Barbara H. Stuart

Forensic Analytical Techniques

WILEY

FORENSIC ANALYTICAL TECHNIQUES

Analytical Techniques in the Sciences (AnTS)

Series Editor: David J. Ando, Consultant, Dartford, Kent, UK

A series of open learning/distance learning books which covers all of the major analytical techniques and their application in the most important areas of physical, life and materials sciences.

Titles available in the Series

Analytical Instrumentation: Performance Characteristics and Quality

Graham Currell, University of the West of England, Bristol, UK

Fundamentals of Electroanalytical Chemistry

Paul M.S. Monk, Manchester Metropolitan University, Manchester, UK

Introduction to Environmental Analysis

Roger N. Reeve, University of Sunderland, UK

Polymer Analysis

Barbara H. Stuart, University of Technology, Sydney, Australia

Chemical Sensors and Biosensors

Brian R. Eggins, University of Ulster at Jordanstown, Northern Ireland, UK

Methods for Environmental Trace Analysis

John R. Dean, Northumbria University, Newcastle, UK

Liquid Chromatography -Mass Spectrometry: An Introduction

Robert Ardrey, University of Huddersfield, Huddersfield, UK

Analysis of Controlled Substances

Michael D. Cole, Anglia Polytechnic University, Cambridge, UK

Infrared Spectroscopy: Experimentation and Applications

Barbara H. Stuart, University of Technology, Sydney, Australia

Practical Inductively Coupled Plasma Spectroscopy

John R. Dean, Northumbria University, Newcastle, UK

Bioavailability, Bioaccessibility and Mobility of Environmental Contaminants

John R. Dean, Northumbria University, Newcastle, UK

Quality Assurance in Analytical Chemistry

Elizabeth Prichard and Vicki Barwick, Laboratory of the Government Chemist, Teddington, UK

Extraction Techniques in Analytical Sciences

John Dean, Northumbria University, Newcastle, UK

Forensic Analysis Techniques

Barbara H. Stuart, University of Technology, Sydney, Australia

FORENSIC ANALYTICAL TECHNIQUES

Barbara Stuart

University of Technology, Sydney, Australia

This edition first published 2013 © 2013 John Wiley & Sons, Ltd.

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data applied for.

A catalogue record for this book is available from the British Library.

HB ISBN: 9780470687277 PB ISBN: 9780470687284

Set in 10/12pt Times by Laserwords Private Limited, Chennai, India.

Printed in [Country] by [Printer]

Contents

Series Preface			xii	
Pre	Preface			X
About the Author Acronyms, Abbreviations and Symbols			xvi	
			xix	
1	The	Chemis	stry of Forensic Evidence	1
	1.1	Introdu	action	,
	1.2		ice Types	
			Polymers	4
			Fibres	(
		1.2.3		ĺ
			Documents	(
		1.2.5		10
		1.2.6		11
			Explosives	12
			Firearms	14
		1.2.9		14
			Body Fluids	10
			Drugs and Toxicology	10
	1.2		Fingerprints	23
	1.3 1.4		action to Data Analysis	23
		Summa erences	ar y	24
	Kele	ciences		22
2	Prel	liminary	Tests	27
	2.1	Introdu	action	2

	2.2		nical Tests	27
		2.2.1	Methods	28
		2.2.2	Drugs and Toxicology	28
			Body Fluids	29
		2.2.4	Gunshot Residue	30
		2.2.5	Explosives	31
		2.2.6	Paint	31
		2.2.7	Documents	32
	2.3	Densi	ty	32
		2.3.1	Methods	32
		2.3.2	Glass	33
			Soil	33
		2.3.4	Polymers	34
	2.4	Light	Examination	35
			Methods	35
		2.4.2	Fingerprints	36
		2.4.3	Body fluids	38
		2.4.4	Documents	38
	2.5	Summ	nary	39
	Refe	erences		39
3	Mic	roscopi	ic Techniques	41
	3.1	Introd	luction	41
	3.2	Optica	al Microscopy	42
			Methods	42
		3.2.2	Interpretation	44
			Fibres	45
		3.2.4	Paint	48
		3.2.5	Drugs	49
		3.2.6	Glass	49
		3.2.7	Soil	50
		3.2.8	Documents	51
		3.2.9	Firearms	51
	3.3	Transı	mission Electron Microscopy	51
		3.3.1	Method	52
		3.3.2	Interpretation	53
		3.3.3	Paint	53
	3.4	Scann	ning Electron Microscopy	54
		3.4.1	Methods	54
		3.4.2	Interpretation	55

Contents	vii
----------	-----

		3.4.4	Paint	57
		3.4.5	Fibres	58
			Documents	58
			Glass	59
	3.5		ic Force Microscopy	59
		3.5.1	Methods	59
			Interpretation	60
			Documents	60
	3.6		Diffraction	60
				62
			Interpretation	63
			Explosives	63
			Paint	63
			Drugs	64
			Documents	65
		3.6.7	Soil	65
	3.7	Summ	nary	66
	Refe	erences		66
4	Mol	ecular (Spectroscopy	69
	4.1	Introd	uction	70
	4.2		ed Spectroscopy	70
			Methods	70
		4.2.2	Interpretation	73
			Paint	74
			Fibres	75
			Polymers	82
			Documents	85
			Explosives	86
		4.2.8	Drugs	87
	4.3		n Spectroscopy	89
			Methods	90
			Interpretation	91
		4.3.3	Drugs	91
			Paint	93
			Fibres	94
			Documents	94
			Explosives	94
	4.4		violet-visible Spectroscopy	95
		4.4.1	Methods	95
		4.4.2	Interpretation	97

		4.4.3	Fibres	97
		4.4.4	Paint	98
		4.4.5	Documents	99
		4.4.6	Drugs	99
		4.4.7	Toxicology	101
	4.5	Fluore	escence Spectroscopy	101
		4.5.1	Methods	101
		4.5.2	Interpretation	102
		4.5.3	Body Fluids	102
		4.5.4	Toxicology	103
		4.5.5	Fibres	104
	4.6	Nuclea	ar Magnetic Resonance Spectroscopy	104
		4.6.1	Methods	104
		4.6.2	Interpretation	105
		4.6.3	Drugs	107
		4.6.4	Explosives	108
	4.7	Summ	nary	109
	Refe	erences		109
5	Eler	nental A	Analysis	113
	5.1	Introd	uction	113
	5.2	Atomi	c Spectrometry	114
		5.2.1	Methods	114
		5.2.2	Interpretation	115
		5.2.3	Glass	115
		5.2.4	Gunshot Residue	116
		5.2.5	Toxicology	116
	5.3	Induct	rively Coupled Plasma–Mass Spectrometry	117
			Methods	117
		5.3.2	Interpretation	118
		5.3.3	Glass	118
		5.3.4	Paint	118
			Gunshot Residue	119
	5.4	X-Ray	Fluorescence Spectroscopy	119
		5.4.1	Methods	120
		5.4.2	Interpretation	120
		5.4.3	Glass	121
		5.4.4	Gunshot Residue	122
		5.4.5	Paint	122
	5.5	Particl	le-Induced X-Ray Emission Spectroscopy	123
		5.5.1	Methods	124
		5.5.2	Interpretation	124
		5.5.3	Glass	124

Contents	ix
----------	----

	5.6 5.7 Refe	Neutron Activation Analysis Summary erences	125 125 126
6	Mas	ss Spectrometry	129
	6.1	Introduction	129
	6.2	Molecular Mass Spectrometry	129
		6.2.1 Methods	130
		6.2.2 Interpretation	132
		6.2.3 Drugs	132
	()	6.2.4 Explosives	134
	6.3	Isotope Ratio Mass Spectrometry	134
		6.3.1 Methods	135
		6.3.2 Interpretation6.3.3 Drugs	136
		6.3.4 Explosives	136 136
	6.4	Ion Mobility Spectrometry	130
	0.4	6.4.1 Methods	137
		6.4.2 Interpretation	137
		6.4.3 Explosives	138
		6.4.4 Drugs	138
	6.5	Summary	140
	Refe	erences	140
7	Sep	aration Techniques	143
	7.1	Introduction	144
	7.2	Paper Chromatography	144
		7.2.1 Methods	144
		7.2.2 Interpretation	144
		7.2.3 Documents	145
	7.3	Thin Layer Chromatography	145
		7.3.1 Methods	146
		7.3.2 Interpretation	146
		7.3.3 Drugs	146
		7.3.4 Documents	147
		7.3.5 Fibres	148
	7.4	7.3.6 Explosives	148
	7.4	Gas Chromatography	149
		7.4.1 Methods	149
		7.4.2 Interpretation	150
		7.4.3 Drugs	150
		7.4.4 Toxicology	152

		7.4.5	Arson Residues	154
		7.4.6	Explosives	155
	7.5	Liquid	Chromatography	155
		7.5.1	Methods	155
		7.5.2	Interpretation	156
		7.5.3	Drugs and Toxicology	156
		7.5.4	Fibres	158
	7.6	Ion Ch	romatography	159
		7.6.1	Methods	159
			Interpretation	159
		7.6.3	Explosives	159
	7.7		ry Electrophoresis	161
		7.7.1	Methods	161
		7.7.2	Interpretation	162
		7.7.3	Drugs and Toxicology	162
		7.7.4	Explosives and Gunshot Residues	163
	7.8	Summa	ary	163
	Refe	erences		164
8	The	rmal An	nalysis	167
	8.1	Introdu		167
	8.2	Pyroly	sis Techniques	168
		8.2.1	Methods	168
		8.2.2	Interpretation	168
		8.2.3	Paint	169
			Fibres	170
		8.2.5	Polymers	170
		8.2.6	Documents	171
	8.3		ential Scanning Calorimetry and Differential Thermal	
		Analys		171
		8.3.1	Methods	171
		8.3.2	Interpretation	171
		8.3.3	Polymers	173
		8.3.4	Fibres	173
	8.4		ogravimetric Analysis	174
		8.4.1	Methods	174
		8.4.2	Interpretation	176
		8.4.3	Polymers	177
		8.4.4	Explosives and Arson Residues	177
	8.5	Summa	ary	178
	Refe	erences		178

Contents	xi
Responses to Self-Assessment Questions	181
Bibliography	195
Glossary of Terms	197
SI Units and Physical Constants	203
Periodic Table	207
Index	209

Series Preface

There has been a rapid expansion in the provision of further education in recent years, which has brought with it the need to provide more flexible methods of teaching in order to satisfy the requirements of an increasingly more diverse type of student. In this respect, the open learning approach has proved to be a valuable and effective teaching method, in particular for those students who for a variety of reasons cannot pursue full-time traditional courses. As a result, John Wiley & Sons, Ltd first published the Analytical Chemistry by Open Learning (ACOL) series of textbooks in the late 1980s. This series, which covers all of the major analytical techniques, rapidly established itself as a valuable teaching resource, providing a convenient and flexible means of studying for those people who, on account of their individual circumstances, were not able to take advantage of more conventional methods of education in this particular subject area.

Following upon the success of the ACOL series, which by its very name is predominately concerned with analytical chemistry, the Analytical Techniques in the Sciences (AnTS) series of open learning texts has now been introduced with the aim of providing a broader coverage of the many areas of science in which analytical techniques and methods are now increasingly applied. With this in mind, the AnTS series of texts seeks to provide a range of books which will cover not only the actual techniques themselves, but also those scientific disciplines which have a necessary requirement for analytical characterization methods.

Analytical instrumentation continues to increase in sophistication, and as a consequence, the range of materials that can now be almost routinely analysed has increased accordingly. Books in this series which are concerned with the techniques themselves will reflect such advances in analytical instrumentation, while at the same time providing full and detailed discussions of the fundamental concepts and theories of the particular analytical method being considered. Such books will cover a variety of techniques, including general instrumental analysis, spectroscopy, chromatography, electrophoresis, tandem techniques, electroanalytical methods, X-ray analysis and other significant topics. In addition, books in

the series will include the application of analytical techniques in areas such as environmental science, the life sciences, clinical analysis, food science, forensic analysis, pharmaceutical science, conservation and archaeology, polymer science and general solid-state materials science.

Written by experts in their own particular fields, the books are presented in an easy-to-read, user-friendly style, with each chapter including both learning objectives and summaries of the subject matter being covered. The progress of the reader can be assessed by the use of frequent self-assessment questions (SAQs) and discussion questions (DQs), along with their corresponding reinforcing or remedial responses, which appear regularly throughout the texts. The books are thus eminently suitable both for self-study applications and for forming the basis of industrial company in-house training schemes. Each text also contains a large amount of supplementary material, including bibliographies, lists of acronyms and abbreviations, tables of SI units and important physical constants and, where appropriate, glossaries and references to literature sources.

It is therefore hoped that this present series of textbooks will prove to be a useful and valuable source of teaching material, both for individual students and for teachers of science courses.

Dave Ando Dartford, UK

Preface

The public profile of forensic science has dramatically increased in recent decades and there has been a corresponding rise in the number of students undertaking forensic science degree courses at a tertiary level with the view to a professional career in this field. During this period the application of modern analytical techniques to the examination of forensic problems has expanded, particularly due to the development of small and portable cost-effective instrumentation. The availability of new techniques has led to a greater choice of tools that can be employed to analyse forensic specimens. An understanding of a broad range of analytical tools is required by today's forensic chemists and is an important aspect of their training.

The aim of this book is to provide an overview of the most commonly used analytical techniques that are of interest to forensic chemists. A clear description of how each technique works and how to prepare specimens for analysis is provided. Some techniques are widely used as standard methods, while others are yet to be established but show great potential. An explanation of how to analyse the data obtained is also provided and, for each technique, the most common forensic applications are described. There are specific issues to consider when examining forensic samples. Apart from the applicability of a technique, the issues of dealing with small quantities of material, whether a technique is non-destructive and the cost and/or portability for fieldwork must be considered.

The reader will note that there is a deliberate focus on forensic chemistry and physical evidence. Topics such as DNA analysis are intentionally not dealt with here, and forensic biology topics are well covered elsewhere. The focus here is on how to analyse samples once collected – the process of evidence collection is, of course, an important aspect of a forensic scientist's training and is an expansive topic in its own right. This book is designed for students who are undertaking a forensic chemistry based programme and require a sound knowledge of analytical techniques. Some basic tertiary mathematical and chemistry knowledge is

assumed. The book will also provide a useful reference for forensic practitioners who may be interested in investigating new forms of evidence or techniques.

I hope that this book helps fill a gap in the world of forensic textbooks. Naturally many forensic science textbooks focus on the collection of evidence, but this book will provide a resource for the teaching of forensic analytical techniques. I would like to acknowledge the valuable conversations with and the data provided by a multitude of hardworking forensic scientists in police forces, law enforcement agencies and universities – not just in Australia, but worldwide. A special thanks to my colleagues and students past and present in the Centre of Forensic Science and the School of Chemistry and Forensic Science at the University of Technology, Sydney.

About the Author

Barbara Stuart, BSc (Hons), MSc (Syd), PhD (Lond), DIC, MRSC, MRACI, CChem, MANZFSS

Barbara Stuart holds the position of Associate Professor at the School of Chemistry and Forensic Science and the Centre for Forensic Science at the University of Technology, Sydney (UTS) in Australia. She received BSc (Hons) and MSc degrees in chemistry from the University of Sydney in Australia and gained her PhD at Imperial College in London in 1993. Barbara held the position of lecturer at the University of Greenwich, London before returning to Australia to take up a position at UTS in 1995. Barbara has contributed to the teaching of a broad range of topics in the chemistry, forensic and materials programmes at UTS. She also has active research interests in the fields of forensic taphonomy and archaeology, as well as in materials conservation and environmental science, and has published many papers on these topics. Barbara is also the author of five other books published by John Wiley & Sons: Modern Infrared Spectroscopy and Biological Applications of Infrared Spectroscopy, both in the ACOL series of open learning texts, and Polymer Analysis and Infrared Spectroscopy: Fundamentals and Applications in the current AnTS series of texts, as well as Analytical Techniques in Materials Conservation.

Acronyms, Abbreviations and Symbols

AAS atomic absorption spectrometry
AES atomic emission spectrometry
AFM atomic force microscopy
ALS alternate light source
ANN artificial neural network

APCI atmospheric pressure chemical ionization

ATR attenuated total reflectance BAC blood alcohol concentration BSA N,O-bistrimethylsilylic acid

BSE backscattered electron

BSTFA N,O-bistrimethylsilyltrifluoroacetamide

CE capillary electrophoresis
CI chemical ionization
CNS central nervous system
COHb carboxyhaemoglobin

CZE capillary zone electrophoresis

DAC diamond anvil cell
 DAD diode array detector
 DART direct analysis in real time

DC direct current

DESI desorption electrospray ionization

DFO 1,8-diazafluoren-9-one

DRIFT diffuse reflectance infrared by Fourier transform

DSC differential scanning calorimetry
DTA differential thermal analysis
DTG derivative thermogravimetric

ECD electron capture detector

EDS energy dispersive X-ray spectroscopy
EDX energy-dispersive X-ray analysis
EDXRF energy-dispersive X-ray fluorescence
EELS electron energy loss spectroscopy

EI electron ionization

ESEM environmental scanning electron microscopy

ESI electrospray ionization
FID flame ionization detector
GC gas chromotography

GHB gamma-hydroxybutyric acid

GFAAS graphite furnace atomic absorption spectrometry

GRIM Glass Refractive Index Measurement

GSR gunshot residue Hb haemoglobin

HCA hierarchical clustering analysis HDPE high-density polyethylene

HPLC high-performance liquid chromatography

IBA ion beam analysis IC ion chromatography

ICDD International Centre for Diffraction Data
ICP-MS inductively coupled plasma-mass spectrometry

ILR ignitable liquid residue IMS ion mobility spectrometry IRMS isotope ratio mass spectrometry

LC liquid chromatography
LDA linear discriminant analysis
LDPE low-density polyethylene

LIBS laser-induced breakdown spectroscopy

MDA methylenedioxyamphetamine

MDMA methylenedioxymethylamphetamine MDEA 3,4-methylenedioxyethylamphetamine

MECC micellar electrokinetic capillary chromatography (also MEKC)

MI medullary index
MS mass spectrometry
MSP microspectrophotometry

MSTFA N-methyl-M-trimethylsilyltrifluoroacetamide

m/z mass-to-charge (ratio)

NMR nuclear magnetic resonance

NOE Nuclear Overhauser Effect

NRA nuclear reaction analysis

PC paper chromatography

PCA principal component analysis

PD physical developer PDMS polydimethylsiloxane

PE polyethylene

PET poly(ethylene terephthalate)
PETN pentaerythritol tetranitrate
PIXE particle-induced X-ray emission
PLM polarizing light microscope
PMMA poly(methyl methacrylate)

PP polypropylene
ppb parts per billion
ppm parts per million
PS polystyrene

PSA prostate-specific antigen (test)

PVC poly(vinyl chloride)

ρ density

 R^2 coefficient of determination

RBS Rutherford back scattering spectrometry

RF radiofrequency RI reflective index

RRS resonance Raman spectroscopy

SAN styrene-acrylonitrile
SAP seminal acid phosphatase
SBR styrene-butadiene rubber
SE secondary electron

SEM scanning electron microscopy

SERS surface-enhanced Raman spectroscopy
SIMS secondary ion mass spectrometry

SIM selected ion monitoring
SPE solid-phase extraction
SPME solid-phase microextraction
TEA thermal energy analyser

TEM transmission electron microscopy

TFAA trifluoroacetic anhydride TGA thermogravimetric analysis THC Δ^9 -tetrahydrocannabinol

THM thermally assisted hydrolysis methylation

TLC thin layer chromatography

TMAH tetramethylammonium hydroxide

TMB tetramethylbenzidine

TOF time-of-flight

TOF-SIMS time-of-flight secondary ion mass spectrometry