their

neighbors that the equilibrium state has been perturbed. A

sound is nothing other than information about a

perturbation occurring in the atmosphere.

Numerical techniques for wave propagation simulation

have been the subject of intensive research over the last 50

years. The advent of fast computers has led to the

development of efficient numerical techniques. Engineers

and consultants now use simulation software packages for

wave propagation on a daily basis. Whether for the purpose

of acoustics, aerodynamics, flood wave propagation or

contaminant transport studies, computer-based simulation

tools have become indispensable to almost all domains of

engineering. Such tools, however, remain instruments

operated by human beings to execute tedious, repetitive

operations previously carried out by hand. They cannot, and

hopefully never will, replace the expert’s judgment and

experience. Human presence remains necessary for the

sound assessment of the relevance and accuracy of

modeling results. Such an assessment, however, is possible

only provided that the very specific type of reasoning

required for the correct understanding of wave propagation

phenomena has been acquired.



The main purpose of this book is to contribute to a better

understanding of wave propagation phenomena and the

most commonly used numerical techniques for its

simulation. The first three chapters deal with the physics

and mathematics of wave propagation. Chapters 4, 5 and 10

provide insight into more theoretical notions, used in

specific numerical techniques. Chapters 6 to 9 are devoted

to finite difference, finite volume and finite element

techniques. Chapter 11 is devoted to practical advice for the

modeler. Basic notions of linear algebra and numerical

methods are presented in Appendices A to C. The various

formulae used in the present book are summarized in

Appendix D.

What is the intended readership

of this book?

This book is intended for students of professional and

research master’s programs and those engaged in doctoral

studies, the curriculum of which contains hydraulics and/or

fluid mechanics-related subjects. Engineers and developers

in the field of fluid mechanics and hydraulics are also a

potential target group. This book was written with the

following objectives:

(i) To introduce the physics of wave propagation, the

governing assumptions and the derivation of the governing

equations (in other words, the modeling process) in various

domains of fluid mechanics. The application fields are as

diverse as contaminant transport, open channel and free

surface hydraulics, or aerodynamics.

(ii) To explain how the behavior of the physical systems

can be analyzed using very simple mathematical

techniques, thus allowing practical problems to be solved.

(iii) To introduce the main families of numerical techniques

used in most simulation software packages. As today’s



practicing engineers cannot afford not to master modeling

packages, a basic knowledge of the existing numerical

techniques appears as an indispensable engineering skill.



How should this book be read?

Most of the chapters are made up of three parts:

– the first part of the chapter is devoted to the theoretical

notions applied in the remainder of the chapter;

– the second part deals with the application of these

theoretical notions to various hydraulics and fluid mechanics

equations;

– the third part provides a summary of the key points

developed in the chapter, as well as suggestions of

application exercises.

The main purpose of the application exercises is to test the

reader’s ability to reuse the notions developed in the

chapter and apply them to practical problems. The solutions

to the exercises may be accessed at the following URL:

http://vincentguinot.free.fr/waves/exercises.htm.

Try to resist the temptation to read the solution

immediately. Solving the exercise by yourself should be the

primary objective. The solution text is provided only as an

aid, in case you cannot find a way to start and for you to

check the validity of your reasoning after completing the

exercise.

http://vincentguinot.free.fr/waves/exercises.htm


Chapter 1

Scalar Hyperbolic

Conservation Laws in One

Dimension of Space

1.1. Definitions

1.1.1. Hyperbolic scalar

conservation laws

A one-dimensional hyperbolic scalar conservation law is a

Partial Differential Equation (PDE) that can be written in the

form:

[1.1] 

where t and x are respectively the time- and space-

coordinates, U is the so-called conserved variable, F is the

flux and S is the source term. Equation [1.1] is said to be the

conservation, or divergent, form of the conservation law.

The following definitions are used:

– the flux F is the amount of U that passes at the abscissa

x per unit time due to the fact that U (also called the

transported variable) is being displaced;

– the source term S is the amount of U that appears per

unit time and per unit volume, irrespective of the amount

transported via the flux F. If U represents the concentration



in a given chemical substance, the source term may express

degradation phenomena, or radioactive decay. S is positive

when the conserved variable appears in the domain,

negative if U disappears from the domain;

– the conservation law is said to be scalar because it deals

with only one dependent variable. When several equations

in form [1.1] are satisfied simultaneously, the term “system

of conservation laws” is used. Systems of conservation laws

are dealt with in Chapter 2.

Only hyperbolic conservation laws are dealt with in what

follows. The conservation law is said to be hyperbolic if the

flux F is a function of U (and none of its derivatives) and,

possibly, of x and t. Such a dependence is expressed in the

form:

[1.2] 

The function F(U, x, t) is called the “flux function”.

NOTE.– The expression F(U, x, t) in equation [1.2] indicates

that F depends on U at the abscissa x at the time t and does

not depend on such quantities as derivatives of U with

respect to time or space. For instance, the following

expression:

[1.3] 

is a permissible expression [1.2] for F, while the following,

diffusion flux:

[1.4] 

where D is the diffusion coefficient, does not yield a

hyperbolic conservation law because the flux F is a function

of the first-order derivative of U with respect to space.

In the case of a zero source term, equation [1.1] becomes

[1.5] 

In such a case (see section 1.1.2), U is neither created nor

destroyed over the domain. The total amount of U over the



domain varies only due to the difference between the

incoming and outgoing fluxes at the boundaries of the

domain.

Depending on the expression of the flux function, the

conservation law is said to be convex, concave or non-

convex (Figure 1.1):

– the law is convex when the second-order derivative ∂2F /

∂U2 of the flux function with respect to U is positive for all U;

– the law is concave when the second-order derivative ∂2F/

∂U2 of the flux function with respect to U is negative for all

U;

– the law is said to be non-convex when the sign of the

second-order derivative ∂2 F/∂U2 of the flux function with

respect to U changes with U.

Figure 1.1. Typical examples of flux functions: convex (a),

concave (b), non-convex (c)

1.1.2. Derivation from general

conservation principles

The conservation form [1.1] is derived from a balance over

a control volume of unit section defined between x0 and x0

+ δx (Figure 1.2). The balance is carried out over the control

volume between two times t0 and t0 + δt. The variation in



the total amount of U contained in the control volume is

then related to the derivatives ∂U / ∂t and ∂F / ∂x in the limit

of vanishing δt and δx.

Figure 1.2. Definition sketch for the balance over a control

volume

The total amount M(t0) of U contained in the control

volume at t = t0 is defined as:

[1.6] 

At t = t0 + δt, the total amount of U contained in the

control volume is:

[1.7] 

The variation δS in the amount of U induced by the source

term S over the domain between t0 and t0 + δt is given by:

[1.8] 

The amount δF(x0) of U brought by the flux F across the

left-hand side boundary of the control volume between t0

and t0 + δt is given by:

[1.9] 



A quantity δF(x0 + δx) leaves the domain across the right-

hand side boundary:

[1.10] 

Stating the conservation of U over the control volume [x0,

x0 + δx] between t0 and t0 + δt, the following equality is

obtained:

[1.11] 

Substituting equations [1.6] – [1.10] into equation [1.11]

leads to:

[1.12] 

A first-order Taylor series expansion around (x0, t0) gives:

[1.13] 

where the quantities O(δt2) and O(δx2) are second– or

higher-order polynomials with respect to δt and δx

respectively. These polynomials contain the second- and

higherorder derivatives of U and F with respect to t and x.

When δt and δx tend to zero, the polynomial O(δt2)

becomes negligible compared to the quantity δt ∂U / ∂t

because δt2 decreases faster than δt. The polynomial

O(δx2) becomes negligible compared to δx ∂F / ∂x for the

same reason. Relationships [1.13] thus become:

[1.14] 

A similar reasoning leads to the following equivalence:



[1.15] 

Substituting equations [1.14] and [1.15] into equation

[1.12] leads to

[1.16] 

Dividing equation [1.16] by δt δx yields the conservation

form [1.1], recalled here:

The following remarks can be made:

– the Partial Differential Equation (PDE) [1.1] is a particular

case of the more general, integral equation [1.12]. Equation

[1.1] is obtained from equation [1.12] using the assumption

that δt and δx tend to zero. Equation [1.12] is the so-called

weak form of equation [1.1] (see Chapter 3 for more

details);

– the conservation form [1.1] is based on the implicit

assumption that F is differentiable with respect to x and U is

differentiable with respect to t. Consequently, [1.1] is

meaningful only when U is continuous in space and time. In

contrast, equation [1.12] is meaningful even when U is

discontinuous in space and/or time. This has consequences

on the calculation of discontinuous solutions, as shown in

Chapter 3.

1.1.3. Non-conservation form

Equation [1.1] can be rewritten in the so-called non-

conservation form that involves only derivatives of U. The

non-conservation form of equation [1.1] is:

[1.17] 

where λ is called the wave speed, and S′ is a source term

that may be identical (but not necessarily) to the source



term S in equation [1.1]. Equation [1.17] is obtained from

equation [1.1] by rewriting the derivative ∂F / ∂x as:

[1.18] 

where the term F′ = (∂F / ∂x)U = Const contains all the

derivatives of F other than the derivative with respect to U.

The expression of F being known, ∂F / ∂U and F′ are easily

determined. Substituting equation [1.18] into equation [1.1]

yields:

[1.19] 

that is:

[1.20] 

Comparing equation [1.20] to equation [1.17] leads to the

following definitions for λ and S′

[1.21] 

The expressions of F and S being known, the knowledge of

U at any point in time and space allows λ and S′ to be

calculated directly. From definition [1.21], in the case where

the variations in F are due to variations in U only, F′ = 0 and

S′ is identical to S.

Example: assume that the flux function F is defined as in

equation [1.3], recalled here:

where a is a function of x and t. Equation [1.18] then

becomes:

[1.22] 

and λ and F′ are given by:

[1.23] 



If a does not depend on x, F′ = 0 because ∂a / ∂x = 0.

1.1.4. Characteristic form –

Riemann invariants

Writing a conservation law in non-conservation form leads

to the notions of characteristic form and the Riemann

invariant. Such notions are essential to the understanding of

hyperbolic conservation laws. A very convenient way of

determining the behavior of the solutions of hyperbolic

conservation laws consists of identifying invariant quantities

(that is, quantities that do not change) along certain

trajectories, also called the “characteristic curves” (or more

simply the “characteristics”). The solution is calculated by

“following” the invariants along the characteristics, which

allows the value of U to be determined at any point. To do

so, the non-conservation form [1.17] is used:

The purpose is to derive the expression of the variation δU

in U observed by an observer travelling at a given speed ν.

A small time interval δt is considered, over which the

traveler moves by a distance δx = ν δt. The variation δU

“seen” by the observer is given by:

[1.24] 

Note that from the observer’s point of view, U is a function

of time only, because the observer’s location x(t) is defined

by dx/dt = ν. When δt tends to zero, the ratio δU / δt tends

to the so-called total derivative dU/dt. Therefore equation

[1.24] becomes:

[1.25] 

In the particular case of an observer moving at a speed λ,

equation [1.25] becomes:



[1.26] 

Comparing equations [1.26] and [1.17] leads to:

[1.27] 

Equation [1.27] is the so-called characteristic form of

equation [1.1]. The trajectory, the equation of which is dx/dt

= λ, is called a characteristic. λ is called the wave speed.

S′ being a function of U, x and t, its value may be

calculated at any point (x, t) if the value of U is known. The

first-order ordinary Differential Equation (ODE) [1.27] is

applicable along the characteristic.

In the (important) particular case where the source term S′

is zero, equation [1.17] becomes:

[1.28] 

and equation [1.27] becomes:

[1.29] 

Equation [1.29] can also be written as:

[1.30] 

Consequently, the quantity U is invariant to an observer

moving at the speed λ. U is called a Riemann invariant.

The physical meaning of the wave speed is the following.

The wave speed is the speed at which the variations in U

(and not U itself) propagate. A perturbation appearing in the

profile of U at a given time propagates at the speed λ. The

wave speed can be viewed as the speed at which

“information”, or “signals” created by variations in U,

propagate in space.

1.2. Determination of the

solution



1.2.1. Representation in the

phase space

The phase space is a very useful tool in the determination

of the behavior of the solutions of hyperbolic conservation

laws. The term “phase space” indicates the (x, t) plane

formed by the space coordinate x and the time coordinate t

(Figure 1.3).

Figure 1.3. Representation of characteristic curves in the

phase space

The trajectory dx/dt = λ is represented by a curve in the

phase space. The distance δx covered by the characteristic

over a time interval δt is given by δx = λ δt, therefore the

slope of the line is δt/δx = 1/λ. Note that the sign of λ may

change with time depending on the variations in U and the

expressions of λ and S′. When λ becomes zero the tangent

to the characteristic curve is vertical in the phase space

(Figure 1.4a). In contrast, an extremum with respect to time

is not physically permissible (Figure 1.4b) because

“travelling backwards in time” is not possible.

Figure 1.4. Physically permissible (a) and non-permissible

(b) characteristics



The representation in the phase space may be used to

determine the behavior of the solutions of conservation law

[1.1] using the so-called “method of characteristics”. The

following simple case is considered:

– the source term S in equation [1.1] is zero;

– the flux depends only on U, therefore F′ = 0 in equations

[1.18] – [1.20].

The characteristic form [1.27] then reduces to equation

[1.30], recalled here:

F being a function of U only, λ is also a function of U only.

Consequently, if U is constant along a characteristic line, λ

is also constant and the characteristic is a straight line in

the phase space (Figure 1.5). Assume that the profile U(x,

t0) is known for all x at the time t0. The purpose is to

determine the profile U(x, t1) for all x at the time t1 > t0.

Consider the point A, the abscissa of which is denoted by

xA, at which the value of U at (xA, t0) is denoted by UA.

Since the wave speed λ depends on U only, the

characteristic passing at A is a straight line. Its (constant)

wave speed is λA = ∂F/∂U (UA). At time t1, the characteristic

has moved to point A′, the abscissa xA′ of which is given by:

[1.31] 



Figure 1.5. Representation of the characteristics in the

phase space (bottom) and behavior of the physical profile

(top) in the particular case F′ = S = 0

From the property of invariance of U along the

characteristic, U remains unchanged between A and A′:

[1.32] 

Extending the reasoning above to any value of x, the

following relationship is obtained:

[1.33] 

where Δt represents the quantity (t1 − t0) and λ is

estimated at (x, t).

Figure 1.5 shows how the method of characteristics can be

used to determine the evolution of a given profile [ABC]. The

figure is drawn assuming that λ is an increasing function of

U. Therefore, point B moves faster than points A and C

because UB is larger than UA and UC. Consequently, the

region [AB] tends to spread in time, while the region [BC]



becomes narrower. After a certain amount of time point B

catches up with point C and the solution becomes

discontinuous at point B′ = C′. The derivatives ∂U / ∂t and ∂U

/ ∂x are no longer defined and a specific treatment must be

applied to determine the solution at later times. Such a

treatment is detailed in Chapter 3.

In the general case, S and F′ are non-zero. Then

relationship [1.33] cannot be used because:

– U is not invariant along a characteristic line;

– the characteristics are therefore curved lines, the slope

of which depends on the local value of x and U.

Therefore, no simple relationship can be derived between

the initial profile at t = t0 and the final profile at t = t1. In

most cases, the solution must be computed approximately

using numerical methods. Such methods are dealt with in

Chapters 6 and 7.

1.2.2. Initial conditions,

boundary conditions

In practical applications, the solution of equation [1.1] is

sought over a domain of finite length. A key issue is the

amount of information needed for the calculation of U at a

point M(x, t) in the domain. This question is best answered

using the phase space (Figure 1.6). The solution domain is

assumed to extend from x = 0 to x = L.

Figure 1.6. Initial and boundary conditions in the phase

space



For the sake of clarity, the wave speed λ is assumed to be

positive over the entire domain (the case where the sign of

the wave speed changes is examined at the end of the

section). Two possibilities arise:

– If point M is located on the right-hand side of the

characteristic that passes at point B (x = 0 t = 0, there

exists a point C on the line (t = 0 such that the

characteristic passing at C passes at M. Point C is called the

foot of the characteristic at t = 0 If the value of U is known

at point C, U can be computed along the characteristic line

by solving the characteristic form [1.27] using any analytical

or numerical method. Therefore, the value of U can be

computed at any point M located on the right-hand side of

the characteristic that passes at B (0 0), provided that U(x,

0) is known for all x between 0 and L. The function that

describes the profile U(x, 0) is called the initial condition. It

is expressed as follows:

[1.34] 

– If point M is located on the left-hand side of the

characteristic passing at B, the value of U at M cannot be

calculated from the initial condition and the knowledge of

the value of U at all points A along the line (x = 0) is

necessary. The function that describes the profile U(0, t) is

called a boundary condition. In the case of a positive λ, the

characteristics enter the domain on the left-hand side and

the left boundary condition must be used. It is expressed as

follows:


