Kamelia Boodhoo and Adam Harvey

Process Intensification For Green Chemistry

Engineering Solutions for Sustainable Chemical Processing

Process Intensification for Green Chemistry

Process Intensification for Green Chemistry

Engineering Solutions for Sustainable Chemical Processing

Edited by

KAMELIA BOODHOO and ADAM HARVEY

School of Chemical Engineering & Advanced Materials
Newcastle University, UK

This edition first published 2013 © 2013 John Wiley & Sons, Ltd.

Registered office

John Wiley & Sons Ltd., The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data applied for.

A catalogue record for this book is available from the British Library.

ISBN: 9780470972670

Set in 10/12 pt Times by Thomson Digital, Noida, India

Contents

	t of C face	Contributors	xiii xv	
1	Process Intensification: An Overview of Principles and Practice Kamelia Boodhoo and Adam Harvey			
	1.1	Introduction	1	
	1.2	Process Intensification: Definition and Concept	2	
	1.3	Fundamentals of Chemical Engineering Operations	3	
		1.3.1 Reaction Engineering	3	
		1.3.2 Mixing Principles	5	
		1.3.3 Transport Processes	8	
	1.4	Intensification Techniques	11	
		1.4.1 Enhanced Transport Processes	11	
		1.4.2 Integrating Process Steps	19	
		1.4.3 Moving from Batch to Continuous Processing	20	
	1.5	Merits of PI Technologies	22	
		1.5.1 Business	22	
		1.5.2 Process	23	
		1.5.3 Environment	23	
	1.6	Challenges to Implementation of PI	24	
	1.7	Conclusion	25	
		nenclature	26	
	Gree	k Letters	27	
	Refe	rences	27	
2		en Chemistry Principles	33	
		es Clark, Duncan Macquarrie, Mark Gronnow and Vitaly Budarin		
	2.1	Introduction	33	
		2.1.1 Sustainable Development and Green Chemistry	35	
	2.2	The Twelve Principles of Green Chemistry	35	
		2.2.1 Ideals of Green Chemistry	36	
	2.3	Metrics for Chemistry	37	
		2.3.1 Effective Mass Yield	38	
		2.3.2 Carbon Efficiency	38	
		2.3.3 Atom Economy	38	
		2.3.4 Reaction Mass Efficiency	39	
		2.3.5 Environmental (E) Factor	39	

vi Contents

		2.3.6	Comparison of Metrics	40
	2.4	Cataly	sis and Green Chemistry	41
		2.4.1	Case Study: Silica as a Catalyst for Amide Formation	43
		2.4.2	Case Study: Mesoporous Carbonaceous Material as a	
			Catalyst Support	45
	2.5	Renew	able Feedstocks and Biocatalysis	46
		2.5.1	Case Study: Wheat Straw Biorefinery	48
	2.6	An Ov	verview of Green Chemical Processing Technologies	50
		2.6.1	Alternative Reaction Solvents for Green Processing	50
		2.6.2	Alternative Energy Reactors for Green Chemistry	52
	2.7	Conclu	usion	55
	Refe	rences		55
3		ning D	isc Reactor for Green Processing and Synthesis	59
	3.1	Introd		59
	3.2		and Operating Features of SDRs	60
	3.2	3.2.1		63
		3.2.2	• •	64
	3.3		eteristics of SDRs	66
		3.3.1		66
		3.3.2		68
		3.3.3		71
		3.3.4	•	72
		3.3.5	SDR Applications	75
	3.4		Studies: SDR Application for Green Chemical Processing and	
		Synthe		76
		3.4.1	Cationic Polymerization using Heterogeneous Lewis Acid	
			Catalysts	76
		3.4.2	Solvent-free Photopolymerization Processing	78
		3.4.3	Heterogeneous Catalytic Organic Reaction in the SDR:	
			An Example of Application to the Pharmaceutical/Fine	
			Chemicals Industry	80
		3.4.4	Green Synthesis of Nanoparticles	83
	3.5	Hurdle	es to Industry Implementation	84
		3.5.1	Control, Monitoring and Modelling of SDR Processes	84
		3.5.2	Limited Process Throughputs	86
		3.5.3	Cost and Availability of Equipment	86
		3.5.4	Lack of Awareness of SDR Technology	86
	3.6	Conclu		86
		enclatu		87
		k Lettei	rs	87
		cripts		87
	Refe	rences		87

4	Mici	ro Proc	ess Technology and Novel Process Windows - Three	
	Inte	nsificati	ion Fields	91
	Svet	lana Bo	rukhova and Volker Hessel	
	4.1	Introdu	uction	91
	4.2	Transp	port Intensification	93
		4.2.1		93
		4.2.2	Mixing Principles	94
			Micromixers	96
		4.2.4	Micro Heat Exchangers	101
			Exothermic Reactions as Major Application Examples	106
	4.3		cal Intensification	108
		4.3.1	Fundamentals	108
		4.3.2	New Chemical Transformations	108
		4.3.3	High Temperature	118
		4.3.4	High Pressure	122
		4.3.5	Alternative Reaction Media	124
	4.4	Proces	s Design Intensification	128
		4.4.1	Fundamentals	128
		4.4.2	Large-scale Manufacture of Adipic Acid – A Full Process	
			Design Vision in Flow	130
		4.4.3	Process Integration – From Single Operation towards	
			Full Process Design	133
		4.4.4	Process Simplification	136
	4.5	Indust	rial Microreactor Process Development	138
		4.5.1	Industrial Demonstration of Specialty/Pharma Chemistry	
			Flow Processing	138
		4.5.2	Industrial Demonstration of Fine Chemistry Flow Processing	139
		4.5.3	Industrial Demonstration of Bulk Chemistry Flow Processing	139
	4.6	Conclu	asion	140
	Ackı	nowledg	gement	141
	Refe	rences		141
5			mistry in Oscillatory Baffled Reactors	157
	Adar	n Harv	ey	
	5.1	Introdu		157
			Continuous versus Batch Operation	157
		5.1.2	The Oscillatory Baffled Reactor's 'Niche'	157
	5.2	Case S	Studies: OBR Green Chemistry	164
		5.2.1	A Saponification Reaction	164
		5.2.2	A Three-phase Reaction with Photoactivation for	
			Oxidation of Waste Water Contaminants	166
		5.2.3	'Mesoscale' OBRs	168
	5.3	Conclu	asion	170
	Refe	rences		172

6		ph Wood	175		
	6.1	Introduction	175		
	6.2	Design of Monolith Reactors	176		
		6.2.1 Monolith and Washcoat Design	176		
		6.2.2 Reactor and Distributor Design	178		
	6.3	Hydrodynamics of Monolith Reactors	179		
		6.3.1 Flow Regimes	179		
		6.3.2 Mixing and Mass Transfer	180		
	6.4	Advantages of Monolith Reactors	182		
		6.4.1 Scale-out, Not Scale-up?	182		
		6.4.2 PI for Green Chemistry	183		
	6.5	Applications in Green Chemistry	185		
		6.5.1 Chemical and Fine Chemical Industry	185		
		6.5.2 Cleaner Production of Fuels	187		
		6.5.3 Removal of Toxic Emissions	188		
	6.6	Conclusion	192		
	Ack	nowledgement	193		
	Non	nenclature	193		
	Gree	k Letters	193		
	Subs	cripts and Superscripts	193		
		rences	193		
7	Process Intensification and Green Processing Using Cavitational				
•					
•		ctors	199		
,		ctors yanand Moholkar, Parag Gogate and Aniruddha Pandit	199		
•		yanand Moholkar, Parag Gogate and Aniruddha Pandit	199 199		
•	Vija	yanand Moholkar, Parag Gogate and Aniruddha Pandit Introduction			
,	<i>Vija</i> . 7.1	yanand Moholkar, Parag Gogate and Aniruddha Pandit Introduction Mechanism of Cavitation-based PI of Chemical Processing Reactor Configurations	199		
	Vija: 7.1 7.2	yanand Moholkar, Parag Gogate and Aniruddha Pandit Introduction Mechanism of Cavitation-based PI of Chemical Processing	199 200		
	Vija: 7.1 7.2	yanand Moholkar, Parag Gogate and Aniruddha Pandit Introduction Mechanism of Cavitation-based PI of Chemical Processing Reactor Configurations	199 200 201		
	Vija: 7.1 7.2	Introduction Mechanism of Cavitation-based PI of Chemical Processing Reactor Configurations 7.3.1 Sonochemical Reactors 7.3.2 Hydrodynamic Cavitation Reactors Mathematical Modelling	199 200 201 201		
•	Vija; 7.1 7.2 7.3	Introduction Mechanism of Cavitation-based PI of Chemical Processing Reactor Configurations 7.3.1 Sonochemical Reactors 7.3.2 Hydrodynamic Cavitation Reactors	199 200 201 201 205		
•	Vija; 7.1 7.2 7.3	Introduction Mechanism of Cavitation-based PI of Chemical Processing Reactor Configurations 7.3.1 Sonochemical Reactors 7.3.2 Hydrodynamic Cavitation Reactors Mathematical Modelling	199 200 201 201 205 207		
•	Vija; 7.1 7.2 7.3	Introduction Mechanism of Cavitation-based PI of Chemical Processing Reactor Configurations 7.3.1 Sonochemical Reactors 7.3.2 Hydrodynamic Cavitation Reactors Mathematical Modelling Optimization of Operating Parameters in Cavitational Reactors	199 200 201 201 205 207 209		
	Vija; 7.1 7.2 7.3	Introduction Mechanism of Cavitation-based PI of Chemical Processing Reactor Configurations 7.3.1 Sonochemical Reactors 7.3.2 Hydrodynamic Cavitation Reactors Mathematical Modelling Optimization of Operating Parameters in Cavitational Reactors 7.5.1 Sonochemical Reactors	199 200 201 201 205 207 209 209		
	Vija; 7.1 7.2 7.3 7.4 7.5	Introduction Mechanism of Cavitation-based PI of Chemical Processing Reactor Configurations 7.3.1 Sonochemical Reactors 7.3.2 Hydrodynamic Cavitation Reactors Mathematical Modelling Optimization of Operating Parameters in Cavitational Reactors 7.5.1 Sonochemical Reactors 7.5.2 Hydrodynamic Cavitation Reactors	199 200 201 201 205 207 209 209 210		
	Vija; 7.1 7.2 7.3 7.4 7.5	Introduction Mechanism of Cavitation-based PI of Chemical Processing Reactor Configurations 7.3.1 Sonochemical Reactors 7.3.2 Hydrodynamic Cavitation Reactors Mathematical Modelling Optimization of Operating Parameters in Cavitational Reactors 7.5.1 Sonochemical Reactors 7.5.2 Hydrodynamic Cavitation Reactors Intensification of Cavitational Activity	199 200 201 201 205 207 209 209 210 211		
	Vija; 7.1 7.2 7.3 7.4 7.5	Introduction Mechanism of Cavitation-based PI of Chemical Processing Reactor Configurations 7.3.1 Sonochemical Reactors 7.3.2 Hydrodynamic Cavitation Reactors Mathematical Modelling Optimization of Operating Parameters in Cavitational Reactors 7.5.1 Sonochemical Reactors 7.5.2 Hydrodynamic Cavitation Reactors Intensification of Cavitational Activity 7.6.1 Use of PI Parameters 7.6.2 Use of a Combination of Cavitation and Other Processes	199 200 201 201 205 207 209 210 211 212		
	Vija. 7.1 7.2 7.3 7.4 7.5 7.6	Introduction Mechanism of Cavitation-based PI of Chemical Processing Reactor Configurations 7.3.1 Sonochemical Reactors 7.3.2 Hydrodynamic Cavitation Reactors Mathematical Modelling Optimization of Operating Parameters in Cavitational Reactors 7.5.1 Sonochemical Reactors 7.5.2 Hydrodynamic Cavitation Reactors Intensification of Cavitational Activity 7.6.1 Use of PI Parameters	199 200 201 201 205 207 209 210 211 212 213		
	Vija. 7.1 7.2 7.3 7.4 7.5 7.6	Introduction Mechanism of Cavitation-based PI of Chemical Processing Reactor Configurations 7.3.1 Sonochemical Reactors 7.3.2 Hydrodynamic Cavitation Reactors Mathematical Modelling Optimization of Operating Parameters in Cavitational Reactors 7.5.1 Sonochemical Reactors 7.5.2 Hydrodynamic Cavitation Reactors Intensification of Cavitational Activity 7.6.1 Use of PI Parameters 7.6.2 Use of a Combination of Cavitation and Other Processes Case Studies: Intensification of Chemical Synthesis using Cavitation	199 200 201 201 205 207 209 210 211 212 213 214		
	Vija. 7.1 7.2 7.3 7.4 7.5 7.6	Introduction Mechanism of Cavitation-based PI of Chemical Processing Reactor Configurations 7.3.1 Sonochemical Reactors 7.3.2 Hydrodynamic Cavitation Reactors Mathematical Modelling Optimization of Operating Parameters in Cavitational Reactors 7.5.1 Sonochemical Reactors 7.5.2 Hydrodynamic Cavitation Reactors Intensification of Cavitational Activity 7.6.1 Use of PI Parameters 7.6.2 Use of a Combination of Cavitation and Other Processes Case Studies: Intensification of Vegetable Oils Using Alcohol	199 200 201 201 205 207 209 210 211 212 213 214		
	Vija. 7.1 7.2 7.3 7.4 7.5 7.6	Introduction Mechanism of Cavitation-based PI of Chemical Processing Reactor Configurations 7.3.1 Sonochemical Reactors 7.3.2 Hydrodynamic Cavitation Reactors Mathematical Modelling Optimization of Operating Parameters in Cavitational Reactors 7.5.1 Sonochemical Reactors 7.5.2 Hydrodynamic Cavitation Reactors Intensification of Cavitational Activity 7.6.1 Use of PI Parameters 7.6.2 Use of a Combination of Cavitation and Other Processes Case Studies: Intensification of Vegetable Oils Using Alcohol 7.7.1 Transesterification of Sulfoxides from Sulfides Using	199 200 201 201 205 207 209 210 211 212 213 214 214		
	Vija, 7.1 7.2 7.3 7.4 7.5 7.6 7.7	Introduction Mechanism of Cavitation-based PI of Chemical Processing Reactor Configurations 7.3.1 Sonochemical Reactors 7.3.2 Hydrodynamic Cavitation Reactors Mathematical Modelling Optimization of Operating Parameters in Cavitational Reactors 7.5.1 Sonochemical Reactors 7.5.2 Hydrodynamic Cavitation Reactors Intensification of Cavitational Activity 7.6.1 Use of PI Parameters 7.6.2 Use of a Combination of Cavitation and Other Processes Case Studies: Intensification of Chemical Synthesis using Cavitation 7.7.1 Transesterification of Vegetable Oils Using Alcohol 7.7.2 Selective Synthesis of Sulfoxides from Sulfides Using Sonochemical Reactors	199 200 201 201 205 207 209 210 211 212 213 214 214		

			Contents	ix
		Conclusion		222 222
8	Prod	brane Bioreactors for Green Processing in a Sustainable uction System linda Mazzei, Emma Piacentini, Enrico Drioli and Lidietta Giorno		227
	8.1	Introduction		227
	8.2	Membrane Bioreactors		228
	o. <u>-</u>	8.2.1 Membrane Bioreactors with Biocatalyst Recycled in the		
		Retentate Stream		228
		8.2.2 Membrane Bioreactors with Biocatalyst Segregated in the		220
	8.3	Membrane Module Space Biocatalytic Membrane Reactors		230 230
	0.5	8.3.1 Entrapment		230
		8.3.2 Gelification		231
		8.3.3 Chemical Attachment		231
	8.4	Case Studies: Membrane Bioreactors		232
		8.4.1 Biofuel Production Using Enzymatic Transesterification		233
		8.4.2 Waste Water Treatment and Reuse		237
		8.4.3 Waste Valorization to Produce High-added-value		
		Compounds		239
	8.5	Green Processing Impact of Membrane Bioreactors		245
	8.6	Conclusion		247
		ences		247
9		tive Distillation Technology		251
	Anto	a A. Kiss		
	9.1	Introduction		251
	9.2	Principles of RD		252
	9.3	Design, Control and Applications		253
	9.4	Modelling RD		256
	9.5	Feasibility and Technical Evaluation		257
		9.5.1 Feasibility Evaluation 9.5.2 Technical Evaluation		257260
	9.6	Case Studies: RD		261
	7.0	9.6.1 Biodiesel Production by Heat-Integrated RD		261
		9.6.2 Fatty Esters Synthesis by Dual RD		267
	9.7	Green Processing Impact of RD		270
	9.8	Conclusion		271
	Refe	ences		271
10	Read	tive Extraction Technology		275
		T. Lee and Steven Lim		
	10.1	Introduction		275
		10.1.1 Definition and Description		275
		10.1.2 Literature Review		276

x Contents

	10.2		tudies: Reactive Extraction Technology	277
		10.2.1	Reactive Extraction for the Synthesis of FAME from Jatropha curcas L. Seeds	277
		10.2.2	Supercritical Reactive Extraction for FAME Synthesis from	211
		10.2.2	Jatropha curcas L. Seeds	281
	10.3	Impact	on Green Processing and Process Intensification	284
		Conclu		286
		owledg		286
		rences	Cincit	286
	KCIC	iclices		200
11			osorption Technology	289
	Anto	n A. Ki.	SS	
	11.1	Introdu	action	289
	11.2	Theory	and Models	290
			Equilibrium Stage Model	290
		11.2.2	HTU/NTU Concepts and Enhancement Factors	291
		11.2.3	Rate-based Stage Model	291
			nent, Operation and Control	291
	11.4		ations in Gas Purification	293
			Carbon Dioxide Capture	293
			Sour Gas Treatment	296
			Removal of Nitrogen Oxides	296
			Desulfurization	297
	11.5		ations to the Production of Chemicals	299
			Sulfuric Acid Production	299
			Nitric Acid Production	299
			Biodiesel and Fatty Esters Synthesis	302
			Processing Impact of RA	307
			nges and Future Prospects	307
	Refe	rences		307
12	Men	ıbrane	Separations for Green Chemistry	311
			lazzei, Emma Piacentini, Enrico Drioli and Lidietta Giorno	
	12.1	Introdu	action	311
			ranes and Membrane Processes	312
			tudies: Membrane Operations in Green Processes	318
			Membrane Technology in Metal Ion Removal from	
			Waste Water	318
		12.3.2	Membrane Operations in Acid Separation from Waste Water	330
			Membrane Operation for Hydrocarbon Separation from Waste	
		,	Water	333
		12.3.4	Membrane Operations for the Production of Optically Pure	
			Enantiomers	336
	12.4	Integra	ted Membrane Processes	342
			Integrated Membrane Processes for Water Desalination	342

	Contents	xi
	12.4.2 Integrated Membrane Processes for the Fruit Juice Industry	343
	12.5 Green Processing Impact of Membrane Processes	344
	12.6 Conclusion	347
	References	347
13	Process Intensification in a Business Context: General Considerations <i>Dag Eimer and Nils Eldrup</i>	355
	13.1 Introduction	355
	13.2 The Industrial Setting	356
	13.3 Process Case Study	358
	13.3.1 Essential Lessons	364
	13.4 Business Risk and Ideas	366
	13.5 Conclusion	367
	References	367
14	Process Economics and Environmental Impacts of Process Intensification	
	in the Petrochemicals, Fine Chemicals and Pharmaceuticals Industries Jan Harmsen	369
	14.1 Introduction	369
	14.2 Petrochemicals Industry	370
	14.2.1 Drivers for Innovation	370
	14.2.2 Conventional Technologies Used	372
	14.2.3 Commercially Applied PI Technologies	372
	14.3 Fine Chemicals and Pharmaceuticals Industries	376
	14.3.1 Drivers for Innovation	376
	14.3.2 Conventional Technologies Used	377
	14.3.3 Commercially Applied PI Technologies	377
	References	377
15	Opportunities for Energy Saving from Intensified Process	
	Technologies in the Chemical and Processing Industries Dena Ghiasy and Kamelia Boodhoo	379
	15.1 Introduction	379
	15.2 Energy-Intensive Processes in UK Chemical and Processing Industries	380
	15.2.1 What Can PI Offer?	380
	15.3 Case Study: Assessment of the Energy Saving Potential of SDR	
	Technology	383

384

384

386

389

389

390

390

390

15.3.1 Basis for Comparison

15.3.4 Energy Savings

15.4 Conclusion

Nomenclature

Greek Letters

Subscripts

15.3.2 Batch Process Energy Usage

15.3.3 Batch/SDR Combined Energy Usage

xii Contents

	Appendix: Physical Properties of Styrene, Toluene and	201
	Cooling/Heating Fluids	391
	References	391
16	Implementation of Process Intensification in Industry <i>Jan Harmsen</i>	393
	16.1 Introduction	393
	16.2 Practical Considerations for Commercial Implementation	393
	16.2.1 Reactive Distillation	394
	16.2.2 Dividing Wall Column Distillation	396
	16.2.3 Reverse Flow Reactors	396
	16.2.4 Microreactors	397
	16.2.5 Rotating Packed Bed Reactors	397
	16.3 Scope for Implementation in Various Process Industries	397
	16.3.1 Oil Refining and Bulk Chemicals	397
	16.3.2 Fine Chemicals and Pharmaceuticals Industries	398
	16.3.3 Biomass Conversion	399
	16.4 Future Prospects	399
	References	399
Ind	lex	401

List of Contributors

Kamelia Boodhoo School of Chemical Engineering & Advanced Materials, Newcastle University, UK

Svetlana Borukhova Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology, Eindhoven University of Technology, Eindhoven, The Netherlands

Vitaly Budarin Green Chemistry Centre of Excellence, University of York, York, UK

James Clark Green Chemistry Centre of Excellence, University of York, York, UK

Enrico Drioli Institute on Membrane Technology, CNR-ITM, University of Calabria, Rende, Calabria, Italy

Dag Eimer D-IDE AS, Teknologisenteret, Porsgrunn, Norway

Niels Eldrup Sivilingeniør Eldrup AS, Teknologisenteret, Porsgrunn, Norway

Dena Ghiasy School of Chemical Engineering & Advanced Materials, Newcastle University, UK

Lidietta Giorno Institute on Membrane Technology, CNR-ITM, University of Calabria, Rende, Calabria, Italy

Parag Gogate Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, India

Mark Gronnow Green Chemistry Centre of Excellence, University of York, York, UK

Jan Harmsen Harmsen Consultancy BV, Nieuwerkerk aan den Ijssel, The Netherlands

Adam Harvey School of Chemical Engineering & Advanced Materials, Newcastle University, UK

Volker Hessel Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology, Eindhoven University of Technology, Eindhoven, The Netherlands

Anton A. Kiss Arnhem, The Netherlands

Keat T. Lee School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Pulau Pinang, Malaysia

Steven Lim School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Pulau Pinang, Malaysia

xiv List of Contributors

Duncan Macquarrie Green Chemistry Centre of Excellence, University of York, York, UK

Rosalinda Mazzei Institute on Membrane Technology, CNR-ITM, University of Calabria, Rende, Calabria, Italy

Vijayanand Moholkar Chemical Engineering Department, Indian Institute of Technology, Guwahati, Assam, India

Aniruddha Pandit Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, India

Emma Piacentini Institute on Membrane Technology, CNR-ITM, University of Calabria, Rende, Calabria, Italy

Joseph Wood School of Chemical Engineering, University of Birmingham, Birmingham, UK

Preface

Of late, a tremendous effort has been made to implement more sustainable and environmentally friendly processes in the chemical industry. Increased legislation on emissions and waste disposal and the need for businesses to remain highly competitive and to demonstrate their social responsibility are just some of the reasons for this drive towards greener processing. The successful implementation of greener chemical processes relies not only on the development of more efficient catalysts for synthetic chemistry but also, and as importantly, on the development of reactor and separation technologies that can deliver enhanced processing performance in a safe, cost-effective and energy-efficient manner. In some sectors, particularly those related to pharmaceuticals and fine chemicals processing, separations is often the stage at which the most waste is generated, through large amounts of solvents for purification, and this must therefore be addressed at the outset when novel green reactions are explored. The ideal process is one in which byproducts are reduced or eliminated altogether at the reaction stage, rather than removed *after* they are formed – a concept referred to as *waste minimization at source*.

Process intensification (PI) has emerged as a promising field that can effectively tackle these process challenges while offering at the same time the potential for 'clean' or 'green' processing in order to diminish the environmental impact presented by the chemical industry. One of the ways this is made possible is by minimizing the scale of reactors operating ideally in continuous mode so that more rapid heat/mass-transfer/mixing rates and plug flow behaviour can be achieved for high selectivity in optimized reaction processes.

This book covers the latest developments in a number of intensified technologies, with particular emphasis on their application to green chemical processes. The focus is on intensified *reactor* technologies, such as spinning disc reactors, microreactors, monolith reactors, oscillatory flow reactors and so on, and a number of combined or *hybrid* reactor/separator systems, the most well known and widely used in industry being reactive distillation (RD). PI is about not only the implementation of novel designs of reaction/separation units but also the use of *novel processing methods* such as alternative forms of energy input to promote reactions. A notable example here is ultrasonic energy, applications for which are also highlighted in this book. Each chapter presents relevant case studies examining the green processing aspect of these technologies. Towards the end of the book, we have included four chapters to emphasize the industry relevance of PI, with particular focus on the general business context within which intensification technology development and application takes place; on process economics and environmental impact; on the energy-saving potential of intensification technologies; and on practical considerations for industrial implementation of PI.

xvi Preface

The book is intended to be a useful resource for practising engineers and chemists alike who are interested in applying intensified reactor and/or separator systems in a range of industries, such as petrochemicals, fine/specialty chemicals, pharmaceuticals and so on. Not only will it provide a basic knowledge of chemical engineering principles and PI for chemists and engineers who may be unfamiliar with these concepts, but it will be a valuable tool for chemical engineers who wish to fully apply their background in reaction and separation engineering to the design and implementation of green processing technologies based on PI principles. Students on undergraduate and post-graduate degree programmes which cover topics on advanced reactor designs, PI, clean technology and green chemistry will also have at their disposal a vast array of material to help them gain a better understanding of the practical applications of these different areas.

We would like to thank all contributors to this book for their commitment in producing their high-quality manuscripts. Our heartfelt gratitude goes to Sarah Hall, Sarah Tilley and Rebecca Ralf at Wiley-Blackwell, whose support and encouragement throughout this project made it all possible.

Kamelia Boodhoo Adam Harvey August 2012

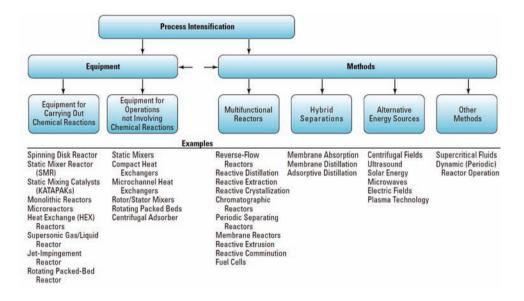
1

Process Intensification: An Overview of Principles and Practice

Kamelia Boodhoo and Adam Harvey

School of Chemical Engineering & Advanced Materials, Newcastle University, UK

1.1 Introduction


The beginning of the 21st century has been markedly characterized by increased environmental awareness and pressure from legislators to curb emissions and improve energy efficiency by adopting 'greener technologies'. In this context, the need for the chemical industry to develop processes which are more sustainable or eco-efficient has never been so vital. The successful delivery of green, sustainable chemical technologies at industrial scale will inevitably require the development of innovative processing and engineering technologies that can transform industrial processes in a fundamental and radical fashion. In bioprocessing, for example, genetic engineering of microorganisms will obviously play a major part in the efficient use of biomass, but development of novel reactor and separation technologies giving high reactor productivity and ultimately high-purity products will be equally important for commercial success. Process intensification (PI) can provide such sought-after innovation of equipment design and processing to enhance process efficiency.

1.2 Process Intensification: Definition and Concept

PI aims to make dramatic reductions in plant volume, ideally between 100- and 1000-fold, by replacing the traditional unit operations with novel, usually very compact designs, often by combining two or more traditional operations in one hybrid unit. The PI concept was first established at Imperial Chemical Industries (ICI) during the late 1970s, when the primary goal was to reduce the capital cost of a production system. Although cost reduction was the original target, it quickly became apparent that there were other important benefits to be gained from PI, particularly in respect of improved intrinsic safety and reduced environmental impact and energy consumption, as will be discussed later in this chapter.

Over the last 2 decades, the definition of PI has thus evolved from the simplistic statement of 'the physical miniaturisation of process equipment while retaining throughput and performance' [1] to the all-encompassing definition 'the development of innovative apparatus and techniques that offer drastic improvements in chemical manufacturing and processing, substantially decreasing equipment volume, energy consumption, or waste formation, and ultimately leading to cheaper, safer, sustainable technologies' [2]. Several other definitions with slight variations on the generic theme of innovative technologies for greater efficiency have since emerged [3].

The reduction in scale implied by intensification has many desirable consequences for chemical engineering operations. First, the lower mass- and heat-transfer resistances enabled by the reduced path lengths of the diffusion/conduction interfaces, coupled with more intense fluid dynamics in active enhancement equipment, allow reactions to proceed at their inherent rates. By the same token, the more rapid mixing environment afforded by the low reaction volumes should enable conversion and selectivity to be

Figure 1.1 Classification of PI equipment and methods. Reproduced from [ref 2] with permission of American Institute of Chemical Engineers copyright (2000).

maximized. Residence times of the order of minutes and seconds may be substituted for the hour-scale processing times associated with large conventional batch operations, with beneficial consequences for energy consumption and process safety.

PI covers a wide range of processing equipment types and methodologies, as aptly illustrated in Figure 1.1 [2]. Many of the equipment types classed as 'intensified technologies' have long been implemented in the chemical industry, such as compact heat exchangers, structured packed columns and static mixers. More recent developments include the spinning disc reactor (SDR), oscillatory baffled reactor, loop reactor, spinning tube-in-tube reactor, heat-exchange reactor, microchannel reactor and so on. Lately, it has become increasingly important for the chemical processing industries not only to remain cost competitive but to do so in an environmentally friendly or 'green' manner. It is fitting, therefore, that many of the processes based on the PI philosophy also enable *clean technology* to be practised. For instance, high selectivity operations in intensified reactors will on their own reduce or ideally eliminate the formation of unwanted byproducts. Combining such intensified reactors with renewable energy sources such as solar energy would give even greater impetus to achieving these green processing targets.

1.3 Fundamentals of Chemical Engineering Operations

1.3.1 Reaction Engineering

Reactor engineering starts with the simple mass balance:

$$In + Made = Out + Accumulated (1.1)$$

Where 'Made' is the rate at which a species is created or lost by reaction. The rate of this reaction in a well-mixed system is governed by the reaction kinetics, which depend only upon the concentrations of species and temperature. However, not all systems are well mixed, particularly at larger scales, and mixing can be rate-determining. The different degrees and types of mixing are introduced in Section 1.3.2. The 'Accumulated' term will be zero for continuous reactors running in steady state, but will be of interest during start-up or shut-down. Determining the rate at which species are created or destroyed in a reactor requires knowledge of mixing, reaction kinetics and heat transfer. Once these are known they can be input into a reactor model. An important part of this model for continuous reactors (as most intensified reactors are) is the residence time distribution (RTD), which is the probability distribution for the length of time elements of fluid will spend in a given reactor design. It can be envisaged as the response to the input of an infinitely narrow pulse of a tracer. All real reactors fall between two extreme cases: the plug flow reactor (PFR) and the continuously stirred tank reactor (CSTR).

1.3.1.1 Plug Flow Reactor

'Plug flow' refers to fluid flowing in discrete 'plugs'; that is, without interaction between the elements. The RTD of a perfect PFR is infinitely thin. Any input tracer pulse to the reactor will remain unchanged, as shown in Figure 1.2.

Real PFRs have symmetrical Gaussian RTDs centred on the mean residence time, the breadth of the RTD decreasing with increasing proximity to ideal plug flow. In practice, this

Figure 1.2 A perfect PFR, showing the response to a perfect input pulse.

is usually achieved by ensuring a high level of turbulence in the flow, as this produces a flat velocity profile. The most conventional form of PFR is a tubular reactor in very turbulent flow. However, there are many variations on this basic form, and other ways of achieving plug flow. Chapters 3 and 5 cover examples of unconventional, intensified PFRs.

1.3.1.2 Continuously Stirred Tank Reactor

The CSTR is, at its simplest, a batch-stirred tank to which an inflow and outflow have been added (of equal flow rate, when at steady state). To determine the RTD of such a reactor, we must picture a pulse of fluid entering it. A 'perfect' CSTR is perfectly mixed, meaning that fluid is uniformly dispersed the instant it enters the reactor. The outflow is at the same concentration of tracer as the bulk of the reactor. Tracer will initially flow out at this concentration, while being replaced with fluid containing no tracer; that is, the tank gradually becomes diluted, and the concentration in the outflow decreases. This leads to a monotonic decrease in concentration, which can be shown to follow an exponential decay (Figure 1.3).

1.3.1.3 The Plug-Flow Advantage

A CSTR's RTD is generally not desirable, as, for a given desired mean average residence time:

- Much of the material in the reactor will spend too long in the reactor (due to the long tail in the RTD) and will consequently be 'overcooked'. The main problem with this is that it allows competing reactions to become more significant.
- Much of the material will be in the reactor for less than the desired residence time. It will
 therefore not reach the desired level of conversion.

The CSTR can thus lead to increased by-product formation and unsatisfactory conversion. In contrast, plug flow means that each element of fluid experiences the same processing history: each spends exactly the same amount of time in the reactor as every other, and is subject to exactly the same sequence of conditions. This reduces by-product formation and

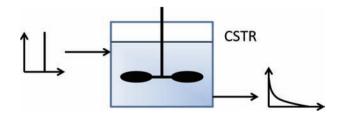


Figure 1.3 RTD for an ideal CSTR.

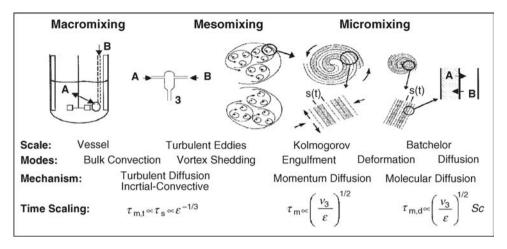
ensures that the desired conversion is achieved. Furthermore, in practice a PFR will have a smaller volume than an equivalent CSTR, for the following reasons:

- The reactor will be the correct size. CSTRs are usually oversized to compensate for the poor RTD.
- No headspace is required, as is the case in any tank reactor.
- For most reaction kinetics (the most notable exception perhaps being autocatalytic reactions), simply following the design equations will lead to a PFR design that is smaller than a CSTR. For an explanation of this, the reader is advised to consult Sections 5.2 and 5.3 in reference [4].
- Stirred tanks do not scale up in a predictable manner. Uniform mixing becomes difficult to achieve, which can reduce the rate of reaction, necessitating a larger reactor. This is less of an issue with tubular reactors.

For these reasons, PFRs are often preferred in principle. In practice they are difficult to use at long residence times (above a few minutes) and multiphase reactions can be difficult.

1.3.2 Mixing Principles

Mixing is the process of bringing separated fluid elements into close proximity, in a system which, in the simplest case, aims to reduce non-uniformity in a particular property, such as concentration, viscosity or temperature. Most mixing processes occur alongside heatand/or mass-transfer operations and chemical reactions.


1.3.2.1 Influence of Mixing on Reactions

Mixing is a particularly important process in reactor design, especially in continuous-flow reactors. Designing the mixing process to yield a much shorter mixing time in comparison to the mean residence time of the reactants in the reaction vessel is of paramount importance for good operation of the reactor. If mixing is slow, large and varying concentration gradients of reactant species will exist in different parts of the reactor, resulting in wide variations in product concentrations and properties, which may be deemed off-spec in many applications. In fact, the rate of mixing often determines the rate of these processes and may have a significant impact on the product distribution obtained, especially if many competing reaction steps are involved.

1.3.2.2 Turbulent Mixing: Mixing Scales, Mechanisms and Mixing Times

In a single-phase turbulent flow system, there are three distinct mixing scales that influence a chemical process: macromixing, mesomixing and micromixing [5,6]. These are defined on the basis of their characteristic length scale, as depicted in Figure 1.4, and are directly correlated with the turbulent energy dissipation rate, ε .

The intensity of mixing at each of these scales is significantly influenced by the mechanical energy input into the system by the mixing device. It is generally assumed that higher energy input translates into a higher energy dissipation rate for better mixing – but this is not always the case, as energy may be wasted, for example, in vortex formation at a higher agitation rate in an unbaffled vessel. The energy input causes the fluid to undergo motion across the cascade of length scales described in this section, so that any

Figure 1.4 Turbulent mixing mechanisms across various length scales. Reproduced from [ref 7] by permission of John Wiley & Sons. © 2003.

concentration inhomogeneities are gradually reduced and eliminated. The kinetic energy thus imparted to the fluid is ultimately dissipated as internal energy, which occurs at the smallest length scales of turbulence; that is, at the Kolgomorov scale.

Various mixers/reactors have been characterized in terms of their energy dissipation rates, as shown in Table 1.1. This illustrates the potential capability of intensified systems such as static mixers, rotor-stator mixers and the SDR, among others, to provide a higher level of mixing intensity than the conventional stirred tank reactor. It is important to remember, however, that higher energy input will be a penalty incurred in terms of energy consumption, and the benefits from the mixing process under these conditions have to demonstrate significant process improvement.

Macromixing. Macromixing involves mixing on the macroscopic scale, which refers to the scale of the vessel or reactor. The process is often referred to as 'distributive mixing' [6,14], which is achieved by bulk motion or convective transport of the liquid at the macroscopic scale, resulting in uniform spatial distribution of fluid elements within the

	=	
Reactor/mixer type	Energy dissipation rate (W/kg)	References
Stirred tank reactor	0.1–100	[8,9]
Static mixers	1-1000	[9,10]
Impinging jet reactor	20-6800	[11]
Rotor-stator spinning disc reactor (27 cm disc diameter, 240–2000 rpm)	≤6000	[12]
Thin-film spinning disc reactor (10 cm disc diameter, range of disc speeds 200–2400 rpm)	≤2000	[13]

Table 1.1 Comparison of energy dissipation rates in a range of mixers/reactors.

reactor volume. In a continuous flow reactor, the macromixing process directly influences the RTD of a feed stream introduced into the contents of the vessel.

The macromixing time in a mechanically stirred, baffled tank, τ_{mac} , is a function of the mean circulation time, τ_c , in the vessel. In a vessel configured for optimized mixing, $\tau_{mac} = 3\tau_c$, while in a non-optimized system, $\tau_{mac} = 5\tau_c$ [6].

The mean circulation time, τ_c , is generally expressed in terms of the impeller pumping capacity, Q_c [14]:

$$\tau_c = \frac{V}{Q_c} \tag{1.2}$$

or

$$\tau_c = \frac{V}{C_D N D_i^3} \tag{1.3}$$

where C_D , the discharge coefficient of the impeller, is a constant, which typically varies between 0.7 and 1.0, depending upon the impeller used [14].

Mesomixing. Mesomixing refers to coarse-scale, dispersive mixing via turbulent eddies. It is typically characterized by two different mechanisms [5,15]: (1) turbulent dispersion of a fresh feed introduced to a vessel which mixes with its local surroundings; and (2) inertial-convective break-up of large eddies that are larger than the Kolgomorov length scale.

The characteristic timescale associated with turbulent dispersion, τ_D , can be defined by either equation 1.4 or equation 1.5, depending on the radius of the feed pipe, r_{pipe} , with respect to the characteristic length scale for dispersion, L_D [5,15]:

$$\tau_{\rm D} = \frac{Q_{\rm f}}{u D_{\rm turb}} \quad (\text{if } r_{\rm pipe} << L_{\rm D})$$
 (1.4)

$$\tau_{\rm D} = \frac{r_{\rm pipe}^2}{D_{\rm turb}} \quad (\text{if } r_{\rm pipe} \approx L_{\rm D} \text{ or } r_{\rm pipe} > L_{\rm D})$$
(1.5)

where $D_{\text{turb}} = 0.12 \varepsilon^{1/3} L_{\text{D}}^{4/3}$ [5,16].

Baldyga et al. [15] have expressed the inertial-convective mesomixing timescale, τ_s , as:

$$\tau_s = A \left(\frac{L_C^2}{\varepsilon}\right)^{1/3} \tag{1.6}$$

where A is a constant having a value between 1 and 2, depending on the turbulence level in the system.

Micromixing. Micromixing represents the final stage of the turbulent mixing process, which proceeds at much finer length scales than macro- and mesomixing, referred to as the

Kolgomorov or Batchelor length scale. At the microscale level, the Kolgomorov length scale, $\eta_{\rm K}$ (representing smallest scales of *turbulence* before viscosity effects dominate), and Batchelor length scale, $\eta_{\rm B}$ (representing smallest scales of fluctuations prior to *molecular diffusion*), are defined as [17–19]:

$$\eta_{\rm K} = \left(\frac{v^2}{\varepsilon}\right)^{1/4} \tag{1.7}$$

$$\eta_{\rm B} = \left(\frac{vD_{\rm I}^2}{\varepsilon}\right)^{1/4} = \frac{\eta_{\rm K}}{\sqrt{Sc}} \tag{1.8}$$

where the Schmidt number, $Sc\left(=\frac{v}{D_1}\right)$, for liquids is typically of the order of 10^3 , so that

 $\eta_B << \eta_K$. For aqueous solutions in turbulent regimes, η_K is of the order of 10–30 μ m.

The physical phenomena of the micromixing process include engulfment, deformation by shear and diffusion of the fine-scale fluid elements. The relevant mixing times associated with these processes are [5]:

Engulfment :
$$\tau_e = 17.2 \left(\frac{v}{\varepsilon}\right)^{0.5}$$
 (1.9)

Shear deformation and diffusion :
$$\tau_{Ds} \approx 2 \left(\frac{v}{\varepsilon}\right)^{0.5} arc \sinh(0.05 \, Sc)$$
 (1.10)

More often than not, $\tau_{D_S} \ll \tau_e$, resulting in the overall micromixing process being dictated by the progression of the engulfment phenomenon taking place at the Kolgomorov length scale.

Although the actual molecular mass transfer process before the reaction is ultimately achieved by molecular diffusion, enhancing the rates of macro- and mesomixing through turbulent hydrodynamic conditions enables faster attainment of the fluid state, where micromixing and therefore molecular diffusion prevail.

1.3.3 Transport Processes

Understanding transport processes is at the heart of PI, as the subject can be defined as a search for new ways of enhancing or achieving transport of mass, heat or momentum.

Transport processes – heat, mass and momentum transfer – are generally governed by equations of the same form. They are all flows in response to a 'driving force' – a temperature difference, a concentration difference and a pressure difference, respectively – opposed by their respective resistances. Brief overviews of the intensification of mass, heat and momentum transfer follow.

1.3.3.1 Heat Transfer

Heat transfer – the transport of energy from one region to another, driven by a temperature difference between the two – is a key consideration in the design of all unit operations. Unit operations have defined operating temperatures, so the heat flows in and out must be understood in order to maintain the temperature within a desired range. Reactors, for

instance, must be supplied with heat or must have it removed at a rate that depends upon the exo/endothermicity of the reaction, the heat-transfer characteristics of the reactor and the heat flows in and out, in order to ensure that the reaction takes place at the correct temperature and therefore the correct rate.

Furthermore, the streams into and out of unit operations must be maintained at the correct temperatures. This is usually achieved using heat exchangers: devices for transferring heat between fluid streams without the streams mixing. It was always been a given in heat exchanger design that they must operate in turbulent flow wherever possible, as turbulent flow results in considerably higher heat-transfer coefficients than laminar. Hence, heat exchangers were not designed with narrow channels, as the achievement of turbulence depends upon exceeding a certain Reynolds number, which is directly proportional to the diameter of the channel:

$$Re = \rho vD/\mu \tag{1.11}$$

Reassessing such assumptions about heat and mass transfer is at the heart of PI, and has led to the development of 'compact heat exchangers', which have extremely narrow channels.

This only makes sense if the heat transfer itself rather than just the heat-transfer coefficient is considered. The rate of heat transfer in a heat exchanger is not only a function of the heat-transfer coefficient, as can be observed in the 'heat exchanger design equation':

$$q = UA_s \Delta T_{lm} \tag{1.12}$$

It is also clearly a function of the heat-transfer surface area A_s . Compact heat exchangers have very narrow channels (sub-mm), so the flow is laminar (as Re depends upon channel width, D) and therefore has a significantly lower heat-transfer coefficient than a turbulent flow. However, this is more than compensated for by the increase in heat-transfer surface area per unit volume, giving a higher heat-transfer rate per unit volume than conventional heat exchanger designs (such as 'shell-and-tube'). A concise overview of compact heat exchangers is given by Reay $et\ al.\ [20]$.

There are also a range of devices ('turbulence promoters') that are designed to perturb flow in order to bring about the onset of turbulence at lower Re. These promoters allow the higher heat- and mass-transfer coefficients associated with turbulence to be accessed at lower velocities, thereby reducing the associated pumping duties. They can also be classified as intensified devices, although the degree of intensification is nowhere near as great as that in the compact heat exchanger. They suffer less from fouling, however, which is one of the main drawbacks of compact heat exchangers: their applications are limited to 'clean' fluids, as they are very easily blocked by fouling. As with most technologies, the strengths and weaknesses of intensified technologies must be assessed so as to define a 'niche' or parameter space within which they are the best-performing.

1.3.3.2 Mass Transfer

An appreciation of mass transfer is required for the intensification of separation processes. Common separation unit operations are distillation, crystallization, ad/absorption and drying.

In many processes, the heat and mass transfer are interrelated. Generally, what enhances one enhances the other. Indeed, the mechanisms for transfer are often the same or are closely related. Experiments in heat transfer have often been used to draw conclusions about mass transfer (and vice versa) through analogies. Various equations describing one or the other are based upon analogy. Compare for instance the Dittus–Boelter equations for heat and mass transfer:

Heat:
$$Nu = C_1.Re^{0.8}.Pr^{0.33}$$
 (1.13)

Mass:
$$Sh = C_2.Re^{0.8}.Sc^{0.33}$$
 (1.14)

An example of an intensified mass-transfer device is the rotating liquid-liquid extractor. The conventional design of liquid-liquid extractors was based on using the density difference between the liquids to drive a countercurrent flow, by inputting the denser fluid at the top of the column and the lighter at the bottom. One of the variables, although it may not appear to be a variable initially, is g, the acceleration due to gravity. This can of course be increased by applying a centrifugal field, in which case the lighter fluid is introduced from the outside and travels inward countercurrent to the denser fluid. The first example of this kind of device was the Podbielniak liquid-liquid contactor, originally developed in the 1940s for penicillin extraction. There are currently hundreds of Podbielniak contactors in use worldwide for a range of applications, including antibiotic extraction, vitamin refining, uranium extraction, removal of aromatics, ion exchange, soap manufacture and extraction of various organics [21]. This illustrates that there are many successful examples of PI in industry today, although they are not viewed as such, as they are not a new technology (and the term 'process intensification' did not exist when they were invented). Indeed, any continuous process is an example of an intensified process.

1.3.3.3 Momentum Transfer

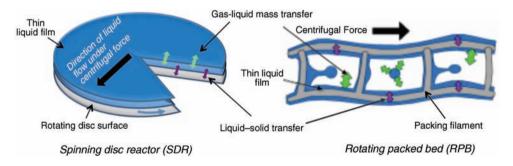
Momentum transfer occurs due to velocity gradients within fluids. Many of the technologies listed above to enhance mass and heat transfer, also involve enhanced momentum transfer. Again, as illustrated by the equations in section 1.3.3.2 (between heat and mass transfer), there are analogies between this transfer process and others that lead to meaningful quantitative relationships. Theories such as the Reynolds analogy (see Ref [22] for a concise explanation), and its more sophisticated and accurate descendants, are based on heat, mass and momentum transfer processes having the same mechanism: in this particular analogy, the mechanism for all is the transport of turbulent eddies from a bulk medium to a surface.

Essentially, any technology that enhances the flow increases momentum transfer. The rotational fields applied to flows in section 'Centrifugal Fields' (see section 1.4.1.1) and the turbulence promoters mentioned in 1.3.3.1 are just two examples of enhanced momentum transfer (along with enhancement of other transfer properties). It should be noted that enhancement of momentum transfer is often not performed for its own sake, but rather to promote other transfer properties.

1.4 Intensification Techniques

Intensification of a process may be achieved through a variety of means, including enhancing mixing and heat/mass transfer by additional energy input via external force fields or via enhanced surface configurations, transforming processes from batch to continuous mode in order to achieve smaller process volume and integrating process steps in hybrid technologies. Each of these will be discussed briefly in this section.

1.4.1 Enhanced Transport Processes


Heat and mass transport rates are largely influenced by the fluid dynamics, which directly affect the heat/mass-transfer coefficients and the available area on which the transfer of energy/mass can occur. Mixing rates are similarly affected by these parameters. Therefore, any attempt at intensifying these processes should focus on enhancing the turbulence in the system and/or increasing the transfer surface area. One way of achieving this is by subjecting the reaction environment to external force fields, such as centrifugal, electric and ultrasonic fields.

1.4.1.1 Enhanced Force Fields

Centrifugal Fields. Surface rotation as a technique for intensification has stimulated keen interest from academic workers for many years. As early as the 1950s, Hickman's research efforts into two-phase heat transfer on spinning disc surfaces culminated in the development of the first successful centrifugal evaporator used in sea water desalination [23].

The benefits that can be extracted from the exploitation of high centrifugal fields created by rotation are as follows:

- The rotational speed of the spinning surface provides an additional degree of freedom, which can be readily manipulated for optimum equipment performance.
- The extremely high gravity fields thus generated are capable of producing very thin films, in which heat transfer, mass transfer and mixing rates are greatly intensified. The short path lengths and the high surface area per unit volume provide the opportunity for rapid molecular diffusion and enhanced heat transfer, even on scale-up (Figure 1.5). The

Figure 1.5 Thin-film processing in an SDR and a RPB, illustrating the short diffusion/conduction path lengths and high surface area for enhanced heat and mass transfer.

performance of multiple phase processes in particular stands more chance of being enhanced under the influence of high gravitational forces as a result of increased interphase buoyancy and slip velocity [24].

- Applications in which the solid content of a process fluid poses problems with regard to fouling in conventional devices can, in principle, be handled by the rotating equipment. The rotating action in itself provides a scraping or 'self-cleaning' mechanism strong enough to shift most solid deposits away from the surface of revolution, thereby ensuring maximum exposed area at all times during operation.
- The very short and controllable residence times achieved under the centrifugal action enable heat-sensitive materials to be processed with minimal risk of degradation.

Several unit operations have been identified in which the centrifugal acceleration generated on the surfaces of revolution presents remarkable potential for intensification. Typical operations include distillation, extraction, boiling, condensation, crystallization, precipitation and gas—liquid reactions.

The SDR and the rotating packed bed (RPB) are two well-known examples of centrifugal field processing equipment. The SDR will be treated in more detail in Chapter 3.

Alternative Force Fields. Alternative force fields commonly employed to intensify processes include ultrasound, electric fields and energy of electromagnetic radiation, whose applications to chemical and biochemical processes in the context of PI have been reviewed by Stankiewicz [25].

Ultrasonic Fields. 'Ultrasound' refers to sound waves beyond the audible range of the human ear, with a frequency of approximately 20 kHz to 500 MHz. The frequency typically applied to chemical processing is generally no higher than 2 MHz [26]. Ultrasound is propagated through a liquid medium in alternating cycles of compression and stretching, or rarefaction. These induce an effect known as cavitation, whereby microbubbles are generated, expand and are subsequently destroyed in successive compression cycles, releasing a large amount of heat and pressure energy in the local environment of the bubbles (Figure 1.6). Local temperatures and pressures after the collapse of microbubbles can reach as high as 5000 °C and 2000 atmospheres, respectively, depending on the power input [26]. Mechanical or chemical effects can arise from such extreme conditions in the system, as discussed in many review articles on the subject [27,28]. Thus, for instance, the mechanical effects are characterized by the pressure waves or shock waves resulting from the collapse of cavitation bubbles. These waves generate intense mixing conditions and enhanced transport rates throughout the bulk of the liquid medium in homogeneous systems and at liquid/liquid or liquid/solid interfaces in heterogeneous systems, which have a direct, positive influence on a chemical reaction. Furthermore, in immiscible liquid systems much finer droplets can be formed under ultrasound exposure than by mechanical agitation, creating a greater surface area for mass transfer. These mechanical or physical effects are generally thought to be responsible for the rate enhancements and improved product properties observed in many chemical processes subjected to ultrasonic irradiation [28,29].

Chemical effects due to ultrasound arise if the chemical compounds in the processing medium can fracture into reactive intermediates such as free radicals (a process often