SECOND EDITION

RESONANT POWER CONVERTERS

MARIAN K. KAZIMIERCZUK DARIUSZ CZARKOWSKI

RESONANT POWER CONVERTERS

RESONANT POWER CONVERTERS

Second Edition

Marian K. Kazimierczuk Wright State University

Dariusz Czarkowski Polytechnic Institute of New York University

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data

Kazimierczuk, Marian.
Resonant power converters / Marian K. Kazimierczuk, Dariusz Czarkowski. — 2nd ed. p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-90538-8 (cloth)
1. Electric current converters. 2. Electric resonators. 3. Power electronics. I. Czarkowski, Dariusz. II. Title.
TK7872.C8K39 2010 621.3815'322—dc22

2010031082

Printed in Singapore

10 9 8 7 6 5 4 3 2 1

To Alicja, Anna, Katarzyna, and Andrzej To Hanna, Barbara, and Bartosz

CONTENTS

xxi
xxv
xxvii
1
5
7
9
9
10
10
10
12
13
14

CONTENTS

	2.3.6	Input Resistance	16
	2.3.7	Voltage Transfer Function	16
	2.3.8	Ripple Voltage	18
2.4	Class	D Transformer Center-Tapped Rectifier	20
	2.4.1	Currents and Voltages	20
	2.4.2	Power Factor	22
	2.4.3	Power-Output Capability	23
	2.4.4	Efficiency	24
	2.4.5	Input Resistance	25
	2.4.6	Voltage Transfer Function	25
	2.4.7	Ripple Voltage	26
2.5	Class	D Bridge Rectifier	28
	2.5.1	Power-Output Capability	29
	2.5.2	Efficiency	31
	2.5.3	Input Resistance	31
	2.5.4	Voltage Transfer Function	31
2.6	Effect	s of Equivalent Series Resistance and Equivalent	
	Series	Inductance	34
2.7	Synch	ronous Rectifiers	38
	2.7.1	Gate-Drive Power	39
	2.7.2	Efficiency	40
	2.7.3	Input Resistance	40
	2.7.4	Voltage Transfer Function	40
2.8	Summ	nary	42
2.9	Refere	ences	43
2.10	Revie	w Questions	44
2.11	Proble	ems	45
0		Itore Driver Destifiers	47
Clas	IS D VO	hage-Driven Rectifiers	47
3.1	Introdu	iction	47
3.2	Assum	ptions	47
3.3	Class I	O Half-Wave Rectifier	48
	3.3.1	Currents and Voltages	48
	3.3.2	Power Factor	50
	3.3.3	Current and Voltage Stresses	51
	3.3.4	Efficiency	51
	3.3.5	Input Resistance	53

viii

3

		3.3.6	Voltage Transfer Function	53
		3.3.7	Ripple Voltage	55
	3.4	Class	D Transformer Center-Tapped Rectifier	56
		3.4.1	Currents and Voltages	56
		3.4.2	Power Factor	57
		3.4.3	Efficiency	59
		3.4.4	Input Resistance	60
		3.4.5	Voltage Transfer Function	60
		3.4.6	Ripple Voltage	61
	3.5	Class	D Bridge Rectifier	62
	3.6	Syncl	hronous Rectifiers	66
		3.6.1	Efficiency	66
		3.6.2	Input Resistance	67
		3.6.3	Voltage Transfer Function	67
	3.7	Sumr	nary	69
	3.8	Refer	rences	69
	3.9	Revie	ew Questions	71
	3.10 Problems		71	
4	Clas	s E Lo	ow <i>dv/dt</i> Bectifiers	72
•	4 1	Introdu	nation	72
	4.1	Low	with a Parallel Canacitor	72
	4.2	10W a	Principle of Operation	72
		4.2.1		72
		4.2.2	Characterization of the Postifier at Any D	74
		4.2.3	Characterization of the Rectifier at Ally D	13
		4.2.4	Parameters for $D = 0.5$	00 20
	4.2	4.2.J	Design Example	07
	4.3	A 2 1	Circuit Description	90
		4.5.1	A summations	90
		4.3.2	Characteristics	92
		4.3.3		92
		4.3.4	Dia da Strange	90 101
		4.3.3	Divide Stresses	101
		4.3.0	Parameters for $D = 0.5$	105
		4.3.7	Design Example	105
	4.4	Summ	hary	106
	4.5	Ketere	ences	107

CONTENTS ix

x	CONTENTS

	4.6	Review	w Questions	108
	4.7	Proble	ems	108
5	Clas	ss E Lo	ow <i>di/dt</i> Rectifiers	109
	5.1	Introd	uction	109
	5.2	Low d	li/dt Rectifier with a Parallel Inductor	109
		5.2.1	Circuit Description	109
		5.2.2	Assumptions	111
		5.2.3	Component Values	112
		5.2.4	Device Stresses	115
		5.2.5	Input Impedance	115
		5.2.6	Current and Voltage Transfer Functions	122
		5.2.7	Design Example	123
	5.3	Low a	di/dt Rectifier with a Series Inductor	125
		5.3.1	Principle of Operation	125
		5.3.2	Assumptions	127
		5.3.3	Component Values	128
		5.3.4	Diode Waveforms	131
		5.3.5	Peak Diode Current and Voltage	131
		5.3.6	Voltage Transfer Function	132
		5.3.7	Input Impedance	133
		5.3.8	Design Example	138
	5.4	Summ	nary	139
	5.5	Refere	ences	139
	5.6	Revie	w Questions	140
	5.7	Proble	ems	140
P/	١RT	II IN	IVERTERS	141

6	Clas	ss D Series-Resonant Inverter	143
	6.1	Introduction	143
	6.2	Circuit Description	144
	6.3	Principle of Operation	146
		6.3.1 Operation Below Resonance	147
		6.3.2 Operation Above Resonance	151
	6.4	Topologies of Class D Voltage-Source Inverters	152

6.5	Analys	sis	155
	6.5.1	Assumptions	155
	6.5.2	Series-Resonant Circuit	155
	6.5.3	Input Impedance of Series-Resonant Circuit	157
	6.5.4	Currents, Voltages, and Powers	158
	6.5.5	Current and Voltage Stresses	162
	6.5.6	Operation Under Short-Circuit and Open-Circuit	
		Conditions	166
6.6	Voltag	e Transfer Function	166
6.7	Efficie	ency	170
	6.7.1	Conduction Losses	170
	6.7.2	Turn-On Switching Loss	170
	6.7.3	Turn-Off Switching Loss	175
6.8	Desig	n Example	177
6.9	Class	D Full-Bridge Series-Resonant Inverter	180
	6.9.1	Currents, Voltages, and Powers	180
	6.9.2	Efficiency	184
	6.9.3	Operation Under Short-Circuit and Open-Circuit	
		Conditions	185
	6.9.4	Voltage Transfer Function	185
6.10	Relati	onships Among Inverters and Rectifiers	187
6.11	Summ	ary	189
6.12	Refer	ences	190
6.13	Revie	w Questions	191
6.14	Proble	ems	191

7	Clas	ss D Parallel-Resonant Inverter	193
	7.1	Introduction	193
	7.2	Principle of Operation	193
	7.3	Analysis	197
		7.3.1 Assumptions	197
		7.3.2 Resonant Circuit	197
		7.3.3 Voltage Transfer Function	204
		7.3.4 Currents, Voltages, and Powers	209
		7.3.5 Efficiency	217
	7.4	Short-Circuit and Open-Circuit Operation	219
	7.5 Electronic Ballast for Fluorescent Lamps		223

:	xii	CONT	ENTS

	7.6	Desig	gn Example	225
	7.7	Full-J	Bridge Parallel-Resonant Inverter	227
		7.7.1	Voltage Transfer Function	227
		7.7.2	Currents, Voltages, and Powers	228
		7.7.3	Efficiency	230
		7.7.4	Short-Circuit and Open-Circuit Operation	231
	7.8	Sum	mary	232
	7.9	Refer	rences	233
	7.10	Revie	ew Questions	233
	7.11	Probl	ems	233
8	Clas	s D Se	eries-Parallel-Resonant Inverter	235
	8.1	Introd	uction	235
	8.2	Princip	ple of Operation	235
	8.3	Analys	sis	237
		8.3.1	Assumptions	237
		8.3.2	Resonant Circuit	238
		8.3.3	Voltage Transfer Function	242
		8.3.4	Energy Parameters	244
		8.3.5	Short-Circuit and Open-Circuit Operation	253
	8.4	Desig	n Example	254
	8.5	Full-B	ridge Series-Parallel-Resonant Inverter	257
		8.5.1	Voltage Transfer Function	257
		8.5.2	Currents and Voltages	258
		8.5.3	Powers and Efficiency	259
	8.6	Summ	nary	259
	8.7	Refere	ences	260
	8.8	Revie	w Questions	261
	8.9	Proble	ems	261
9	Clas	ss D C	LL Resonant Inverter	262
	9.1	Introd	luction	262
	9.2	Princi	ple of Operation	262
	9.3	Analy	sis	264
		9.3.1	Assumptions	264
		9.3.2	Boundary Between Capacitive and Inductive Load	264
		9.3.3	Voltage Transfer Function	269

			CON	TENTS	xiii
		9.3.4	Energy Parameters		272
		9.3.5	Short-Circuit and Open-Circuit Operation		279
	9.4	Design I	Example		282
	9.5	Full-Bri	dge CLL Resonant Inverter		285
		9.5.1	Voltage Transfer Function		285
		9.5.2	Currents and Voltages		286
		9.5.3	Powers and Efficiency		287
	9.6	Summa	ry		287
	9.7	Referen	ces		288
	9.8	Review	Questions		288
	9.9	Problem	ns		288
10	Clas	s D Cu	rrent-Source-Resonant Inverter		290
	10.1	Introdu	uction		290
	10.2	Princip	ple of Operation		291
	10.3	Analys	sis of the Parallel-Resonant Circuit		295
	10.4	Analys	sis of the Inverter		297
		10.4.1	Voltage Transfer Function		297
		10.4.2	Output Power		302
		10.4.3	Conduction Power Loss		302
		10.4.4	Efficiency		305
	10.5	Design	n Example		307
	10.6	Summ	ary		309
	10.7	Refere	ences		309
	10.8	Review	w Questions		310
	10.9	Proble	ems		310
11	Pha	se-Con	trolled Resonant Inverters		311
	11.1	Introd	uction		311
	11.2	Phase-	-Controlled Current-Source Inverters		312
	11.3	Phase	-Controlled Voltage-Source Inverters		316
	11.4	Single	-Capacitor Phase-Controlled Series-Resonant Invert	er	320
		11.4.1	Circuit Description		320
		11.4.2	Assumptions		321
		11.4.3	Voltage Transfer Function		321
		11.4.4	Currents		323
		11.4.5	Boundary Between Capacitive and Inductive Loa	d	324
		11.4.6	Efficiency		327

	11.5	Design Exa	mple	328
	11.6	Summary		329
	11.7	References		330
	11.8	Review Qu	estions	331
	11.9	Problems		332
12	Class	s E Zero-Vo	oltage-Switching Resonant Inverter	334
	12.1	Introducti	on	334
	12.2	Principle	of Operation	335
		12.2.1 C	ircuit Description	335
		12.2.2 C	ircuit Operation	336
		12.2.3 O	ptimum Operation	336
		12.2.4 S	uboptimum Operation	339
	12.3	Analysis		340
		12.3.1 A	ssumptions	340
		12.3.2 C	urrent and Voltage Waveforms	340
		12.3.3 V	oltage and Current Stresses	343
		12.3.4 In	put Impedance of the Resonant Circuit	345
		12.3.5 C	Putput Power	347
		12.3.6 C	component Values	347
	12.4	Parameter	rs at $D = 0.5$	349
	12.5	Efficiency	/	351
	12.6	Matching	Resonant Circuits	354
		12.6.1 B	asic Circuit	354
		12.6.2 R	esonant Circuit π1a	354
		12.6.3 R	esonant Circuit π2a	357
		12.6.4 R	esonant Circuit π1b	358
		12.6.5 R	esonant Circuit π4a	358
	12.7	Design E	kample	359
	12.8	Push-Pull	Class E ZVS Inverter	362
	12.9	Summary		363
	12.10	Reference	es	363
	12.11	Review Q	uestions	367
	12.12	Problems		368
13	Clas	s E Zero-C	urrent-Switching Resonant Inverter	369
	13.1	Introduct	ion	369
	13.2	Circuit D	escription	369

	13.3	Principle of Operation	370
	13.4	Analysis	373
		13.4.1 Steady-State Current and Voltage Waveforms	373
		13.4.2 Peak Switch Current and Voltage	376
		13.4.3 Fundamental-Frequency Components	376
	13.5	Power Relationships	378
	13.6	Element Values of Load Network	378
	13.7	Design Example	379
	13.8	Summary	380
	13.9	References	381
	13.10	Review Questions	381
	13.11	Problems	381
14	Class	DE Power Inverter	382
	14.1	Introduction	382
	14.2	Principle of Operation of Class DE Power Inverter	382
	14.3	Analysis of Class DE Power Inverter	383
	14.4	Components	393
	14.5	Device Stresses	394
	14.6	Design Equations	395
	14.7	Maximum Operating Frequency	395
	14.8	Class DE Inverter with Single Shunt Capacitor	397
	14.9	Output Power	401
	14.10	Cancellation of Nonlinearities of Transistor Output	
		Capacitances	401
	14.11	Summary	402
	14.12	References	403
	14.13	Review Questions	404
	14.14	Problems	404
PA	RT III	CONVERTERS	405
.,,			
15	Class	s D Series-Resonant Converter	407
	15.1	Introduction	407
	15.2	Half-Bridge Series-Resonant Converter	408
		15.2.1 Circuit Description	408

15.2.1Circuit Description40815.2.2Half-Bridge SRC with Half-Wave Rectifier410

xvi	CONTENTS
xvi	CONTENTS

		15.2.3	Half-Bridge SRC with Transformer	
			Center-Tapped Rectifier	411
		15.2.4	Half-Bridge SRC with Bridge Rectifier	411
	15.3	Full-Br	ridge Series-Resonant Converter	412
		15.3.1	Full-Bridge SRC with Half-Wave Rectifier	413
		15.3.2	Full-Bridge SRC with Transformer	
			Center-Tapped Rectifier	414
		15.3.3	Full-Bridge SRC with Bridge Rectifier	414
	15.4	Design	of Half-Bridge SRC	415
	15.5	Summa	ary	417
	15.6	Refere	nces	418
	15.7	Review	v Questions	420
	15.8	Proble	ms	420
16	Clas	s D Par	allel-Resonant Converter	422
	16.1	Introdu	action	422
	16.2	Half-B	ridge Parallel-Resonant Converter	422
		16.2.1	Principle of Operation	422
		16.2.2	Half-Bridge PRC with Half-Wave Rectifier	425
		16.2.3	Half-Bridge PRC with Transformer	
			Center-Tapped Rectifier	427
		16.2.4	Half-Bridge PRC with Bridge Rectifier	427
	16.3	Design	n of the Half-Bridge PRC	427
	16.4	Full-B	ridge Parallel-Resonant Converter	430
		16.4.1	Full-Bridge PRC with Half-Wave Rectifier	430
		16.4.2	Full-Bridge PRC with Transformer	
			Center-Tapped Rectifier	431
		16.4.3	Full-Bridge PRC with Bridge Rectifier	431
	16.5	Summ	ary	432
	16.6	Refere	ences	432
	16.7	Review	w Questions	433
	16.8	Proble	ms	434
17	Clas	is D Sei	ries-Parallel-Resonant Converter	435
	17.1	Introdu	uction	435
	17.2	Circuit	t Description	436
	17.3	Half-B	Bridge Series-Parallel-Resonant Converter	439

				CONTENTS	xvii
		17.3.1	Half-Bridge SPRC with Half-Wave Rectifier		439
		17.3.2	Half-Wave SPRC with Transformer		
			Center-Tapped Rectifier		440
		17.3.3	Half-Bridge SPRC with Bridge Rectifier		440
	17.4	Design	of Half-Bridge SPRC		440
	17.5	Full-Br	idge Series-Parallel-Resonant Converter		443
		17.5.1	Full-Bridge SPRC with Half-Wave Rectifier		443
		17.5.2	Full-Bridge SPRC with Transformer		
			Center-Tapped Rectifier		443
		17.5.3	Full-Bridge SPRC with Bridge Rectifier		444
	17.6	Summa	ıry		445
	17.7	Referer	nces		445
	17.8	Review	Questions		446
	1 7.9	Probler	ns		447
18	Class	s D CLI	Resonant Converter		448
	10.1				440
	18.1	Introd			448
	18.2		It Description		448
	18.3	Half-I	Bridge CLL Resonant Converter		451
		18.3.1	Half-Bridge CLL Resonant Converter with		451
		1022	Hall-wave Reculled		451
		16.3.2	Transformer Center Tanned Pectifier		152
		1022	Half Bridge CLL Desenant Converter with		452
		10.5.5	Bridge Dectifier		152
	18/	Desig	n of Half-Bridge CLI Resonant Converter		453
	18.5	Full-F	Ridge CLL Resonant Converter		455
	10.5	1851	Full-Bridge CLL Resonant Converter with		155
		10.5.1	Half-Wave Rectifier		455
		18.5.2	Full-Bridge CLL Resonant Converter with		
		10.012	Transformer Center-Tapped Rectifier		456
		18.5.3	Full-Bridge CLL Resonant Converter with I	Bridge	
		10.010	Rectifier	8-	456
	18.6	LLC	Resonant Converter		457
	18.7	Sumn	nary		457
	18.8	Refer	ences		457
	18.9	Revie	ew Questions		458
	18.10) Probl	ems		458

XVIII CONTENTS

Clas	s D Current-Source-Resonant Converter	459
19.1	Introduction	459
19.2	Circuit Description	459
	19.2.1 CSRC with Half-Wave Rectifier	460
	19.2.2 CSRC with Transformer Center-Tapped Rectifier	461
	19.2.3 CSRC with Class D Bridge Rectifier	461
19.3	Design of CSRC	461
19.4	Summary	464
19.5	References	464
19.6	Review Questions	465
19.7	Problems	465
	Clas 19.1 19.2 19.3 19.4 19.5 19.6 19.7	 Class D Current-Source-Resonant Converter 19.1 Introduction 19.2 Circuit Description 19.2.1 CSRC with Half-Wave Rectifier 19.2.2 CSRC with Transformer Center-Tapped Rectifier 19.2.3 CSRC with Class D Bridge Rectifier 19.3 Design of CSRC 19.4 Summary 19.5 References 19.6 Review Questions 19.7 Problems

20	Class	D Inverter/Class E Rectifier Resonant Converter	466
	20.1	Introduction	466
	20.2	Circuit Description	466
	20.3	Principle of Operation	468
	20.4	Rectifier Parameters for $D = 0.5$	469
	20.5	Design of Class D Inverter/Class E Resonant Converter	471
	20.6	Class E ZVS Inverter/Class D Rectifier Resonant	
		DC-DC Converter	473
	20.7	Class E ZVS Inverter/Class E ZVS Rectifier Resonant	
		DC-DC Converter	474
	20.8	Summary	475
	20.9	References	475
	20.10	Review Questions	476
	20.11	Problems	476
21	Phas	e-Controlled Resonant Converters	477
	21.1	Introduction	477
	21.2	Circuit Description of SC PC SRC	477
		21.2.1 SC PC SRC with Half-Wave Rectifier	478
		21.2.2 SC PC SRC with Transformer	
		Center-Tapped Rectifier	479
		21.2.3 SC PC SRC with Bridge Rectifier	479
	21.3	Design Example	480

21.3	Design Example	480
21.4	Summary	482

	21.5	References	482
	21.6	Review Questions	484
	21.7	Problems	484
22	Quas	iresonant and Multiresonant DC-DC	
	Powe	er Converters	485
	22.1	Introduction	485
	22.2	Zero-Voltage-Switching Quasiresonant DC-DC Converters	488
	22.3	Buck ZVS Quasiresonant DC-DC Converter	492
		22.3.1 Waveforms	492
		22.3.2 DC Voltage Transfer Function	497
		22.3.3 Voltage and Current Stresses	498
	22.4	Boost ZVS Quasiresonant DC-DC Converter	501
		22.4.1 Waveforms	501
		22.4.2 DC Voltage Transfer Function	505
		22.4.3 Current and Voltage Stresses	506
	22.5	Buck-Boost ZVS Quasiresonant DC-DC Converter	509
		22.5.1 Waveforms	509
		22.5.2 DC Voltage Transfer Function	513
		22.5.3 Current and Voltage Stresses	514
		22.5.4 Generalization of ZVS QR DC-DC Converters	517
	22.6	Zero-Current-Switching Quasiresonant DC-DC Converters	518
	22.7	Buck ZCS Quasiresonant DC-DC Converter	520
		22.7.1 Waveforms	520
		22.7.2 DC Voltage Transfer Function	524
		22.7.3 Current and Voltage Stresses	525
	22.8	Boost ZCS Quasiresonant DC-DC Converter	529
		22.8.1 Waveforms	529
		22.8.2 DC Voltage Transfer Function	533
		22.8.3 Current and Voltage Stresses	535
	22.9	Buck-Boost ZCS Quasiresonant DC-DC Converter	536
		22.9.1 Waveforms	536
		22.9.2 DC Voltage Transfer Function	540
		22.9.3 Current and Voltage Stresses	541
		22.9.4 Generalization of ZCS QR DC-DC Converters	544
	22.10	Zero-Voltage Switching Multiresonant DC-DC Converters	545
		22.10.1 Buck Multiresonant DC-DC Converter	546
	22.11	Zero-Current Switching Multiresonant DC-DC Converters	550

xix

CONTENTS

XX CONTENTS

22.12	2 Zero-Voltage Transition PWM Converters	553
22.13	3 Zero-Current Transition Converters	556
22.14	4 Summary	558
22.1	5 References	561
22.10	6 Review Questions	563
22.17	7 Problems	564
23 Mod	leling and Control	565
23.1	Introduction	565
23.2	Modeling	566
	23.2.1 Nonlinear Model	566
	23.2.2 Small-Signal Linear Model	569
23.3	Model Reduction and Control	572
	23.3.1 Reduced Model	572
	23.3.2 Control	573
23.4	Summary	574
23.5	References	574
23.6	Review Questions	576
23.7	Problems	576
APPEN	IDICES	577
ANSWE	ERS TO PROBLEMS	591
INDEX		597

PREFACE

Energy is considered number one of 10 challenges facing humanity today. Energy processing is a large portion of energy technology. Power electronics is a branch of electrical and electronic engineering concerned with the analysis, simulation, design, manufacture, and application of switching-mode DC-DC power converters. Resonant power conversion is in the center of the renewable energy and energy harvesting technologies. This book is focused on the analysis and design of DC-AC resonant inverters, high-frequency rectifiers, and DC-DC resonant converters that are basic building blocks of various high-frequency, high-efficiency low-noise energy processors. The past two decades have initiated a revolution in and unprecedented growth of power electronics. Continuing advances in this area have resulted in DC and AC energy sources that are smaller, more efficient, lighter, less expensive, and more reliable than ever before. Power processors are widely used in the computer, telecommunication, instrumentation, automotive, aerospace, defense, and consumer industries. DC-DC converters are being used in power supplies to power practically all electronic circuits that contain active devices. The growing escalation in complexity of modern electronic systems is imposing challenging demands on the capabilities of circuit designers.

Many design problems encountered in a great diversity of products can be solved using the unique capabilities of resonant technology. Information on resonant power processors is scattered throughout many different technical journals, conference proceedings, and application notes. This volume brings the principles of resonant technology to students, scientists, and practicing design engineers. The stateof-the-art technology of high-frequency resonant power processors is covered in a systematic manner for the first time. The reader will be introduced to the topologies, characteristics, terminology, and mathematics of resonant converters. The fundamental-frequency component approach is used in the analyses of DC-DC resonant converters. The book provides students and engineers with a sound understanding of existing high-frequency inverters, rectifiers, and DC-DC resonant converters and presents a general and easy-to-use tool of analysis and design of resonant power circuits. It is written in a clear, concise, and unambiguous style.

The text provides rigorous in-depth analysis to help the reader understand how and why the power converters are built as they are. The fundamental-frequency component method is used throughout the entire book. This approach leads to relatively simple closed-form analytic expressions for converter characteristics, which provides good insight into circuit operation and greatly simplifies the design process. Graphic representations of various characteristics are emphasized throughout the text because they provide a visual picture of circuit operation and often yield insights not readily obtained from purely algebraic treatments.

This book is intended as a textbook for senior-level and graduate students in electrical engineering and as a reference for practicing design engineers, researchers, and consultants in industry. The objective of the book is to develop in the reader the ability to analyze and design high-frequency power electronic circuits. A knowledge of network analysis, electronic circuits and devices, complex algebra, Fourier series, and Laplace transforms is required to handle the mathematics in this book. Numerous analysis and design examples are included throughout the textbook. An extensive list of references is provided in each chapter. Problems are placed at the end of each chapter. Answers to selected problems are given at the end of the book. Complete solutions for all problems are included in the *Solutions Manual*, which is available from the publisher for those instructors who adopt the book for their courses.

The book is divided into three parts: Part I, "Rectifiers," Part II, "Inverters," and Part III, "Converters."

High-frequency rectifiers are covered in Chapters 2 through 5. Chapter 2 deals with Class D current-driven rectifiers, and Chapter 3 is devoted to the study of Class D voltage-driven rectifiers. Each of these chapters contains analyses of three types of rectifiers, namely, the half-wave, transformer center-tapped, and bridge rectifiers. Chapter 4 presents two Class E low dv/dt rectifiers, whereas Chapter 5 deals with two Class E low di/dt rectifiers.

High-frequency resonant inverters are discussed in Chapters 6 through 14. The Class D series-resonant converter is thoroughly covered in Chapter 6. Many topics discussed in this chapter apply also to other resonant inverters presented in the following chapters. The Class D parallel-resonant inverter is the topic of Chapter 7. Chapters 8 and 9 discuss dual Class D series-parallel and Class D CLL resonant inverters, respectively. The Class D current-source inverter is covered in Chapter 10. Chapter 10 also discusses zero-voltage-switching techniques in resonant inverters. The Class D current-source inverter is covered in Chapter 11. An example of a constant-frequency phase-controlled Class D resonant inverter, namely, the single-capacitor phase-controlled resonant inverter is given in Chapter 12. The Class E resonant inverters are analyzed in Chapters 13 and 14. Chapter 13 deals with a zero-voltage-switching Class E inverter, and Chapter 14 presents a Class DE power inverter, which is a zero-current-switching Class E inverter.

Converters are studied in Part III, which ties together the material of Parts I and II. Resonant DC-DC converters that are a result of cascading resonant inverters with high-frequency rectifiers are presented in Chapters 15 through 22. Chapters 15 through 19 discuss converters with inverters presented in Chapters 6 through 10. Hence, Chapter 15 covers a Class D series-resonant converter, Chapter 16 presents a Class D parallel-resonant converter, Chapter 17 deals with a Class D series-parallelresonant inverter, Chapter 18 gives an analysis of a Class D CLL resonant converter, and Chapter 19 discusses a Class D current-source converter. An example of matching a Class D inverter with a Class E rectifier that leads to a Class D inverter/Class E rectifier resonant converter is presented in Chapter 20. Chapter 21 gives an analysis of a single-capacitor phase-controlled resonant converter that belongs to a broad family of phase-controlled converters. Chapter 22 presents zero-voltage switching (ZVS) and zero-current switching (ZCS) quasi-resonant DC-DC power converters (ORCs), multiresonant DC-DC converters (MRCs), and zero-voltage-transition converters (ZVTs) and zero-current transition DC-DC converters (ZCTs). Chapter 23 contains modeling and control of resonant power converters.

We are pleased to express our gratitude to many individuals for their help during the preparation of this book. The first author had the privilege to teach numerous superb students at the Technical University of Warsaw, Warsaw, Poland, and at Wright State University, Dayton, Ohio. He would like to express his deepest appreciation to them for their research contributions, ideas, suggestions, and critical evaluations of the original manuscript. He also wishes to express his gratitude to Rafal Wojda for the MATLAB figures.

Throughout the entire course of this project, the support provided by John Wiley & Sons, Wiley Interscience Division, was excellent. We wish to express our sincere thanks to George J. Telecki, Senior Editor, and Lucy Hitz, Editorial Assistant, Dean Gonzalez, Illustration Manager, and Kristen Parrish, Production Editor. It has been a real pleasure working with them. Last but not least, we wish to thank our families for their support.

The authors invite the readers to contact them directly or through the publisher with comments and suggestions about this book.

May 2010

MARIAN K. KAZIMIERCZUK DARIUSZ CZARKOWSKI

ABOUT THE AUTHORS

Marian K. Kazimierczuk is Robert J. Kegerreis Distinguished Professor of Electrical Engineering at Wright State University, Dayton, Ohio, USA. He has received M.S., Ph.D., and D. Sci. degrees from the Department of Electronics, Technical University of Warsaw, Warsaw, Poland. He is the author of six books, 145 archival refereed journal papers, 175 conference papers, and seven patents. He is a Fellow of the IEEE. He received the Outstanding Teaching Award from the American Society for Engineering Education (ASEE) in 2008, National Professorship of Technical Sciencies of Poland in 2009, and Southwestern Ohio Council for Higher Education (SOCHE) Award in 2010. His honors also include the Board of Trustees' Award, Brage Golding Distinguished Professor of Research Award, Outstanding Faculty Member Award, Excellence in Professional Service Award, and several college Excellence in Teaching Awards. His research interests are in the areas of power electronics, including resonant DC-DC power converters, PWM DC-DC power converters, modeling and controls, RF power amplifiers and oscillators, semiconductor power devices, high-frequency magnetic devices, renewable energy sources, and evanescent microwave microscopy. He has served as an Associate Editor of the IEEE Transactions on Circuits and Systems, IEEE Transactions on Industrial Electronics, Journal of Circuits, Systems and Computers, and International Journal of Circuit Theory and Applications.

Dariusz Czarkowski is an Associate Professor at the Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Brooklyn, NY, USA. He received an M.S. degree in electrical engineering from AGH University

XXVI ABOUT THE AUTHORS

of Science and Technology, Cracow, Poland, an M.S. degree in electrical engeneering from Wright State University, Dayton, OH, and a Ph.D. degree in electrical engineering from the University of Florida, Gainesville, FL. His research interests are in the areas of power electronics and power systems. He has served as an Associate Editor of the *IEEE Transactions on Circuits and Systems* and *International Journal* of Power and Energy Systems.

LIST OF SYMBOLS

C _{pR}	Power-output capability of rectifier
Ċ	Resonant capacitance
C_c	Coupling capacitance
C_{ds}	Drain-source capacitance of MOSFET
$C_{ds(25V)}$	Drain-source capacitance of MOSFET at $V_{DS} = 25$ V
C_f	Filter capacitance
C_{fmin}	Minimum value of C_f
\dot{C}_{gd}	Gate-drain capacitance of MOSFET
C_{gs}	Gate-source capacitance of MOSFET
Ciss	MOSFET input capacitance at $V_{DS} = 0$, $C_{iss} = C_{gs} + C_{gd}$
Coss	MOSFET output capacitance at $V_{GD} = 0$, $C_{oss} = C_{gs} + C_{ds}$
C_o	Transistor output capacitance
C_{rss}	MOSFET transfer capacitance, $C_{rss} = C_{gd}$
C_s	Equivalent series-resonant capacitance
D_k	kth diode
f	Switching frequency
f_o	Resonant frequency
f_p	Frequency of pole of transfer function
	Corner frequency of output filter
f _r	Resonant frequency of L - C_s - R_s circuit
f_s	Switching frequency
f_z	Frequency of zero of transfer function
fн	Upper 3-dB frequency
i	Current through resonant circuit
i _{cr}	AC component of <i>i_{CR}</i>

i _i	AC current source
i _o	AC load current
i _{Cf}	Current through filter capacitance
i _{CR}	Current through the C_f - R_L circuit
i _{Dk}	Current through kth diode
i _R	Input current of rectifier
is	Switch current
i _{Sk}	Current through kth switch
I_l	Capacitor DC leakage current
Im	Amplitude of <i>i</i>
In	<i>nth</i> harmonic of the current to R_L - C_f - r_C circuit
Ipk	Magnitude of cross-conduction current
İrms	rms value of i
I _{Cf(rms)}	rms value of <i>i_{Cf}</i>
IDM	Peak current of diode
I _{Drms}	Rms value of diode current
ID	Average current through diode
Io	DC output current
IOFF	Current at which the transistor turns off
IOmax	Maximum value of I_O
ISM	Peak current of switch
k	Ratio R_L/r_C
KI	Current transfer function of rectifier
Ĺ	Resonant inductance
Le	Inductance of electrodes
L_{f}	Filter inductance
L _{fmin}	Minimum value of L_f
Ĺ _t	Inductance of terminations
LESL	Equivalent series inductance
М	DC-DC voltage transfer function of converter
M _{VI}	Voltage transfer function of inverter
M_{VI}	Amplitude of the voltage transfer function of inverter
M_{Vs}	Voltage transfer function of switches
M _{Vr}	Voltage transfer function of resonant circuit
$ M_{Vr} $	Magnitude of voltage transfer function of resonant circuit
M _{VR}	Voltage transfer function of rectifier
n	Transformer turns ratio
P_i	Input power of rectifier
Plc	AC conduction loss in filter inductor and capacitor
P_r	Conduction loss in r
PrC	Conduction loss in filter capacitor
P_{tf}	Average value of power loss associated with current fall time t_f
P _{tr}	Average value of power loss associated with voltage rise time t_r
P _{toff}	Turn-off switching losses
P_{ton}	Turn-on switching losses
	C

xxviii

LIST OF SYMBOLS