Editors John W. Stirling, Alan Curry and Brian P. Eyden Diagnostic Electron Microscopy

A Practical Guide to Interpretation and Technique

Diagnostic Electron Microscopy – A Practical Guide to Interpretation and Technique

Current and future titles in the Royal Microscopical Society – John Wiley Series

Published

Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM) Debbie Stokes

Aberration-Corrected Analytical Electron Microscopy Edited by Rik Brydson

Diagnostic Electron Microscopy – A Practical Guide to Interpretation and Technique Edited by John W. Stirling, Alan Curry & Brian Eyden

Forthcoming

Low Voltage Electron Microscopy: Principles and Applications Edited by David C. Bell & Natasha Erdman

Atlas of Images and Spectra for Electron Microscopists Edited by Ursel Bangert

Understanding Practical Light Microscopy Jeremy Sanderson

Focused Ion Beam Instrumentation: Techniques and Applications Dudley Finch & Alexander Buxbaum

Electron Beam-Specimen Interactions and Applications in Microscopy Budhika Mendis

Diagnostic Electron Microscopy – A Practical Guide to Interpretation and Technique

Edited by

John W. Stirling The Centre for Ultrastructural Pathology, Adelaide, Australia

> Alan Curry Manchester Royal Infirmary, Manchester, UK

> > and

Brian Eyden Christie NHS Foundation Trust, Manchester, UK

Published in association with the Royal Microscopical Society

Series Editor: Susan Brooks

This edition first published 2013 © 2013 John Wiley & Sons Ltd.

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Diagnostic electron microscopy : a practical guide to interpretation and technique / edited by John W. Stirling, Alan Curry, and Brian Eyden.

p. ; cm. Includes bibliographical references and index. ISBN 978-1-119-97399-7 (cloth) I. Stirling, John W. II. Curry, Alan. III. Eyden, Brian. [DNLM: 1. Diagnostic Imaging--methods. 2. Microscopy, Electron, Transmission. WN 180] 616.07′54 – dc23

2012027835

A catalogue record for this book is available from the British Library.

ISBN: 978-1-119-97399-7 Set in 10.5/13pt Sabon by Laserwords Private Limited, Chennai, India

Acknowledgements and Dedication

All three editors wish to thank the many individuals who have helped to make this volume possible. Firstly, they would like to express their appreciation to all the authors for their hard work and generosity in sharing their professional experience, as well as all the 'behind-thescenes' staff and colleagues without whom this book could not have been produced.

John Stirling thanks the staff of the Centre for Ultrastructural Pathology, SA Pathology, Adelaide, for their support and photographic contributions – especially Alvis Jaunzems and Jeffrey Swift – and Dr Sophia Otto of the Department of Surgical Pathology, SA Pathology, for her advice and for proofreading.

Alan Curry acknowledges the contributions to his work of the pathologists, particularly Dr Helen Denley and Dr Lorna McWilliam, and technical staff of the Manchester Royal Infirmary, as well as two inspirational organisations – the Public Health Laboratory Service Electron Microscopy network and the Manchester Electron Microscope Society.

Brian Eyden wishes to thank all of the Pathology Department staff at the Christie NHS Foundation Trust (Manchester), without whose technical and light microscopic input the interpretation of tumour ultrastructure would be compromised, if not, in some instances, impossible.

Secondly, the editors wish to recognise the support and encouragement of their families in this endeavour. John Stirling thanks his partner, Jill, and expresses a special appreciation of his teachers and mentors, particularly Alec Macfarlane who helped him achieve his dream of a career in biology and Andrew Dorey who introduced him to electron microscopy and the wonders of cell ultrastructure. Alan Curry thanks his wife, Collette (particularly for her exceptional computer skills), and Brian Eyden thanks his wife, Freda, for understanding the needs of a writing scientist.

Finally, the editors dedicate this book to diagnostic electron microscopists – wherever they may be – who continue to make uncertain diagnoses more precise as a result of their labours, which, in turn, help clinicians to treat their patients better, the ultimate purpose of our work.

Contents

Li Pr	List of Contributors 22 Preface – Introduction				
1	Rena	l Disease		1	
	John	W. Stirlin	ig and Alan Curry		
	1.1	The Ro	le of Transmission Electron Microscopy (TEM)		
		in Rena	l Diagnostics	1	
	1.2	Ultrastr	uctural Evaluation and Interpretation	2	
	1.3	The No	rmal Glomerulus	3	
		1.3.1	The Glomerular Basement Membrane	4	
	1.4	Ultrastr	uctural Diagnostic Features	5	
		1.4.1	Deposits: General Features	5	
		1.4.2	Granular and Amorphous Deposits	6	
		1.4.3	Organised Deposits: Fibrils and Tubules	7	
		1.4.4	Nonspecific Fibrils	11	
		1.4.5	General and Nonspecific Inclusions and		
			Deposits	11	
		1.4.6	Fibrin	12	
		1.4.7	Tubuloreticular Bodies (Tubuloreticular		
			Inclusions)	12	
		1.4.8	The Glomerular Basement Membrane	13	
		1.4.9	The Mesangial Matrix	14	
		1.4.10	Cellular Components of the Glomerulus	14	
		1.4.11	Parietal Epithelium	16	
	1.5	The Ult	rastructural Pathology of the Major		
		Glomer	ular Diseases	16	
		1.5.1	Diseases without, or with Only Minor,		
			Structural GBM Changes	16	
		1.5.2	Diseases with Structural GBM Changes	19	

		1.5.3	Diseases with Granular Deposits	25
		1.5.4	Diseases with Organised Deposits	40
		1.5.5	Hereditary Metabolic Storage Disorders	46
	Refer	rences		47
2	Tran	splant Re	nal Biopsies	55
	John Brealey			
	2.1	Introdu	ction	55
	2.2	The Tra	ansplant Renal Biopsy	55
	2.3	Indicati	ons for Electron Microscopy of Transplant	
		Kidney		56
		2.3.1	Transplant Glomerulopathy	56
		2.3.2	Recurrent Primary Disease	64
		2.3.3	De Novo Glomerular Disease	72
		2.3.4	Donor-Related Disease	74
		2.3.5	Infection	74
		2.3.6	Inconclusive Diagnosis by LM and/or IM	79
		2.3.7	Miscellaneous Topics	81
	Refer	rences	-	84
3	Elect	ron Micro	oscopy in Skeletal Muscle Pathology	89
	Elizabeth Curtis and Caroline Sewry			
	3.1	Introdu	ction	89
	0.1	3.1.1	The Biopsy Procedure	90
		3.1.2	Sampling	90
		3.1.3	Tissue Processing	90
		3.1.4	Artefacts	91
	3.2	Normal	Muscle	91
	3.3 Patholo		gical Changes	96
	0.0	3.3.1	Sarcolemma	96
		3.3.2	Myofibrils	99
		3.3.3	Glycogen	102
		3.3.4	Cores	104
		3.3.5	Target Fibres	10.5
		3.3.6	Myonuclei	105
		3.3.7	Mitochondria	106
		3.3.8	Reticular System	108
		3.3.9	Vacuoles	109
		3.3.10	Capillaries	110
		0.0.10	r	110

	Refer	3.3.11 rences	Other Structural Defects	111 113
4	The l	Diagnosti	c Electron Microscopy of Nerve	117
	Rosa	lind King		
	4.1	Introdu	ction	117
	4.2	Tissue l	Processing	118
		4.2.1	Preparation of Nerve Biopsy Specimens	118
	4.3	Norma	l Nerve Ultrastructure	120
		4.3.1	Axons	120
		4.3.2	Schwann Cells	120
		4.3.3	The Myelin Sheath	120
		4.3.4	Node of Ranvier	122
		4.3.5	Paranode	123
		4.3.6	Juxtaparanode	123
		4.3.7	Internode	123
		4.3.8	Schmidt-Lanterman Incisures	124
		4.3.9	Remak Fibres	124
		4.3.10	Fibroblasts	124
		4.3.11	Renaut Bodies	125
	4.4	Patholo	gical Ultrastructural Features	125
		4.4.1	Axonal Degeneration	125
		4.4.2	Axonal Regeneration	126
		4.4.3	Remak Fibre Abnormalities	128
		4.4.4	Polyglucosan Bodies	128
		4.4.5	Nonspecific Axonal Inclusions	128
		4.4.6	Demyelination and Remyelination	130
		4.4.7	Specific Schwann Cell Inclusions	135
		4.4.8	Nonspecific Schwann Cell Inclusions	136
		4.4.9	Fibroblasts	142
		4.4.10	Perineurial Abnormalities	142
		4.4.11	Cellular Infiltration	143
		4.4.12	Endoneurial Oedema	143
		4.4.13	Connective Tissue Abnormalities	143
		4.4.14	Endoneurial Blood Vessels	145
		4.4.15	Mast Cells	145
	4.5	Artefac	t	145
	4.6	Conclu	sions	147
	Refer	ences		148

5	The I	Diagnosti	c Electron Microscopy of Tumours	153
	Brian	Eyden		
	5.1	Introdu	iction	153
	5.2	Princip	les and Procedures for Diagnosing Tumours by	
		Electro	n Microscopy	154
		5.2.1	The Objective of Tumour Diagnosis	154
		5.2.2	The Intellectual Requirements for Tumour	
			Diagnosis by Electron Microscopy	155
		5.2.3	Technical Considerations	156
		5.2.4	Identifying Good Preservation	158
		5.2.5	Distinguishing Reactive from Neoplastic Cells	162
	5.3	Organe	elles and Groups of Cell Structures Defining	
		Cellula	r Differentiation	162
		5.3.1	Rough Endoplasmic Reticulum	162
		5.3.2	Melanosomes	165
		5.3.3	Desmosomes	167
		5.3.4	Tonofibrils	167
		5.3.5	Basal Lamina	169
		5.3.6	Glandular Epithelial Differentiation and Cell	
			Processes	171
		5.3.7	Neuroendocrine Granules	171
		5.3.8	Smooth-Muscle Myofilaments	173
		5.3.9	Sarcomeric Myofilaments (Thick-and-Thin	
			Filaments with Z-Disks)	176
	Refer	ences		178
6	Micro	obial Ultı	rastructure	181
	Alan	Curry		
	6.1	Introdu	action	181
	6.2	Practica	al Guidance	182
	6.3	Viruses		183
	6.4	Current Use of EM in Virology		185
	6.5	Viruses in Thin Sections of Cells or Tissues		
	6.6	Bacteria		191
	6.7	Fungal Organisms		194
	6.8	Microsporidia		196
	6.9	Parasiti	ic Protozoa	206
		6.9.1	Cryptosporidium	207
		6.9.2	Isospora belli	211
	6.10	Examples of Non-enteric Protozoa		212

	6.11	Parasitic Amoebae	213			
	6.12	Conclusions	214			
	Ackno	owledgements	214			
	Refere	nces and Additional Reading	214			
7	The C Diagn	ontemporary Use of Electron Microscopy in the osis of Ciliary Disorders and Sperm Centriolar				
	Abnor	malities	221			
	P Via	llouros M. Nearchou, A. Hadiisannas and K. Kwriacou.				
	7 1	Introduction	221			
	7.1	Illtractructure of Motile Cilie	221			
	7.2	Cenetics of PCD	224			
	7.5	Current Diagnostic Modalities	220			
	7.7	Clinical Features	220			
	7.5	Procurement and Assessment of Ciliated Specimens	230			
	77	Centriolar Sperm Abnormalities	231			
	7.8	Discussion	232			
	Ackno	wledgements	234			
	Refere	nces	234			
8	Electro	on Microscopy as a Useful Tool in the Diagnosis of				
0	Lysos	omal Storage Diseases	237			
	Joseph	Alroy, Rolf Pfannl and Angelo A. Ucci				
	8.1	Introduction	237			
	8.2	Morphological Findings	247			
	8.3	Conclusion	261			
	Refere	nces	262			
9	Cereb	ral Autosomal Dominant Arteriopathy with Subcortical				
	Infarcts and Leukoencephalopathy (CADASIL)					
	John W. Stirling					
	9.1	Introduction	2.69			
	9.2	Diagnostic Strategies – Comparative Specificity and	202			
		Sensitivity	271			
	9.3	Diagnosis by TEM	271			
	Refere	nces	274			
10	Diagn	osis of Platelet Disorders by Electron Microscopy	277			
÷	Hilary Christensen and Walter H A Kahr					
	10.1	Introduction	277			

	10.2	TEM Preparation of Platelets	278		
	10.3	Whole-Mount EM Preparation of Platelets	280		
	10.4	EM Preparation of Bone Marrow	281		
	10.5	Pre-embed Immunogold Labelling of Von Willibrand			
		Factor in Platelets	282		
	10.6	Ultrastructural Features of Platelets	282		
	10.7	Normal Platelets	283		
	10.8	Grey Platelet Syndrome	285		
	10.9	Arthrogryposis, Renal Dysfunction and Cholestasis			
		Syndrome	285		
	10.10	Jacobsen Syndrome	285		
	10.11	Hermansky-Pudlak Syndrome, Chediak-Higashi			
	Syndrome and Other Dense-Granule Deficiencies				
	10.12	Type 2B von Willebrand Disease and Platelet-Type			
		von Willebrand Disease	288		
	Refere	nces	290		
11	1 Diagnosis of Congenital Dyserythropoietic Anaemia Types I				
	and II	by Transmission Electron Microscopy	293		
	Yong-	xin Ru			
	11.1	Introduction	293		
	11.2	Preparation of Bone Marrow and General Observation			
		Protocol	294		
	11.3	CDA Type I	294		
		11.3.1 Proerythroblasts and Basophilic Erythroblasts	294		
		11.3.2 Polychromatic and Orthochromatic			
		Erythroblasts	295		
		11.3.3 Reticulocytes and Erythrocytes	299		
	11.4	CDA Type II	299		
		11.4.1 Erythroblasts	301		
		11.4.2 Erythrocytes	306		
	11.5	Summary	306		
	Ackno	wledgements	307		
	Refere	nces	307		
12	Ehlers	-Danlos Syndrome	309		
	Trinh	Hermanns-Lê, Marie-Annick Reginster, Claudine			
	Piérar	d-Franchimont and Gérald E. Piérard			
	12.1	Introduction	309		
	12.2	Collagen Fibrils	310		
		U	-		

	12.3	Elastic I	Fibers	310
	12.4	Nonfibr	ous Stroma and Granulo-Filamentous Deposits	311
	12.5	Connect	tive Tissue Disorders	311
		12.5.1	Ehlers–Danlos Syndrome	311
		12.5.2	Spontaneous Cervical Artery Dissection	317
		12.5.3	Recurrent Preterm Premature Rupture of	
			Fetal Membrane Syndrome	319
	Refere	ences		319
13	Electro	on Micro	oscopy in Occupational and Environmental	
	Lung	Disease		323
	Victor	· L. Rogg	li	
	13.1	Introdu	ction	323
	13.2	Asbesto	S	324
		13.2.1	Preparatory Techniques	324
		13.2.2	Analytical Methodology	326
		13.2.3	Asbestos-Related Diseases	326
		13.2.4	Exposure Categories	330
	13.3	Hyperse	ensitivity Pneumonitis and Sarcoidosis	330
		13.3.1	Preparatory Techniques and Analytical	
			Methodology	331
	13.4	Silicosis		331
		13.4.1	Preparatory Techniques and Analytical	
			Methodology	333
	13.5	Silicate	Pneumoconiosis	333
		13.5.1	Talc Pneumoconiosis	333
		13.5.2	Kaolin Worker's Pneumoconiosis	334
		13.5.3	Mica and Feldspar Pneumoconiosis	334
		13.5.4	Mixed Dust Pneumoconiosis	335
		13.5.5	Preparatory Techniques and Analytical	
			Methodology	335
	13.6	Metal-II	nduced Diseases	335
		13.6.1	Siderosis	336
		13.6.2	Aluminosis	336
		13.6.3	Hard Metal Lung Disease	336
		13.6.4	Berylliosis	337
		13.6.5	Preparatory Techniques and Analytical	22-
	42 -	D 5	Methodology	337
	13.7	Kare-Ea	rth Pneumoconiosis	338
	13.8	Miscella	aneous Disorders	338
	Ketere	ences		- 339

xiii

14	4 General Tissue Preparation Methods				
John W. Stirling					
	14.1 Introduction				
		14.1.1	Specimens Suitable for Diagnostic TEM	341	
	14.2	Tissue (Collection and Dissection	342	
		14.2.1	Tissue Cut-Up	343	
	14.3	Tissue P	Processing	345	
		14.3.1	Fixatives and Fixation	345	
		14.3.2	Primary Fixation: Glutaraldehyde	347	
		14.3.3	Secondary Fixation (Post-fixation): Osmium		
			Tetroxide	347	
		14.3.4	Fixative Vehicles and Wash Buffers	347	
		14.3.5	En Bloc Staining with Uranyl Acetate	348	
		14.3.6	Dehydrant and Transition Fluids	348	
		14.3.7	Resin Infiltration and Embedding Media	349	
		14.3.8	Tissue Embedding	352	
	14.4	Tissue S	Sectioning	352	
		14.4.1	Ultramicrotomy	352	
		14.4.2	Sectioning Technique and Ultramicrotome		
			Setup	355	
		14.4.3	Common Sectioning Problems and Artefacts	356	
		14.4.4	Section Staining	362	
		14.4.5	Section Contamination and Staining Artefacts	363	
	Protoc	col		364	
	ÐĆ	Processi	ing Schedules	364	
	Refere	ences		379	
15	Ultras	tructural	Pathology Today – Paradigm Change and the		
10	Impac	t of Mici	rowave Technology and Telemicroscopy	383	
	Iosef	A. Schroe	eder	000	
	15 1	Diagnos	otic Electron Microscopy and Paradiam Shift in		
	13.1	Patholo	av	383	
	15.2	Standar	dised and Automated Conventional Tissue	505	
	13.2	Processi	ng	385	
	153	Microw	ave-Assisted Sample Prenaration	390	
	15.4	Cybersr	ace for Telepathology via the Internet	397	
	15.5	Conclus	sions and Future Prospects	400	
	Ackno	wledgen	nents	404	

16 Electron Microscopy Methods in Virology 409 Alan Curry 16.1 Biological Safety Precautions 409 16.2 Collection of Specimens 410 16.3 Preparation of Faeces, Vomitus or Urine Samples 410 16.4 Viruses in Skin Lesions 410 16.5 Reagents and Methods 411 16.5.1 Negative Stains 411 16.6 Coated Grids 412 16.7 Important Elements in the Negative Staining Procedure 16.8 TEM Examination 413 16.9 Immunoelectron Microscopy 413 16.9.1 Immune Clumping 413 16.9.2 Solid-Phase Immunoelectron Microscopy 414 16.10 Thin Sectioning of Virus-Infected Cells or Tissues 414 16.11 Virology Quality Assurance (QA) Procedures 415 16.11.1 External QA 415 16.11.2 Internal QA 415 16.11.2 Internal QA 415 16.11.1 External QA 416 17 Digital Imaging for Diagnostic Transmission Electron 419 17.2 Camera History 419 17.3 The Pixel Dilemma 420
Alan Curry16.1Biological Safety Precautions40916.2Collection of Specimens41016.3Preparation of Faeces, Vomitus or Urine Samples41016.4Viruses in Skin Lesions41016.5Reagents and Methods41116.5.1Negative Stains41116.6Coated Grids41216.7Important Elements in the Negative Staining Procedure41216.8TEM Examination41316.9Immunoelectron Microscopy41316.9.1Immuno Clumping41316.9.2Solid-Phase Immunoelectron Microscopy41316.9.3Immunogold Labelling41416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.11.1External QA41516.11.2Internal QA41516.11.2Internal QA41516.11.2Internal QA41516.11.2Internal QA41517Digital Imaging for Diagnostic Transmission Electron Microscopy41917.2Camera History41917.3The Pixel Dilemma420
16.1Biological Safety Precautions40916.2Collection of Specimens41016.3Preparation of Faeces, Vomitus or Urine Samples41016.4Viruses in Skin Lesions41016.5Reagents and Methods41116.5.1Negative Stains41116.6Coated Grids41216.7Important Elements in the Negative Staining Procedure41216.8TEM Examination41316.9.1Immunoelectron Microscopy41316.9.2Solid-Phase Immunoelectron Microscopy41316.9.3Immunogold Labelling 16.9.441416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.11.1External QA41516.11.2Internal QA41516.11.2Internal QA41516.11.2Internal QA41617Digital Imaging for Diagnostic Transmission Electron Microscopy41917.2Camera History41917.3The Pixel Dilemma420
16.2Collection of Specimens41016.3Preparation of Faeces, Vomitus or Urine Samples41016.4Viruses in Skin Lesions41016.5Reagents and Methods41116.5Reagents and Methods41116.5Negative Stains41216.6Coated Grids41216.7Important Elements in the Negative Staining Procedure41216.8TEM Examination41316.9Immunoelectron Microscopy41316.9.1Immune Clumping41316.9.2Solid-Phase Immunoelectron Microscopy41316.9.3Immunogold Labelling41416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.11Virology Quality Assurance (QA) Procedures41516.11.1External QA41516.11.2Internal QA41516.11.2Internal QA415Acknowledgements41617Digital Imaging for Diagnostic Transmission Electron Microscopy41917.2Camera History41917.3The Pixel Dilemma420
16.3Preparation of Faeces, Vomitus or Urine Samples41016.4Viruses in Skin Lesions41016.5Reagents and Methods41116.5.1Negative Stains41116.6Coated Grids41216.7Important Elements in the Negative Staining Procedure41216.8TEM Examination41316.9Immunoelectron Microscopy41316.9.1Immuno Clumping41316.9.2Solid-Phase Immunoelectron Microscopy41316.9.3Immunogold Labelling41416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.11External QA41516.11.2Internal QA41516.11.2Internal QA41617Digital Imaging for Diagnostic Transmission Electron Microscopy41917.2Camera History41917.3The Pixel Dilemma420
16.4Viruses in Skin Lesions41016.5Reagents and Methods41116.5.1Negative Stains41116.6Coated Grids41216.7Important Elements in the Negative Staining Procedure41216.8TEM Examination41316.9Immunoelectron Microscopy41316.9.1Immuno Clumping41316.9.2Solid-Phase Immunoelectron Microscopy41316.9.3Immunogold Labelling41416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.11Virology Quality Assurance (QA) Procedures41516.11.1External QA41516.11.2Internal QA41516.11.2Internal QA41516.11.2Internal QA41617Digital Imaging for Diagnostic Transmission Electron Microscopy41917.2Camera History41917.3The Pixel Dilemma420
16.5Reagents and Methods41116.5.1Negative Stains41116.6Coated Grids41216.7Important Elements in the Negative Staining Procedure41216.8TEM Examination41316.9Immunoelectron Microscopy41316.9.1Immuno Clumping41316.9.2Solid-Phase Immunoelectron Microscopy41316.9.3Immunogold Labelling 16.9.441416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.11Virology Quality Assurance (QA) Procedures41516.11.1External QA41516.11.2Internal QA41516.11.2Internal QA41617Digital Imaging for Diagnostic Transmission Electron Microscopy41917.2Camera History41917.3The Pixel Dilemma420
16.5.1Negative Stains41116.6Coated Grids41216.7Important Elements in the Negative Staining Procedure41216.8TEM Examination41316.9Immunoelectron Microscopy41316.9.1Immune Clumping41316.9.2Solid-Phase Immunoelectron Microscopy41316.9.3Immunogold Labelling 16.9.441416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.11Virology Quality Assurance (QA) Procedures41516.11.1External QA41516.11.2Internal QA41516.11.2Internal QA41617Digital Imaging for Diagnostic Transmission Electron Microscopy41917.2Camera History41917.3The Pixel Dilemma420
16.6Coated Grids41216.7Important Elements in the Negative Staining Procedure41216.8TEM Examination41316.9Immunoelectron Microscopy41316.9.1Immune Clumping41316.9.2Solid-Phase Immunoelectron Microscopy41316.9.3Immunogold Labelling41416.9.4Particle Measurement41416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.11Virology Quality Assurance (QA) Procedures41516.11.2Internal QA41516.11.2Internal QA41617Digital Imaging for Diagnostic Transmission Electron Microscopy41917.1Introduction41917.2Camera History41917.3The Pixel Dilemma420
16.7Important Elements in the Negative Staining Procedure41216.8TEM Examination41316.9Immunoelectron Microscopy41316.9.1Immune Clumping41316.9.2Solid-Phase Immunoelectron Microscopy41316.9.3Immunogold Labelling41416.9.4Particle Measurement41416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.11Virology Quality Assurance (QA) Procedures41516.11.1External QA41516.11.2Internal QA41617Digital Imaging for Diagnostic Transmission Electron Microscopy41917.1Introduction41917.2Camera History41917.3The Pixel Dilemma420
Procedure41216.8TEM Examination41316.9Immunoelectron Microscopy41316.9.1Immune Clumping41316.9.2Solid-Phase Immunoelectron Microscopy41316.9.3Immunogold Labelling41416.9.4Particle Measurement41416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.11Virology Quality Assurance (QA) Procedures41516.11.1External QA41516.11.2Internal QA415Acknowledgements41617Digital Imaging for Diagnostic Transmission Electron419Gary Paul Edwards41917.1Introduction41917.2Camera History41917.3The Pixel Dilemma420
16.8TEM Examination41316.9Immunoelectron Microscopy41316.9.1Immune Clumping41316.9.2Solid-Phase Immunoelectron Microscopy41316.9.3Immunogold Labelling41416.9.4Particle Measurement41416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.11Virology Quality Assurance (QA) Procedures41516.11.1External QA41516.11.2Internal QA415Acknowledgements41617Digital Imaging for Diagnostic Transmission Electron Microscopy41917.1Introduction41917.2Camera History41917.3The Pixel Dilemma420
16.9Immunoelectron Microscopy41316.9.1Immune Clumping41316.9.2Solid-Phase Immunoelectron Microscopy41316.9.3Immunogold Labelling41416.9.4Particle Measurement41416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.11Virology Quality Assurance (QA) Procedures41516.11.1External QA41516.11.2Internal QA415Acknowledgements41617Digital Imaging for Diagnostic Transmission Electron419Microscopy41917.1Introduction41917.2Camera History41917.3The Pixel Dilemma420
16.9.1Immune Clumping41316.9.2Solid-Phase Immunoelectron Microscopy41316.9.3Immunogold Labelling41416.9.4Particle Measurement41416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.11Virology Quality Assurance (QA) Procedures41516.11.1External QA41516.11.2Internal QA415Acknowledgements41617Digital Imaging for Diagnostic Transmission Electron419Microscopy41917.1Introduction41917.2Camera History41917.3The Pixel Dilemma420
16.9.2Solid-Phase Immunoelectron Microscopy41316.9.3Immunogold Labelling41416.9.4Particle Measurement41416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.11Tirology Quality Assurance (QA) Procedures41516.11.1External QA41516.11.2Internal QA415Acknowledgements41617Digital Imaging for Diagnostic Transmission Electron419Microscopy41917.1Introduction41917.2Camera History41917.3The Pixel Dilemma420
16.9.3Immunogold Labelling41416.9.4Particle Measurement41416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.11Virology Quality Assurance (QA) Procedures41516.11.1External QA41516.11.2Internal QA415Acknowledgements415References41617Digital Imaging for Diagnostic Transmission Electron419Microscopy41917.1Introduction41917.2Camera History41917.3The Pixel Dilemma420
16.9.4Particle Measurement41416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.10Thin Sectioning of Virus-Infected Cells or Tissues41416.11Virology Quality Assurance (QA) Procedures41516.11.1External QA41516.11.2Internal QA415Acknowledgements415References41617Digital Imaging for Diagnostic Transmission Electron419Microscopy419Gary Paul Edwards41917.1Introduction41917.2Camera History41917.3The Pixel Dilemma420
16.10 Thin Sectioning of Virus-Infected Cells or Tissues41416.11 Virology Quality Assurance (QA) Procedures41516.11.1 External QA41516.11.2 Internal QA415Acknowledgements41617 Digital Imaging for Diagnostic Transmission Electron419Gary Paul Edwards41917.1 Introduction41917.2 Camera History41917.3 The Pixel Dilemma420
16.11 Virology Quality Assurance (QA) Procedures41516.11.1 External QA41516.11.2 Internal QA415Acknowledgements415References41617 Digital Imaging for Diagnostic Transmission Electron419Microscopy419Gary Paul Edwards41917.1 Introduction41917.2 Camera History41917.3 The Pixel Dilemma420
16.11.1 External QA41516.11.2 Internal QA415Acknowledgements415References41617 Digital Imaging for Diagnostic Transmission Electron419Microscopy419Gary Paul Edwards41917.1 Introduction41917.2 Camera History41917.3 The Pixel Dilemma420
16.11.2 Internal QA415Acknowledgements415References41617 Digital Imaging for Diagnostic Transmission Electron419Microscopy419Gary Paul Edwards41917.1 Introduction41917.2 Camera History41917.3 The Pixel Dilemma420
Acknowledgements415References41617 Digital Imaging for Diagnostic Transmission Electron419Microscopy419Gary Paul Edwards41917.1 Introduction41917.2 Camera History41917.3 The Pixel Dilemma420
References41617 Digital Imaging for Diagnostic Transmission Electron Microscopy419Gary Paul Edwards41917.1 Introduction41917.2 Camera History41917.3 The Pixel Dilemma420
17 Digital Imaging for Diagnostic Transmission Electron Microscopy419Gary Paul Edwards41917.1 Introduction41917.2 Camera History41917.3 The Pixel Dilemma420
Microscopy419Gary Paul Edwards41917.1Introduction41917.2Camera History41917.3The Pixel Dilemma420
Gary Paul Edwards17.117.2Camera History17.3The Pixel Dilemma420
17.1Introduction41917.2Camera History41917.3The Pixel Dilemma420
17.1Infroduction1717.2Camera History41917.3The Pixel Dilemma420
17.3The Pixel Dilemma420
17.4 Camera Positioning 421
17.5 Resolution 422
17.6 Fibre Coupled or Lens Coupled? 423
17.7 Sensitivity. Noise and Dynamic Range 424
17.8 CCD Chip Type (Full Frame or Interline) 426
17.9 Binning and Frame Rate 426
17.10 Software 42.7
17.11 Choosing the Right Camera 428
References 429

18	Uncer	tainty of	Measurement	431
	Pierre	Filion		
	18.1 Introduction			431
	18.2	Purpose		432
		18.2.1	Diagnostic Value	432
		18.2.2	Internal Quality Control	432
		18.2.3	External Quality Control and Accreditation	432
	18.3	Factors	That Influence Quantitative Measurements	433
		18.3.1	Sources of Variation	433
		18.3.2	Alteration of the Intrinsic Dimension of the	
			Structure	434
		18.3.3	Variation Due to the Analytical Equipment	
			and Method	436
		18.3.4	Variation Due to Selection Bias	438
		18.3.5	Measurement Using a Digital Camera	439
	18.4	How to	Calculate the UM	440
		18.4.1	Steps Required to Analyse and Calculate the	
			UM	440
		18.4.2	Type of Error and Distribution of	
			Measurements	440
		18.4.3	Calculating the UM	442
		18.4.4	Precision of Measurement and Biological	
			Significance	443
		18.4.5	The Electronic Spread Sheet as an Aid to	
			Calculating UM	443
		18.4.6	Reporting the UM	444
	18.5	Worked Examples		
		18.5.1	Diameter of Fibrils in a Glomerular Deposit	444
		18.5.2	Thickness of the Glomerular Basement	
			Membrane	445
	18.6	Conclus	ion	446
	Refere	ences		447
т	1			1 40
inc	Jex			449

xvi

List of Contributors

Joseph Alroy, Department of Pathology, Tufts University Cumming's School of Veterinary Medicine, Grafton, Massachusetts, United States and Department of Pathology and Laboratory Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, United States

John Brealey, Centre for Ultrastructural Pathology, Surgical Pathology – SA Pathology (RAH), Adelaide, Australia

Hilary Christensen, Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada

Alan Curry, Health Protection Agency, Clinical Services Building, Manchester Royal Infirmary, Manchester, United Kingdom

Elizabeth Curtis, Muscle Biopsy Service/Electron Microscope Unit, Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom

Gary Paul Edwards, Chelford Barn, Stowmarket, Suffolk, United Kingdom

Brian Eyden, Department of Histopathology, Christie NHS Foundation Trust, Manchester, United Kingdom

Pierre Filion, Electron Microscopy Section, Division of Anatomical Pathology, PathWest Laboratory Medicine, QE II Medical Centre, Nedlands, Australia **A. Hadjisavvas**, Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus

Trinh Hermanns-Lê, Department of Dermatopathology, University Hospital of Liège, Liège, Belgium

Walter H.A. Kahr, Division of Haematology/Oncology, Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada and Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada

Rosalind King, Institute of Neurology, University College London, London, United Kingdom

K. Kyriacou, Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus

M. Nearchou, Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus

Rolf Pfannl, Department of Pathology and Laboratory Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, United States

Gérald E. Piérard, Department of Dermatopathology, University Hospital of Liège, Liège, Belgium

Claudine Piérard-Franchimont, Department of Dermapathology, University Hospital of Liège, Liège, Belgium

Marie-Annick Reginster, Department of Dermatopathology, University Hospital of Liège, Liège, Belgium

Victor L. Roggli, Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States

Yong-xin Ru, Institute of Haematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China

xviii

LIST OF CONTRIBUTORS

Josef A. Schroeder, Zentrales EM-Labor, Institut für Pathologie, Klinikum der Universität Regensburg, Regensburg, Germany

Caroline Sewry, Wolfson Centre for Inherited Neuromuscular Diseases, RJAH Orthopaedic Hospital, Oswestry, United Kingdom and Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital, London, United Kingdom

John W. Stirling, Centre for Ultrastructural Pathology, IMVS – SA Pathology, Adelaide, Australia

Angelo A. Ucci, Department of Pathology and Laboratory Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, United States

P. Yiallouros, Cyprus International Institute, Cyprus University of Technology, Limassol, Cyprus

Preface – Introduction

John W. Stirling, Alan Curry and Brian Eyden

DIAGNOSTIC ELECTRON MICROSCOPY

Science progresses as a result of a variety of factors. Critical to progress, however, is the invention and availability of appropriate tools and techniques that can completely transform our ability to investigate and understand the world around us - without such tools our ability to investigate even basic phenomena would be severely restricted. One such 'transformational' technology is the electron microscope. Although transmission electron microscopy (TEM) is now taken for granted, its application to the biological and medical sciences in the late 1950s and early 1960s ranks as one of the single most important factors that has impacted on our knowledge in biology and medicine. The resolving power of the transmission electron microscope (~ 0.2 nm as compared with the light microscope with a resolution of $\sim 200 \text{ nm}$) made two important things possible for the first time, these being the visualisation of: (1) cell organelles and cytoplasmic structures at the macromolecular level (both useful indicators of cell differentiation) and; (2) viruses and microorganisms in general. Thus, TEM gave us new fundamental insights into cell structure and function, histogenesis and differentiation, and, following from this, our understanding of disease and disease processes.

TEM was quickly taken up as a diagnostic tool. In the clinical setting, electron microscopy has been used to improve diagnostic precision and confidence in many fields, including renal disease, neuromuscular disease, microbiology (particularly virology), tumour pathology, skin diseases, industrial diseases, haematology, metabolic storage diseases and conditions involving abnormalities of cilia and sperm. A number of encyclopaedic atlases of normal and pathological tissues quickly followed the introduction of electron microscopy and the medical literature contains many articles describing diagnostic applications of TEM in a wide range of conditions and specialist areas. Diagnostic TEM reached a zenith during the 1980s; however, since then, the introduction of new methodologies (particularly molecular techniques and affinity labelling systems) has reduced the need for TEM, particularly in tumour diagnosis. Despite this, TEM continues to play a significant and important role in pathology, and techniques continue to develop and improve. For example, the introduction of microwave processing and digital cameras has transformed tissue processing and screening so that 'same-day' reporting is easily achieved.

THE PURPOSE AND USE OF TEM

The purpose of TEM is to diagnose disease based on the ultrastructural features of the tissue. These features include:

- 1. The presence (or sometimes the absence) of specific or characteristic cellular structures or organelles that indicate cell differentiation
- 2. The general ultrastructural architecture, including the identity, location and morphology of specific structural features that may be associated with pathology, or indicate disease.

In general, the use of TEM will be predetermined either as a standalone protocol (e.g., CADASIL) or as part of a broad integrated diagnostic strategy (e.g., renal biopsies). However, TEM can also be applied on an *ad hoc* basis whenever there is a chance it will give an improved diagnosis (and therefore better patient care). The general criteria indicating the use of TEM may be summarised simply as follows:

- 1. When it provides useful (complementary) structural, functional or compositional information in respect to diagnosis, differential diagnoses or disease staging
- 2. When only atypical features or minor abnormalities are visible by light microscopy despite clear clinical evidence of disease (e.g. some renal diseases)
- 3. When affinity labelling results are equivocal (e.g. renal disease and tumours)

- 4. When there is no realistic alternative diagnostic technique or a 'simple' test is not available or feasible (e.g. genetic diseases with multiple mutations such as CADASIL and primary ciliary dyskinesia)
- 5. The investigation and diagnosis of new diseases and microorganisms
- 6. When it is time and/or cost effective in respect to alternative techniques.

THE AIM AND PURPOSE OF THIS BOOK

The prime aim and purpose of this book is to summarise the current interpretational applications of TEM in diagnostic pathology. In this respect, we have not attempted to reproduce previous encyclopaedic texts but to provide what we regard as a working guide to the main, or most useful, applications of the technique given the limited space available in a text of this size. In addition, we have also included practical topics of concern to laboratory scientists, including brief guides to traditional tissue and microbiological preparation techniques, microwave processing, digital imaging and measurement uncertainty.

1 Renal Disease

John W. Stirling¹ and Alan Curry²

¹Centre for Ultrastructural Pathology, IMVS – SA Pathology, Adelaide, Australia ²Health Protection Agency, Clinical Sciences Building, Manchester Royal Infirmary, Manchester, United Kingdom

1.1 THE ROLE OF TRANSMISSION ELECTRON MICROSCOPY (TEM) IN RENAL DIAGNOSTICS

The ultrastructural examination of renal biopsies has made a significant contribution to our understanding of renal disease and is fundamental to accurate diagnosis. For overall tissue evaluation, light microscopy (LM), immunolabelling and transmission electron microscopy (TEM) are generally combined as an integrated protocol. LM is used to make an assessment of overall tissue morphology and to identify the major pathological processes present. Immunolabelling (preferably using immunofluorescence or by the immunoperoxidase technique) is used to determine the composition and location of glomerular immune deposits. Local practices vary, but an antibody panel can contain antibodies directed against IgG, IgA, IgM, complement (C3, C1g and sometimes C4), κ and λ light chains and albumin. TEM can play a major role when LM and immunolabelling findings are normal, only mildly atypical or equivocal and difficult to interpret, particularly in respect to conditions where there may be similar LM or immunolabelling findings. Thus, the technique is particularly useful in the setting of familial disease where the structural abnormalities in the glomerular basement membrane (GBM) cannot be resolved by LM (e.g. Alport's syndrome). TEM can also provide critical information not revealed by the other methodologies to identify underlying primary disease and unexpected concomitant disease. Similarly with immunolabelling, the full classification and staging of deposits require ultrastructural analysis. Some transplant biopsies can also benefit from ultrastructural evaluation (see Chapter 2); however, TEM rarely contributes to the diagnosis of tubular, vascular or interstitial disease. Overall, ultrastructural screening is essential; it can change the diagnosis in ~25% of cases and provides 'useful' information in ~66% of cases (Pearson *et al.*, 1994; Elhefnawy, 2011).

1.2 ULTRASTRUCTURAL EVALUATION AND INTERPRETATION

Examination of glomeruli (and other areas, if necessary) should be thorough and systematic with all components being evaluated for possibly significant features or changes. During screening, a range of representative images should be taken. These should include low-power images to show overall glomerular morphology, plus a representative selection of higher power images to show the specific and critical diagnostic features. In some instances, it may also be important to show that certain features are, in fact, absent (e.g. deposits) or normal (e.g. foot processes). The principal elements that should be examined are (i) the location, size and morphology of immune-related deposits and other inclusions; (ii) the thickness, overall morphology and texture of the GBM; (iii) the size and morphology of the mesangial matrix and (iv) the number and morphology of the cellular components of the glomerulus (Stirling et al., 2000). Sclerotic glomeruli should be avoided, and only well-preserved functional (or significantly functional) glomeruli should be examined. It is also important to ensure that the glomeruli screened are representative of the LM findings: this means that, ideally, the choice of glomeruli to be screened (from semithin sections) should be done in collaboration with the reporting pathologist. Finally, it should be stressed that screening should be unbiased, although some knowledge of the pathology and immunolabelling results may be useful if the features expected are minor or uncommon. The vascular pole should be avoided during ultrastructural evaluation as it may contain misleading nonpathologic deposits, and likewise Bowman's capsule which has no real diagnostic value, although the presence of crescents can be confirmed.

Following evaluation, representative images and findings should be communicated to the reporting pathologist, the latter verbally or in a concise written report. If the initial evaluation does not correspond with the LM evaluation (e.g. the electron microscopy (EM) samples only a tiny fraction of the available tissue), then the specimen should be re-examined or additional glomeruli observed to increase diagnostic confidence.

A critical question is 'How many glomeruli should be examined, and for how long?' Unfortunately, there is no definitive answer to this dilemma except to say that enough tissue should be examined to answer the diagnostic question posed and to ensure that no additional or unexpected pathology is present. A single glomerulus (or even part of one) may be adequate in respect to diffuse disease and/or when the glomerulus screened is typical of the disease process identified by LM. In contrast, several glomeruli, or possibly glomeruli from different blocks, may be required to capture the full range of pathological changes in focal disease. Perhaps the final word on this issue is to say that the tissue must be screened thoroughly; it is bad practice to stop screening once the features that were expected have been located because additional findings that affect the accuracy of the diagnosis may be missed.

1.3 THE NORMAL GLOMERULUS

The glomerulus (Figure 1.1) is composed of a tuft of branching capillaries that originate from the afferent arteriole at the vascular pole to form a series of lobules (segments) that ultimately rejoin at the vascular pole and exit the glomerulus via the efferent arteriole. At the core of each lobule is the mesangium which supports the capillary loops; capillary loops are lined by endothelial cells (Figure 1.1). The mesangial matrix principally consists of collagen IV and is populated by mesangial cells (usually 1-3 in normal mesangium) plus a small number of immunecompetent cells and rare transient cells of the monocyte-macrophage lineage (Sterzel et al., 1982). The entire capillary tuft is enclosed within Bowman's capsule, the inner aspect of which is lined by a thin layer of epithelial cells (the parietal epithelial cells); a second inner population of epithelial cells (the visceral epithelial cells or podocytes) is closely associated with the capillary tufts, and extensions of these cells form the foot processes (pedicels) that cover the outer aspect of the capillary walls (Figure 1.1). The podocytes are the sole source of the collagen IV α 3, α 4 and α 5 subtypes that form the bulk of the GBM (Abrahamson *et al.*, 2009), and the foot processes play a major role in ultrafiltration and the

Figure 1.1 Detail of a normal glomerulus. The capillary loops are supported by the mesangium (M). Mesangial cells with nuclei (MC); capillary lumens (L); urinary space (U); podocyte (P) (epithelial cell) and foot processes (FP). Here, the overall width of Overall, the glomerular basement membrane (GBM) averages \sim 380 nm in width. Loops are lined with fenestrated endothelial cells (E). Bar = 5 µm.

maintenance of the filtration barrier. As a result, podocyte dysfunction plays a major role in a wide range of glomerular diseases (Wiggins, 2007; Haraldsson, Nystrom and Deen, 2008). Opposite the vascular pole, Bowman's capsule is continuous with the proximal tubule which drains filtrate from the glomerulus (the urinary pole). Overall, filtration is said to be a function of size, shape and charge selection, although the nature and contribution of charge selection are debated (Harvey *et al.*, 2007; Haraldsson, Nystrom and Deen, 2008; Goldberg *et al.*, 2009). The capillary wall as a whole is responsible for the filtration process, and it appears that the capillary endothelium, the GBM and the podocyte foot processes must all be intact for normal filtration to occur (Patrakka and Tryggvason, 2010).

1.3.1 The Glomerular Basement Membrane

The GBM (Figure 1.1) is made of three layers: (i) the lamina rara interna, the electron-lucent layer immediately adjacent to the endothelium;