## MOLECULAR PHARMACOLOGY From DNA to DRUG DISCOVERY

John **Dickenson** Fiona **Freeman** Chris **Lloyd Mills** Shiva **Sivasubramaniam** Christian **Thode** 

WILEY-BLACKWELL

## Table of Contents

<u>Title Page</u>

<u>Copyright</u>

**Preface** 

**Abbreviations** 

<u>Chapter 1: Introduction to Drug Targets</u> and Molecular Pharmacology

1.1 Introduction to molecular pharmacology

1.2 Scope of this textbook

1.3 The nature of drug targets

1.4 Future drug targets

1.5 Molecular pharmacology and drug discovery References

<u>Chapter 2: Molecular Cloning of Drug</u> <u>Targets</u>

2.1 Introduction to molecular cloning—from DNA to drug discovery

2.2 'Traditional' pharmacology

2.3 The relevance of recombinant DNA

technology to pharmacology/drug discovery

2.4 The 'cloning' of drug targets

2.5 What information can DNA cloning provide?

2.6 Comparing the pharmacologic profile of the 'cloned' and the 'native' drug target
2.7 Reverse pharmacology illustrated on orphan GPCRs
2.8 Summary
References

#### Chapter 3: G Protein-coupled Receptors

3.1 Introduction to G protein-coupled receptors

3.2 Heterotrimeric G-proteins

3.3 Signal transduction pathways

3.4 Desensitisation and down-regulation of GPCR signalling

3.5 Constitutive GPCR activity

3.6 Promiscuous G-protein coupling

3.7 Agonist-directed signalling

3.8 Allosteric modulators of GPCR function

3.9 Pharmacological chaperones for GPCRs

3.10 GPCR dimerisation

3.11 GPCR splice variants

3.12 Summary

**References** 

**Useful Web sites** 

#### Chapter 4: Ion Channels

<u>4.1 Introduction</u>
<u>4.2 Voltage-gated ion channels</u>
<u>4.3 Other types of voltage-gated ion channels</u>
<u>4.4 Ligand-gated ion channels</u>

<u>4.5 Summary</u> <u>References</u>

#### Chapter 5: Transporter Proteins

5.1 Introduction
5.2 Classification
5.3 Structural analysis of transporters
5.4 Transporter families of pharmacological interest

5.5 Transporters and cellular homeostasis

5.6 Summary

<u>References</u>

<u>Chapter 6: Cystic Fibrosis: Alternative</u> <u>Approaches to the Treatment of a Genetic</u> <u>Disease</u>

6.1 Introduction
6.2 Cystic fibrosis transmembrane conductance regulator
6.3 Mutations in CFTR
6.4 Why is cystic fibrosis so common?
6.5 Animal models of Cystic fibrosis
6.6 Pharmacotherapy
6.7 Gene therapy
6.8 Conclusion
References

Chapter 7: Pharmacogenomics

7.1 Types of genetic variation in the human genome

7.2 Thiopurine S-methyltransferase and K channel polymorphisms

7.3 Polymorphisms affecting drug metabolism

7.4 Methods for detecting genetic polymorphisms

7.5 Genetic variation in drug transporters

7.6 Genetic variation in G protein coupled

receptors

7.7 Summary

<u>References</u>

Useful Web sites

Chapter 8: Transcription Factors and Gene Expression

8.1 Control of gene expression
8.2 Transcription factors
8.3 CREB
8.4 Nuclear receptors
8.5 Peroxisome proliferator-activated receptors
8.6 Growth factors
8.7 Alternative splicing
8.8 RNA editing
8.9 The importance of non-coding RNAs in gene expression
8.10 Summary

**References** 

Chapter 9: Cellular Calcium

9.1 Introduction

9.2 Measurement of calcium

9.3 The exocrine pancreas

9.4 Calcium signalling in pancreatic acinar cells

9.5 Nuclear calcium signalling

9.6 Conclusions

<u>References</u>

Chapter 10: Genetic Engineering of Mice

10.1 Introduction to genetic engineering

10.2 Genomics and the accumulation of

sequence data

<u>10.3 The mouse as a model organism</u>

10.4 Techniques for genetic engineering

10.5 Examples of genetically-engineered mice

<u>10.6 Summary</u>

**References** 

<u>Chapter 11: Signalling Complexes: Protein-</u> protein Interactions and Lipid Rafts

11.1 Introduction to cell signalling complexes 11.2 Introduction to GPCR interacting proteins

<u>11.3 Methods used to identify GPCR interacting</u> proteins

11.4 Functional roles of GPCR interacting proteins 11.5 GPCR signalling complexes

11.6 GPCR and ion channel complexes

11.7 Ion channel signalling complexes

<u>11.8 Development of pharmaceuticals that target</u> <u>GPCR interacting proteins</u>

<u>11.9 Development of pharmaceuticals that target</u> protein-protein interactions

11.10 Lipid rafts

11.11 Receptor-mediated endocytosis

<u>11.12 Summary</u>

<u>References</u>

<u>Chapter 12: Recombinant Proteins and</u> <u>Immunotherapeutics</u>

12.1 Introduction to immunotherapeutics 12.2 Historical background of immunotherapeutics 12.3 Basis of immunotherapeutics 12.4 Types of immunotherapeutics 12.5 Humanisation of antibody therapy 12.6 Immunotherapeutics in clinical practice 12.7 Advantages and disadvantages of immunotherapy 12.8 The future 12.9 Summary References

<u>Glossary</u>

<u>Index</u>

#### **Companion website**

This book is accompanied by a companion website: <u>www.wiley.com/go/dickenson/dnamolecular</u> The website includes: Figures and Tables from the book for downloading

## Molecular Pharmacology From DNA to Drug Discovery

John Dickenson, Fiona Freeman, Chris Lloyd Mills, Shiva Sivasubramaniam and Christian Thode Nottingham Trent University



A joint whey & sons, Ett., rubitation

This edition first published 2013  $\ensuremath{\mathbb{C}}$  2013 by John Wiley & Sons, Ltd

Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley's global Scientific, Technical and Medical business with Blackwell Publishing.

*Registered office:* John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

*Editorial offices:* 9600 Garsington Road, Oxford, OX4 2DQ, UK

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

111 River Street, Hoboken, NJ 07030-5774, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at <u>www.wiley.com/wiley-blackwell</u>.

The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Molecular pharmacology : from DNA to drug discovery / John Dickenson ... [et al.].

p. ; cm.

Includes index.

ISBN 978-0-470-68444-3 (cloth)— ISBN 978-0-470-68443-6 (pbk.)

I. Dickenson, John.

[DNLM: 1. Molecular Targeted Therapy. 2. Pharmacogenetics- methods.

3. Drug Delivery Systems. 4. Drug Discovery. QV 38.5]

615.1′9- dc23

#### 2012034772

A catalogue record for this book is available from the British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

First Impression 2013

#### Preface

Nottingham Trent University offers a suite of successful MSc courses in the Biosciences field that are delivered by fulltime, part-time and distance (e-learning) teaching. The authors are members of the Pharmacology team at Nottingham Trent University and teach extensively on the MSc Pharmacology and Neuropharmacology courses. The content of this book was inspired by these courses as there is no comparable postgraduate textbook on molecular pharmacology and it is a rapidly expanding subject. The primary aim of this text was to provide a platform to enhance the complement our courses and student experience. Given the breadth and depth of this volume it will be of use to students from other institutions as a teaching aid as well as an invaluable source of background information for post-graduate researchers. The value of this book is enhanced by the research portfolio of the Bioscience Department and individual authors who have research careers spanning over 25 years.

This textbook illustrates how genes can influence our physiology and hence our pharmacological response to drugs used to treat pathological conditions. Tailoring of therapeutic drugs is the future of drug design as it enables physicians to prescribe personalised medical treatments based on an individual's genome. The book utilises a drug target-based approach rather than the traditional organ/system-based viewpoint and reflects the current advances and research trends towards *in silico* drug design based on gene and derived protein structure.

The authors would like to thank Prof Mark Darlison (Napier University, Edinburgh, UK) for providing the initial impetus, inspiration and belief that a book of such magnitude was possible. We would also like to acknowledge the unflagging encouragement and support of the Wiley-Blackwell team (Nicky, Fiona and Clara) during the preparation of this work. Finally thanks should also be given to the helpful, constructive and positive comments provided by the reviewers. We hope that you enjoy this book as much as we enjoyed writing it.

John Dickenson, Fiona Freeman, Chris Lloyd Mills, Shiva Sivasubramaniam and Christian Thode.

## Abbreviations

| [Ca <sup>2+</sup> ];             | intracellular free ionised calcium concentration                            |
|----------------------------------|-----------------------------------------------------------------------------|
| re 2+1                           |                                                                             |
| [Ca <sup>-</sup> ] <sub>n</sub>  | nuclear free ionised calcium concentration                                  |
| [Ca <sup>2+</sup> ] <sub>o</sub> | extracellular free ionised calcium concentration                            |
| 2-APB                            | 2-aminoethoxydiphenyl borate                                                |
| 4EFmut<br>DREAM                  | 4 <sup>th</sup> EF hand mutant DREAM                                        |
| 5F-BAPTA                         | 1,2-bis(2-amino-5,6-diflurophenoxy) ethane-N,N,N',N'-<br>tretracacetic acid |
| 5-HT                             | 5-hydroxytyrptamine / serotonin                                             |
| AAV                              | adeno-associated virus                                                      |
| ABC                              | ATP-binding cassette (transporter)                                          |
| AC                               | adenylyl cyclase                                                            |
| ACC                              | mitochondrial ADP/ATP carrier (transporter)                                 |
| ACh                              | acetylcholine                                                               |
| ACS                              | anion-cation subfamily                                                      |
| AD                               | Alzheimer's disease                                                         |
| ADAR                             | adenosine deaminase acting on RNA (1, 2 or 3)                               |
| ADCC                             | antibody-dependent cellular cytotoxicity                                    |
|                                  | ancibody-difected enzyme pro-drug therapy                                   |
|                                  | transcriptional activating function (1 or 2)                                |
|                                  | alapino (A)                                                                 |
|                                  |                                                                             |
|                                  | acetoxymethyl<br>a-amino-3-bydroxy-5-methylisoxazole 4-propionic acid       |
| Ann-                             | and incorrected by $(A \cap B \cap C)$                                      |
| ΔΡΡ                              | amyloid precursor protein                                                   |
| AOP                              | aquaporins                                                                  |
|                                  | arachidanic acid regulated Ca2+ channels                                    |
| channels                         | arachidonic acid regulated Ca channels                                      |
| Δra                              | arginine (B)                                                                |
| ASIC                             | acid sensing ion channels                                                   |
| ASL                              | airways surface liquid                                                      |
| Asn                              | asparagine (N)                                                              |
| Asp                              | aspartic acid (D)                                                           |
| ATF1                             | activation transcription factor 1                                           |
| ATP                              | adenosine triphosphate                                                      |
| Δ٧                               | adenovirus                                                                  |

| ~•               | adenoviras                                                   |
|------------------|--------------------------------------------------------------|
| Αβ               | amyloid β peptide                                            |
| BAC              | bacterial artificial chromosome                              |
| BBB              | blood brain barrier                                          |
| BCRP             | breast cancer resistant protein                              |
| BDNF             | brain-derived neurotrophic factor                            |
| BK <sub>Ca</sub> | big conductance $Ca^{2+}$ -activated K <sup>+</sup> channels |
| RIAST            | Basic Local Alignment Search Tool                            |
| hn               | hase pairs                                                   |
| BRFT             | hioluminescence resonance energy transfer                    |
| Brm/bra1         | mammalian helicase like proteins                             |
| RTF              | hasal transcription factors                                  |
| B7               | henzodiazenine                                               |
|                  |                                                              |
| Ca-CaM           | Ca <sup>2</sup> '-calmodulin                                 |
| CaCC             | calcium activated chloride channel                           |
| cADPr            | cyclic adenosine diphosphoribose                             |
| СаМ              | calmodulin                                                   |
| CaMK             | calcium-dependent calmodulin kinase                          |
| CAMP             | cyclic adenosine 3',5' monophsophate                         |
| CaRE             | calcium responsive element                                   |
| catSper          | cation channels in sperm                                     |
| Cav              | voltage-gated Ca <sup>2+</sup> channels                      |
| CBAVD            | congenital bilateral absence of the vas deferens             |
| СВР              | CREB binding protein                                         |
| СССР             | carbonyl cyanide <i>m</i> -chlorophenylhydrazone             |
| ССК              | cholecystokinin                                              |
| CDAR             | cytosine deaminase acting on RNA                             |
| cDNA             | complementary DNA                                            |
| CDR              | complementarily-determining region                           |
| CF               | cystic fibrosis                                              |
| CFP              | cyan fluorescent protein                                     |
| CFS              | colony stimulating factors                                   |
| CFTR             | cystic fibrosis transmembrane conductance regulator          |
| cGMP             | cyclic guanosine 3',5' monophosphate                         |
| CHF              | congestive heart failure                                     |
| СНО              | Chinese hamster ovary cell line                              |
| CICR             | calcium induced calcium release                              |
| CIF              | calcium influx factor                                        |
| CIC              | chloride channel                                             |
| СМУ              | cytomegalovirus                                              |
| CNG              | cyclic nucleotide-gated channel                              |
| CNS              | central nervous system                                       |
|                  |                                                              |

| CNI      | concentrative nucleoside transporter                           |
|----------|----------------------------------------------------------------|
| COS      | CV-1 cell line from Simian kidney cells immortalised with SV40 |
|          | viral genome                                                   |
| сох      | cyclooxygenases (1, 2 or 3)                                    |
| СРА      | monovalent cation/proton antiporter super family               |
| CpG      | <b>c</b> ytosine-phosphate-guanine regions in DNA              |
| СРР      | cell penetrating peptide (transporter)                         |
| CRE      | cAMP responsive element                                        |
| CREB     | cAMP responsive element binding protein                        |
| CREM     | CRE modulator                                                  |
| CRF      | corticotropin-releasing factor                                 |
| CRM      | chromatin remodelling complex                                  |
| CRTC     | cAMP-regulated transcriptional co-activator family             |
| CSF      | cerebral spinal fluid                                          |
| СТD      | C terminal domain                                              |
| CTL      | cytotoxic T lymphocyte                                         |
| СҮР      | cytochrome P <sub>450</sub>                                    |
| Cvs      | cysteine (C)                                                   |
| DAG      | diacylglycerol                                                 |
| DAX1     | dosage-sensitive sex reversal gene/TF                          |
| DBD      | DNA-binding domain                                             |
| DC       | dicarboxylate                                                  |
| DHA      | drug:H <sup>+</sup> antiporter family (transporter)            |
| Dla1     | drosophila disc large tumour suppressor                        |
| DNA      | deoxyribonucleic acid                                          |
| DOPA     | dihydroxyphenylalanine                                         |
| DPE      | downstream promoter element                                    |
| DRE      | downstream regulatory element                                  |
| DREAM    | DRE antagonist modulator                                       |
| dsRNA    | double-stranded RNA                                            |
| EBV      | Epstein Barr virus                                             |
| EGF      | epidermal growth factor                                        |
| EGFR     | epidermal growth factor receptor                               |
| EGTA     | ethylene glycol tetraacetic acid                               |
| ELISA    | enzyme linked immunosorbent assay                              |
| ENaC     | epithelial sodium channel                                      |
| EPO      | erythropoietin                                                 |
| ER       | endoplasmic reticulum                                          |
| ERK      | extracellular-signal-regulated kinases                         |
| eRNA     | enhancer RNA                                                   |
| ERTF     | oestrogen receptor transcription factor                        |
| ES cells | embryonic stem cells                                           |
| ESE      | exon splicing enhancer                                         |

| ESS            | exon splicing silencer                                       |
|----------------|--------------------------------------------------------------|
| EST            | expressed sequence tag                                       |
| Fab            | antibody binding domain                                      |
| FACS           | fluorescent-activated cell sorting                           |
| FC             | constant fragment of the monoclonal antibodies               |
| FEV1           | forced expiratory volume in 1 second                         |
| FGF-9          | fibroblast growth factor                                     |
| FIH            | factor inhibiting HIF                                        |
| FISH           | fluorescence <i>in situ</i> hybridisation                    |
| FOXL2          | fork-head box protein                                        |
| FRET           | fluorescence resonance energy transfer                       |
| FXS            | fragile-X syndrome                                           |
| G3P            | glucose-3-phosphate                                          |
| GABA           | gamma-aminobutyric acid                                      |
| GAT            | GABA transporters                                            |
| GC             | guanylyl cyclase                                             |
| GFP            | green fluorescent protein                                    |
| GIRK           | G-protein-gated inwardly rectify K <sup>+</sup> channel      |
| GIn            | glutamine (Q)                                                |
| GIpT           | sn-glycerol-3-phosphate/phosphate antiporter                 |
| GItPh          | Pyrococcus horikoshii glutamate transporters                 |
| GIu            | glutamic acid (E)                                            |
| GLUT           | glucose transporters                                         |
| GIy            | glycine (G)                                                  |
| GLYT           | glycine transporters                                         |
| GMP            | guanosine monophosphate                                      |
| GPCR           | G protein coupled receptor                                   |
| GPN            | glycyl-L-phenylalanine-2-napthylamide                        |
| GRK            | G-protein coupled receptor kinase                            |
| GST            | Glutathione S-transferase                                    |
| H <sup>+</sup> | hydrogen ion; proton                                         |
| HAD            | histone deacetylases                                         |
| HAMA           | human anti-murine antibodies                                 |
| HAT            | histone acetyltransferases                                   |
| HCF            | host cell factor                                             |
| HCN            | hyperpolarisation-activated cyclic nucleotide-gated channels |
| HDL            | high density lipoprotein                                     |
| HIF            | hypoxia inducible factor                                     |
| HIS            | histidine (H)                                                |
| HMG            | high mobility group                                          |
| HMIT           | H <sup>+</sup> /myo-inositol transporter                     |

· –

| hnRNP               | nuclear ribonucleoproteins                                                   |
|---------------------|------------------------------------------------------------------------------|
| нох                 | homeobox                                                                     |
| HPLC                | high-performance liquid chromatography                                       |
| HRE                 | hypoxia response elements                                                    |
| Hsp70               | heat shock protein of the 70 kilodalton family                               |
| HSV                 | herpes simplex virus                                                         |
| HSV-tk              | herpes simplex virus thymidine kinase                                        |
|                     | Huntingtin                                                                   |
| IRMX                | 3-isobutyl-1-methylxanthine                                                  |
|                     | calcium release activated $Ca^{2+}$ channel                                  |
|                     | intra cytonlasmic sporm injection                                            |
| lfs                 | interferons                                                                  |
| la                  | immunoalobulins                                                              |
| IGF-1               | insulin-like growth factor-l                                                 |
| iGluR               | ionotropic glutamate receptor                                                |
| IHD                 | ischaemic heart disease                                                      |
| IL-10               | interleukin-10                                                               |
| lle                 | isoleucine (I)                                                               |
|                     | international non-proprietary names                                          |
|                     | insulin-like factor 3                                                        |
| IPa                 | inositol 1.4.5-triphosphate                                                  |
| IP <sub>3</sub> R   | IP <sub>3</sub> receptor                                                     |
| iPLA <sub>2</sub> β | $\beta$ isoform of Ca <sup>2+</sup> independent phospholipase A <sub>2</sub> |
| IRT                 | immunoreactive trypsinogen                                                   |
| I <sub>SC</sub>     | short circuit current                                                        |
| ISE                 | introns splicing enhancer                                                    |
| ISS                 | introns splicing silencer                                                    |
| K <sub>2P</sub>     | two-pore potassium channels                                                  |
| КЗК4 НМТ            | histone methyl transferase                                                   |
| K <sub>ATP</sub>    | ATP-sensitive K <sup>+</sup> channels                                        |
| kb                  | kilobase                                                                     |
| К <sub>Са</sub>     | Ca <sup>2+</sup> -activated K <sup>+</sup> channels                          |
| КСС                 | K <sup>+</sup> -Cl <sup>-</sup> co-transporter                               |
| KChIP               | K <sup>+</sup> channel interacting protein                                   |
| ксо                 | K <sup>+</sup> channel openers                                               |
| Kd                  | Ca <sup>2+</sup> dissociation constant                                       |
| K <sub>G</sub>      | G-protein gated K <sup>+</sup> channels                                      |

| KID               | kinase-inducible domain                                          |
|-------------------|------------------------------------------------------------------|
| K <sub>ir</sub>   | inwardly rectifying K <sup>+</sup> channels                      |
| К <sub>V</sub>    | voltage-gated K <sup>+</sup> channel                             |
| LacY<br>LBD       | lactose:H <sup>+</sup> symporter<br>ligand binding domains       |
| LDL               | low density lipoprotein                                          |
| Leu               | leucine (L)                                                      |
| LeuTAa            | Aquifex aeolicus leucine transporter                             |
| LGIC              | ligand-gated ion channel                                         |
| IncRNA            | long non-coding RNA                                              |
| LPS               | lipopolysaccharide                                               |
| lys               | lysine (K)                                                       |
| Mab               | monoclonal antibodies                                            |
| ΜΑϹ               | membrane attack complex                                          |
| ΜΑΡΚ              | mitogen-activated protein kinase                                 |
| MATE              | multidrug and toxic compound extrusion superfamily (transporter) |
| Mb                | megabase                                                         |
| МСТ               | mono carboxylate transporters                                    |
| MCU               | mitochondrial Ca <sup>2+</sup> uniporter                         |
| MDR               | multidrug resistance (transporter)                               |
| MDR1              | multidrug resistant transporter 1                                |
| Met               | methionine (M)                                                   |
| MFP               | periplasmic membrane fusion protein family (transporter)         |
| MFS               | major facilitator superfamily (transporter)                      |
| МНС               | histocompatibility complex                                       |
| miRNA             | microRNA                                                         |
| mPTP              | mitochondrial permeability transition pore                       |
| mRNA              | messenger RNA                                                    |
| MSD               | membrane spanning domain                                         |
| MTF               | modulatory transcription factors                                 |
| Мус               | myc oncogene                                                     |
| NAADP             | nicotinic acid adenine dinucleotide phosphate                    |
| nAChR             | nicotinic acetylcholine receptors                                |
| NAD <sup>+</sup>  | nicotinamide adenine dinucleotide                                |
| NADP <sup>+</sup> | nicotinamide adenine dinucleotide phosphate                      |
| NALCN             | sodium leak channel non-selective protein channel                |
| NAT               | natural antisense transcript                                     |
| Nav               | voltage-gated Na <sup>+</sup> channels                           |
| NBD               | nucleotide binding domain                                        |

| ncRNA<br>neoR    | non-coding RNA<br>neomycin resistance                                                      |
|------------------|--------------------------------------------------------------------------------------------|
| NEC              |                                                                                            |
| NES<br>NFAT      | nuclear factor of activated T cells                                                        |
| ΝΕκΒ             | nuclear factor kappa of activated B cells                                                  |
|                  | $N_{2}^{+}/H^{+}$ antipartors                                                              |
|                  |                                                                                            |
| NhaA             | Escherichia coli Na '/H ' antiporter                                                       |
| NHE              | Na <sup>+</sup> /H <sup>+</sup> exchanger                                                  |
| NKCC             | sodium potassium 2 chloride cotransporter                                                  |
| NM               | nuclear membrane                                                                           |
| NMDA             | N-methyl-D-aspartate                                                                       |
| NMK              | nuclear magnetic reasonance                                                                |
|                  | nitric oxide                                                                               |
|                  | ASII-PIO-AId IIIOUI                                                                        |
|                  | nucleonlasmic reticulum                                                                    |
|                  | nuclear recentor-heat shock protein complex                                                |
| NRSE             | neuron restrictive silencer element                                                        |
| NSS              | neurotransmitter sodium symporter (transporter)                                            |
| nt               | nucleotide                                                                                 |
| NTD              | N- terminal domain                                                                         |
| NVGDS            | non viral gene delivery systems                                                            |
| OA-              | organic anion                                                                              |
| ΟΑΤ              | organic anion transporters                                                                 |
| ОСТ              | organic cation transporters                                                                |
| Oct/OAP          | octomer/octomer associated proteins                                                        |
| OMF              | outer membrane factor family (transporter)                                                 |
| ORCC             | outwardly rectifying chloride channel                                                      |
|                  | open-reading frame                                                                         |
|                  | onactory sensory neurons                                                                   |
| Pay              | naired box gene/TF                                                                         |
| n Ca             | $\log_{10}$ of the $C_{2}^{2+}$ concentration                                              |
| рса              |                                                                                            |
|                  | polymerase chain reaction                                                                  |
|                  | potential difference                                                                       |
| PDZ              | PSDoc-Dla1-zo-1 (protein motif)                                                            |
| DEDT             | dinentide transporters                                                                     |
| PG               | nrostanlandins                                                                             |
| PGC-1a           | peroxisome proliferator-activated receptor $\alpha_{\rm c}$ co-activator $1\alpha_{\rm c}$ |
| PGE <sub>2</sub> | prostaglandin E <sub>2</sub>                                                               |
| <b>–</b>         |                                                                                            |

| P-gp<br>Phe       | permeability glycoprotein (transporter)<br>phenylalanine (F)                                |
|-------------------|---------------------------------------------------------------------------------------------|
| Pi                | inorganic phosphate                                                                         |
| PI3               | phosphatidylinositol 3-kinases                                                              |
| PIP <sub>2</sub>  | phosphatidylinositol 4,5-bisphosphate                                                       |
| РКА               | protein kinase A                                                                            |
| РКС               | protein kinase C                                                                            |
| PLC               | phospholipase C                                                                             |
| PLCβ              | β isoform of phospholipase C                                                                |
| pLGICs            | pentameric ligand-gated ion channels                                                        |
| РМ                | plasma membrane                                                                             |
| РМСА              | plasma membrane Ca <sup>2+</sup> ATPase                                                     |
| PP1               | protein phosphatase 1                                                                       |
| PPAR              | peroxisome proliferator-activated receptors ( $\alpha$ , $\beta$ , $\delta$ , or $\gamma$ ) |
| PPRE              | PPAR response element                                                                       |
| pRB               | retinoblastoma protein                                                                      |
| Pro               | proline (P)                                                                                 |
| PSD <sub>95</sub> | post synaptic density protein-95                                                            |
| Q1/Q2             | glutamine-rich domains (1 or 2)                                                             |
| RaM               | rapid mode uptake                                                                           |
| RAMP              | receptor-activity modifying protein                                                         |
| Ras               | rat sarcoma (causing factor)                                                                |
| RBC               | red blood cell                                                                              |
| REST              | repressor element-1 transcription factor                                                    |
| RFLP              | restriction fragment length polymorphism                                                    |
| rhDNase           | recombinant human DNase                                                                     |
| RICS              | radio-immunoconjugates                                                                      |
|                   | RNA induced cilencing complex                                                               |
|                   | rolavin like factor                                                                         |
| RNA nol           | RNA polymerases                                                                             |
| RNA POI           | ribonucleic acid                                                                            |
| RNAi              | RNA interference                                                                            |
| RND               | resistance-nodulation-cell division (transporter)                                           |
| ROS               | reactive oxygen species                                                                     |
| rRNA              | ribosomal RNA                                                                               |
| RSPO1             | R-spondin-1                                                                                 |
| RT-PCR            | reverse-transcription polymerase chain reaction                                             |
| RXR               | retinoic acid receptor                                                                      |
| RyR               | ryanodine receptors                                                                         |
| SAM               | intraluminal sterile $\alpha$ motif                                                         |
| SBP               | substrate binding protein                                                                   |
| <b>•</b>          |                                                                                             |

| Ser              | serine (S)                                                            |
|------------------|-----------------------------------------------------------------------|
| SERCA            | sarco/endoplasmic reticulum Ca <sup>2+</sup> ATPase                   |
| Shh<br>siRNA     | sonic hedgehog homolog gene/TF<br>short interfering RNA               |
| SK <sub>Ca</sub> | small conductance Ca <sup>2+</sup> -activated K <sup>+</sup> channels |
| SLC              | solute carrier superfamily (transporter)                              |
| SMN              | survival of motor neurons protein                                     |
| SMR              | small multidrug resistance superfamily (transporter)                  |
| snoRNA           | small nucleolar RNA                                                   |
| SNP              | single nucleotide polymorphism                                        |
| snRNA            | spliceosomal small nuclear RNA                                        |
| SOC              | store operated Ca <sup>2+</sup> channel                               |
| Sox9             | SRY-related HMG box-9 gene/factor                                     |
| SR               | sarcoplasmic reticulum                                                |
| SRC-1            | steroid receptor co-activator-1.                                      |
| SREBP            | sterol regulatory element-binding proteins                            |
| SRY              | sex-determining region Y                                              |
| 333<br>6747      | solute sodium symporter (transporter)                                 |
|                  | stromal interaction molecule                                          |
| SUG-1            | suppressor of $aa 4D$ lesions $-1$                                    |
| SUMO             | small ubiguitin like modifier                                         |
| SUR              | sulfonylureas receptor                                                |
| SW1/SNF          | switching mating type/sucrose non-fermenting proteins                 |
| TAD              | transactivation domain                                                |
| ΤΑΡ              | transporters associated with antigen processing                       |
| ТСА              | tricarboxlyic acid                                                    |
| TCR              | T cell receptor                                                       |
| TDF              | testis-determining factor                                             |
| TEAD             | IEA domain proteins                                                   |
|                  | transcription enhancer factor                                         |
| TGE              | transforming growth factor                                            |
| TGP              | trans-Golgi petwork                                                   |
| тн               | tyrosine hydroxylase                                                  |
| Thr              | threonine (T)                                                         |
| TIF-1            | transcription intermediary factor                                     |
| TIRF             | total internal reflection fluorescence imaging                        |
| ΤΜΑΟ             | trimethylamine N-oxide                                                |
| TMD              | transmembrane domain                                                  |
| TMS              | transmembrane segments                                                |
| TNFs             | tumour necrosis factors                                               |
|                  |                                                                       |

| TPC   | two pore calcium channels                                 |
|-------|-----------------------------------------------------------|
| TPEN  | N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine        |
| Trk   | tyrosine kinase receptor (A, B or C)                      |
| tRNA  | transfer RNA                                              |
| TRP   | transient receptor potential channels                     |
| Trp   | tryptophan (W)                                            |
| TTX   | tetrodotoxin                                              |
| Tyr   | tyrosine (Y)                                              |
| TZD   | thiazolidinedione                                         |
| Ubi   | ubiquitination                                            |
| UTR   | untranslated region                                       |
| Val   | valine (V)                                                |
| VDAC  | voltage dependent anion channel                           |
| VEGF  | vasculoendothelial growth facto                           |
| VFT   | venus flytrap                                             |
| vGLUT | vesicular glutamate transporter                           |
| VHL   | von Hippel-Lindau protein                                 |
| VIP   | vasoactive intestinal peptide                             |
| VLDL  | very low density lipoprotein                              |
| Vm    | membrane potential                                        |
| VOCC  | voltage-operated calcium channels                         |
| WNT4  | wingless-type mouse mammary tumour virus integration site |
| YAC   | yeast artificial chromosome                               |
| YFP   | yellow fluorescent protein                                |
| YORK  | yeast outward rectifying K <sup>+</sup> channel           |
| ZAC   | zinc-activated channel                                    |
| Zo-1  | zonula occludens-1 protein                                |

#### **POST-FIXes**

Chimeric antibodies—*xiMabs* 

Human antibodies—*muMbs* 

Humanised antibodies—*zumab* 

Monoclonal antibodies—*oMabs* 

## Chapter 1

### Introduction to Drug Targets and Molecular Pharmacology

1.1 Introduction to molecular pharmacology
1.2 Scope of this textbook
1.3 The nature of drug targets
1.4 Future drug targets
1.5 Molecular pharmacology and drug discovery
References

# **1.1 Introduction to molecular pharmacology**

During the past 30 years there have been significant advances and developments in the discipline of molecular pharmacology—an area of pharmacology that is concerned with the study of drugs and their targets at the molecular or chemical level. Major landmarks during this time include the cloning of the first G-protein coupled receptor (GPCR) namely the  $\beta_2$ -adrenergic receptor in 1986 (Dixon et al., 1986). This was quickly followed by the cloning of additional adrenergic receptor family genes and ultimately other GPCRs. The molecular biology explosion during the 1980s also resulted in the cloning of genes encoding ion channel subunits (e.g. the nicotinic acetylcholine receptors. The

cloning of numerous drug targets continued at a pace during the 1990s but it was not until the completion of the human genome project in 2001 that the numbers of genes for each major drug target family could be determined and fully appreciated. As would be expected, the cloning of the human genome also resulted in the identification of many potentially new drug targets. The completion of genome projects for widely used model organisms such as mouse (2002) and rat (2004) has also been of great benefit to the drug discovery process.

The capacity to clone and express genes opened up access to a wealth of information that was simply not available from traditional pharmacology-based approaches using isolated animal tissue preparations. In the case of GPCRs detailed expression pattern analysis could be performed using a range of molecular biology techniques such as *in situ* hybridisation, RT-PCR (reverse transcriptasepolymerase chain reaction) and Northern blottina. Furthermore having a cloned GPCR gene in a simple DNA plasmid made it possible for the first time to transfect and express GPCRs in cultured cell lines. This permitted detailed pharmacological and functional analysis (e.g. second messenger pathways) of specific receptor subtypes in cells not expressing related subtypes, which was often a problem when using tissue preparations. Techniques such as sitedirected mutagenesis enable pharmacologists to investigate structure-function relationships complex aimed at understanding, for example, which amino acid residues are crucial for ligand binding to the receptor. As cloning and expression techniques developed further it became possible to manipulate gene expression in vivo. It is now common practice to explore the consequences of deleting a specific gene either from an entire genome (knockout) or from a specific tissue/organ (conditional knockout). It is also possible to insert mutated forms of genes into an organism's

genome using knockin technology. These transgenic approaches allow molecular pharmacologists to study developmental and physiological aspects of gene function *in vivo* and in the case of gene knockin techniques to develop disease models.

The molecular biology revolution also enabled the development of novel approaches for studying the complex signal transduction characteristics of pharmacologically important proteins such as receptors and ion channels. These include reporter gene assays, green fluorescent protein (GFP) based techniques for visualising proteins in living cells and yeast two hybrid-based assays for exploring interactions. You will find detailed protein-protein explanations of these and other current molecular-based techniques throughout this textbook. Another maior breakthrough in the 2000s was the development of methods that allowed high resolution structural images of membraneproteins associated obtained from X-rav to be crystallography. During this time the first X-ray structures of GPCRs and ion channels were reported enabling scientists to understand how such proteins function at the molecular level. Indeed crystallography is an important tool in the drug discovery process since crystal structures can be used for in silico drug design. More recently researchers have used NMR spectroscopy to obtain a high-resolution structural information of the  $\beta_2$ -adrenergic receptor (Bokoch et al., 2010). A distinct advantage of NMR-based structural studies, which are already used for structural studies of other drug targets such as kinases, would be the ability to obtain GPCR dynamics and ligand activation data which is not possible using X-ray based methods. Some of the molecular pharmacology based approaches used to interrogate drug targets are outlined in Figure 1.1.

**Figure 1.1** Molecular pharmacology-based methods used to interrogate drug targets.



Despite this increased knowledge of drug targets obtained during the molecular biology revolution, there has been a clear slowdown in the number of new drugs reaching the market (Betz, 2005). However, since it takes approximately 15 years to bring a new drug to market it may be too early to assess the impact of the human genome project on drug discovery. In 2009 the global pharmaceutical market was worth an estimated \$815 billion. However during the next few years a major problem facing the pharmaceutical industry is the loss of drug patents on key blockbusters. The hope for the future is that the advances in molecular pharmacology witnessed during the last decade or so will start to deliver new blockbuster therapeutics for the twentyfirst century.

## **1.2 Scope of this textbook**

As briefly detailed above there have been numerous exciting developments in the field of molecular pharmacology. The scope of this textbook is to explore aspects of molecular pharmacology in greater depth than covered in traditional pharmacology textbooks (summarised in Figure 1.2). Recent advances and developments in the four major human drug target families (GPCRs, ion channels, nuclear receptors and transporters) are covered in separate chapters (Chapters 3-5 and 8). The molecular targets of anti-infective drugs (anti-bacterial and anti-viral) whilst of great importance are not covered in this book. Other chapters deal with the cloning of drug targets (Chapter 2) and transgenic animal technology (Chapter 10). The concept of gene therapy is explored in a case study-based chapter which looks at current and possible future treatment strategies for cystic fibrosis, the commonest lethal genetic of Caucasians (Chapter 6). Another disease maior development in molecular pharmacology has been the discipline of pharmacogenomics: the study of how an individual's genetic makeup influences their response to therapeutic drugs (Chapter 7). These naturally occurring variations in the human genome are caused predominantly polymorphisms nucleotide sinale (DNA variation bv involving a change in a single nucleotide) and there is a major research consortium aimed at documenting all the common variants of the human genome (The International HapMap project). The information from the project, which is freely available on the internet, will enable scientists to understand how genetic variations contribute to risk of disease and drug response. Finally, we take an in depth look at the role of calcium in the cell, looking at techniques used to measure this important second messenger (Chapter 9).

**Figure 1.2** Drug targets within the central dogma of molecular biology. To date the majority of conventional therapeutics target a relatively small group of protein families that include G-protein coupled receptors, ion channels, and transporters. Novel therapeutic strategies include blocking translation of mRNA into protein using antisense oligonucleotide and/or RNA interference technology. Gene transcription can also be targeted via the activation/inhibition of nuclear receptor function. The chapters covering these topics are indicated.



## 1.3 The nature of drug targets