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PREFACE 

Our purpose in writing this second edition-more than a quarter century after the 
original-remains the same: to give a systematic account of the major topics in pat- 
tern recognition, based whenever possible on fundamental principles. We believe 
that this provides the required foundation for solving problems in more specialized 
application areas such as speech recognition, optical character recognition, or signal 
classification. Readers of the first edition often asked why we combined in one book 
a Part I on pattern classification with a Part I1 on scene analysis. At the time, we 
could reply that classification theory was the most important domain-independent 
theory of pattern recognition, and that scene analysis was the only important appli- 
cation domain. Moreover, in 1973 it was still possible to provide an exposition of the 
major topics in pattern classification and scene analysis without being superficial. 
In the intervening years, the explosion of activity in both the theory and practice of 
pattern recognition has made this view untenable. Knowing that we had to make a 
choice, we decided to focus our attention on classification theory, leaving the treat- 
ment of applications to the books that specialize on particular application domains. 
Since 1973, there has been an immense wealth of effort, and in many cases progress, 
on the topics we addressed in the first edition. The pace of progress in algorithms 
for learning and pattern recognition has been exceeded only by the improvements in 
computer hardware. Some of the outstanding problems acknowledged in the first edi- 
tion have been solved, whereas others remain as frustrating as ever. Taken with the 
manifest usefulness of pattern recognition, this makes the field extremely vigorous 
and exciting. 

While we wrote then that pattern recognition might appear to be a rather special- 
ized topic, it is now abundantly clear that pattern recognition is an immensely broad 
subject, with applications in fields as diverse as handwriting and gesture recognition, 
lipreading, geological analysis, document searching, and the recognition of bubble 
chamber tracks of subatomic particles; it is central to a host of human-machine in- 
terface problems, such as pen-based computing. The size of the current volume is 
a testament to the body of established theory. Whereas we expect that most of our 
readers will be interested in developing pattern recognition systems, perhaps a few 
will be active in understanding existing pattern recognition systems, most notably 
human and animal nervous systems. To address the biological roots of pattern recog- 
nition would of course be beyond the scope of this book. Nevertheless, because neu- 
robiologists and psychologists interested in pattern recognition in the natural world 
continue to rely on more advanced mathematics and theory, they too may profit from 
the material presented here. 
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xviii PREFACE 

Despite the existence of a number of excellent books that focus on a small set of 
specific techniques, we feel that there is still a strong need for a book such as ours, 
which takes a somewhat different approach. Rather than focus on a specific technique 
such as neural networks, we address a specific class of problems-pattern recogni- 
tion problems-and consider the wealth of different techniques that can be applied 
to it. Students and practitioners typically have a particular problem and need to know 
which technique is best suited for their needs and goals. In contrast, books that focus 
on neural networks may not explain decision trees, or nearest-neighbor methods, or 
many other classifiers to the depth required by the pattern recognition practitioner 
who must decide among the various alternatives. To avoid this problem, we often 
discuss the relative strengths and weaknesses of various classification techniques. 

These developments demanded a unified presentation in an updated edition of 
Part I of the original book. We have tried not only to expand but also to improve the 
text in a number of ways: 

New Material. The text has been brought up to date with chapters on pattern recog- 
nition topics that have, over the past decade or so, proven to be of value: neu- 
ral networks, stochastic methods, and some topics in the theory of learning, 
to name a few. While the book continues to stress methods that are statistical 
at root, for completeness we have included material on syntactic methods as 
well. "Classical" material has been included, such as Hidden Markov models, 
model selection, combining classifiers, and so forth. 

Examples. Throughout the text we have included worked examples, usually con- 
taining data and methods simple enough that no tedious calculations are re- 
quired, yet complex enough to illustrate important points. These are meant to 
impart intuition, clarify the ideas in the text, and to help students solve the 
homework problems. 

Algorithms. Some pattern recognition or learning techniques are best explained 
with the help of algorithms, and thus we have included several throughout 
the book. These are meant for clarification, of course; they provide only the 
skeleton of structure needed for a full computer program. We assume that ev- 
ery reader is familiar with such pseudocode, or can understand it from context 
here. 

Starred Sections. The starred sections (*) are a bit more specialized, and they are 
typically expansions upon other material. Starred sections are generally not 
needed to understand subsequent unstarred sections, and thus they can be 
skipped on first reading. 

Computer Exercises. These are not specific to any language or system, and thus 
can be done in the language or style the student finds most comfortable. 

Problems. New homework problems have been added, organized by the earliest sec- 
tion where the material is covered. In addition, in response to popular demand, 
a Solutions Manual has been prepared to help instructors who adopt this book 
for courses. 

Chapter Summaries. Chapter summaries are included to highlight the most impor- 
tant concepts covered in the rest of the text. 

Graphics. We have gone to great lengths to produce a large number of high-quality 
figures and graphics to illustrate our points. Some of these required extensive 
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calculations, selection, and reselection of parameters to best illustrate the con-
cepts at hand. Study the figures carefully! The book's illustrations are available 
in Adobe Acrobat format that can be used by faculty adopting this book for 
courses to create presentations for lectures. The files can be accessed through 
a standard web browser or an ftp client program at the Wiley STM ftp area at: 

ftp://ftp.wiley.com/public/sci-tech_med/pattern/ 

The files can also be accessed from a link on the Wiley Electrical Engineering 
software supplements page at: 

http://www.wiley.com/products/subject/engineering/electrical/ 
software_supplem_elec_eng.html 

Mathematical Appendixes. It comes as no surprise that students do not have the 
same mathematical background, and for this reason we have included mathe-
matical appendixes on the foundations needed for the book. We have striven 
to use clear notation throughout—rich enough to cover the key properties, yet 
simple enough for easy readability. The list of symbols in the Appendix should 
help those readers who dip into an isolated section that uses notation developed 
much earlier. 

This book surely contains enough material to fill a two-semester upper-division or 
graduate course; alternatively, with careful selection of topics, faculty can fashion a 
one-semester course. A one-semester course could be based on Chapters 1-6, 9 and 
10 (most of the material from the first edition, augmented by neural networks and 
machine learning), with or without the material from the starred sections. 

Because of the explosion in research developments, our historical remarks at the 
end of most chapters are necessarily cursory and somewhat idiosyncratic. Our goal 
has been to stress important references that help the reader rather than to document 
the complete historical record and acknowledge, praise, and cite the established re-
searcher. The Bibliography sections contain some valuable references that are not 
explicitly cited in the body of the text. Readers should also scan through the titles in 
the Bibliography sections for references of interest. 

This book could never have been written without the support and assistance of 
several institutions. First and foremost is of course Ricoh Innovations (DGS and 
PEH). Its support of such a long-range and broadly educational project as this book— 
amidst the rough and tumble world of industry and its never-ending need for prod-
ucts and innovation—is proof positive of a wonderful environment and a rare and 
enlightened leadership. The enthusiastic support of Mono Onoe, who was Director 
of Research, Ricoh Company Ltd. when we began our writing efforts, is gratefully 
acknowledged. Likewise, San Jose State University (ROD), Stanford University (De-
partments of Electrical Engineering, Statistics and Psychology), The University of 
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1
INTRODUCTION 

The ease with which we recognize a face, understand spoken words, read handwritten 
characters, identify our car keys in our pocket by feel, and decide whether an apple is 
ripe by its smell belies the astoundingly complex processes that underlie these acts of 
pattern recognition. Pattern recognition—the act of taking in raw data and making an 
action based on the "category" of the pattern—has been crucial for our survival, and 
over the past tens of millions of years we have evolved highly sophisticated neural 
and cognitive systems for such tasks. 

1.1 MACHINE PERCEPTION 

It is natural that we should seek to design and build machines that can recognize pat-
terns. From automated speech recognition, fingerprint identification, optical charac-
ter recognition, DNA sequence identification, and much more, it is clear that reliable, 
accurate pattern recognition by machine would be immensely useful. Moreover, in 
solving the myriad problems required to build such systems, we gain deeper under-
standing and appreciation for pattern recognition systems in the natural world—most 
particularly in humans. For some problems, such as speech and visual recognition, 
our design efforts may in fact be influenced by knowledge of how these are solved 
in nature, both in the algorithms we employ and in the design of special-purpose 
hardware. 

1.2 AN EXAMPLE 

To illustrate the complexity of some of the types of problems involved, let us con-
sider the following imaginary and somewhat fanciful example. Suppose that a fish-
packing plant wants to automate the process of sorting incoming fish on a conveyor 
belt according to species. As a pilot project it is decided to try to separate sea bass 
from salmon using optical sensing. We set up a camera, take some sample images, 
and begin to note some physical differences between the two types of fish—length, 
lightness, width, number and shape of fins, position of the mouth, and so on—and 

FEATURE these suggest features to explore for use in our classifier. We also notice noise or 

1 
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MODEL 

PREPROCESSING 

SEGMENTATION 

FEATURE 
EXTRACTION 

variations in the images—variations in lighting, position of the fish on the conveyor, 
even "static" due to the electronics of the camera itself. 

Given that there truly are differences between the population of sea bass and that 
of salmon, we view them as having different models—different descriptions, which 
are typically mathematical in form. The overarching goal and approach in pattern 
classification is to hypothesize the class of these models, process the sensed data 
to eliminate noise (not due to the models), and for any sensed pattern choose the 
model that corresponds best. Any techniques that further this aim should be in the 
conceptual toolbox of the designer of pattern recognition systems. 

Our prototype system to perform this very specific task might well have the form 
shown in Fig. 1.1. First the camera captures an image of the fish. Next, the cam-
era's signals are preprocessed to simplify subsequent operations without losing rel-
evant information. In particular, we might use a segmentation operation in which 
the images of different fish are somehow isolated from one another and from the 
background. The information from a single fish is then sent to a feature extractor, 
whose purpose is to reduce the data by measuring certain "features" or "properties." 

FIGURE 1.1. The objects to be classified are first sensed by a transducer (camera), 
whose signals are preprocessed. Next the features are extracted and finally the clas-
sification is emitted, here either "salmon" or "sea bass." Although the information flow 
is often chosen to be from the source to the classifier, some systems employ information 
flow in which earlier levels of processing can be altered based on the tentative or pre-
liminary response in later levels (gray arrows). Yet others combine two or more stages 
into a unified step, such as simultaneous segmentation and feature extraction. 
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These features (or, more precisely, the values of these features) are then passed to a 
classifier that evaluates the evidence presented and makes a final decision as to the 
species. 

The preprocessor might automatically adjust for average light level, or threshold 
the image to remove the background of the conveyor belt, and so forth. For the mo-
ment let us pass over how the images of the fish might be segmented and consider 
how the feature extractor and classifier might be designed. Suppose somebody at the 
fish plant tells us that a sea bass is generally longer than a salmon. These, then, give 
us our tentative models for the fish: Sea bass have some typical length, and this is 
greater than that for salmon. Then length becomes an obvious feature, and we might 
attempt to classify the fish merely by seeing whether or not the length / of a fish 
exceeds some critical value /*. To choose /* we could obtain some design or training 

TRAINING samples of the different types of fish, make length measurements, and inspect the 
SAMPLES results. 

Suppose that we do this and obtain the histograms shown in Fig. 1.2. These dis-
appointing histograms bear out the statement that sea bass are somewhat longer than 
salmon, on average, but it is clear that this single criterion is quite poor; no matter 
how we choose /*, we cannot reliably separate sea bass from salmon by length alone. 

Discouraged, but undeterred by these unpromising results, we try another feature, 
namely the average lightness of the fish scales. Now we are very careful to eliminate 
variations in illumination, because they can only obscure the models and corrupt our 
new classifier. The resulting histograms and critical value x*, shown in Fig. 1.3, are 
much more satisfactory: The classes are much better separated. 

So far we have tacitly assumed that the consequences of our actions are equally 
costly: Deciding the fish was a sea bass when in fact it was a salmon was just as 

COST undesirable as the converse. Such a symmetry in the cost is often, but not invariably, 
the case. For instance, as a fish-packing company we may know that our customers 
easily accept occasional pieces of tasty salmon in their cans labeled "sea bass," but 
they object vigorously if a piece of sea bass appears in their cans labeled "salmon." 
If we want to stay in business, we should adjust our decisions to avoid antagonizing 
our customers, even if it means that more salmon makes its way into the cans of 
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FIGURE 1.2. Histograms for the length feature for the two categories. No single thresh-
old value of the length wil l serve to unambiguously discriminate between the two cat-
egories; using length alone, we wil l have some errors. The value marked /* wi l l lead to 
the smallest number of errors, on average. 
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FIGURE 1.3. Histograms for the lightness feature for the two categories. No single 
threshold value x* (decision boundary) wi l l serve to unambiguously discriminate be-
tween the two categories; using lightness alone, we wi l l have some errors. The value x* 
marked wi l l lead to the smallest number of errors, on average. 

DECISION 
THEORY 

DECISION 
BOUNDARY 

sea bass. In this case, then, we should move our decision boundary to smaller values 
of lightness, thereby reducing the number of sea bass that are classified as salmon 
(Fig. 1.3). The more our customers object to getting sea bass with their salmon (i.e., 
the more costly this type of error) the lower we should set the decision threshold x* 
in Fig. 1.3. 

Such considerations suggest that there is an overall single cost associated with our 
decision, and our true task is to make a decision rule (i.e., set a decision boundary) 
so as to minimize such a cost. This is the central task of decision theory of which 
pattern classification is perhaps the most important subfield. 

Even if we know the costs associated with our decisions and choose the optimal 
critical value x*, we may be dissatisfied with the resulting performance. Our first 
impulse might be to seek yet a different feature on which to separate the fish. Let us 
assume, however, that no other single visual feature yields better performance than 
that based on lightness. To improve recognition, then, we must resort to the use of 
more than one feature at a time. 

In our search for other features, we might try to capitalize on the observation that 
sea bass are typically wider than salmon. Now we have two features for classifying 
fish—the lightness x\ and the width xj. If we ignore how these features might be 
measured in practice, we realize that the feature extractor has thus reduced the image 
of each fish to a point or feature vector x in a two-dimensional feature space, where 

-£)• 
Our problem now is to partition the feature space into two regions, where for all 

points in one region we will call the fish a sea bass, and for all points in the other 
we call it a salmon. Suppose that we measure the feature vectors for our samples and 
obtain the scattering of points shown in Fig. 1.4. This plot suggests the following rule 
for separating the fish: Classify the fish as sea bass if its feature vector falls above 
the decision boundary shown, and as salmon otherwise. 

This rule appears to do a good job of separating our samples and suggests that 
perhaps incorporating yet more features would be desirable. Besides the lightness 
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FIGURE 1.4. The two features of lightness and width for sea bass and salmon. The dark 
line could serve as a decision boundary of our classifier. Overall classification error on 
the data shown is lower than if we use only one feature as in Fig. 1.3, but there wi l l still 
be some errors. 

GENERALIZATION 

and width of the fish, we might include some shape parameter, such as the vertex 
angle of the dorsal fin, or the placement of the eyes (as expressed as a proportion of 
the mouth-to-tail distance), and so on. How do we know beforehand which of these 
features will work best? Some features might be redundant. For instance, if the eye 
color of all fish correlated perfectly with width, then classification performance need 
not be improved if we also include eye color as a feature. Even if the difficulty or 
computational cost in attaining more features is of no concern, might we ever have 
too many features—is there some "curse" for working in very high dimensions? 

Suppose that other features are too expensive to measure, or provide little im-
provement (or possibly even degrade the performance) in the approach described 
above, and that we are forced to make our decision based on the two features in 
Fig. 1.4. If our models were extremely complicated, our classifier would have a deci-
sion boundary more complex than the simple straight line. In that case all the training 
patterns would be separated perfectly, as shown in Fig. 1.5. With such a "solution," 
though, our satisfaction would be premature because the central aim of designing a 
classifier is to suggest actions when presented with novel patterns, that is, fish not 
yet seen. This is the issue of generalization. It is unlikely that the complex decision 
boundary in Fig. 1.5 would provide good generalization—it seems to be "tuned" to 
the particular training samples, rather than some underlying characteristics or true 
model of all the sea bass and salmon that will have to be separated. 

Naturally, one approach would be to get more training samples for obtaining a 
better estimate of the true underlying characteristics, for instance the probability 
distributions of the categories. In some pattern recognition problems, however, the 
amount of such data we can obtain easily is often quite limited. Even with a vast 
amount of training data in a continuous feature space though, if we followed the 
approach in Fig. 1.5 our classifier would give a horrendously complicated decision 
boundary—one that would be unlikely to do well on novel patterns. 

Rather, then, we might seek to "simplify" the recognizer, motivated by a belief 
that the underlying models will not require a decision boundary that is as complex as 
that in Fig. 1.5. Indeed, we might be satisfied with the slightly poorer performance 
on the training samples if it means that our classifier will have better performance 
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FIGURE 1.5. Overly complex models for the fish wil l lead to decision boundaries that 
are complicated. While such a decision may lead to perfect classification of our training 
samples, it would lead to poor performance on future patterns. The novel test point 
marked ? is evidently most likely a salmon, whereas the complex decision boundary 
shown leads it to be classified as a sea bass. 

on novel patterns.* But if designing a very complex recognizer is unlikely to give 
good generalization, precisely how should we quantify and favor simpler classifiers? 
How would our system automatically determine that the simple curve in Fig. 1.6 
is preferable to the manifestly simpler straight line in Fig. 1.4 or the complicated 
boundary in Fig. 1.5? Assuming that we somehow manage to optimize this tradeoff, 
can we then predict how well our system will generalize to new patterns? These are 
some of the central problems in statistical pattern recognition. 

For the same incoming patterns, we might need to use a drastically different task 
or cost function, and this will lead to different actions altogether. We might, for 
instance, wish instead to separate the fish based on their sex—all females (of either 
species) from all males—if we wish to sell roe. Alternatively, we might wish to cull 
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FIGURE 1.6. The decision boundary shown might represent the optimal tradeoff be-
tween performance on the training set and simplicity of classifier, thereby giving the 
highest accuracy on new patterns. 

"The philosophical underpinnings of this approach derive from William of Occam (1284-1347?), who 
advocated favoring simpler explanations over those that are needlessly complicated: Entia non sunt multi-
plicanda praeter necessitatem ("Entities are not to be multiplied without necessity"). Decisions based on 
overly complex models often lead to lower accuracy of the classifier. 


