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Preface

Plasma medicine has inspired the last decade of the authors’ professional activities at Drexel Plasma Institute
of the Drexel University. Plasma medicine is a very exciting and new multidisciplinary branch of modern
science and technology. Even the term ‘plasma medicine’ has only been in existence since the start of the
21st century. Plasma medicine embraces physics required to develop novel plasma discharges relevant for
medical applications, medicine to apply the technology not only in vitro but also in vivo testing and, last but
not least, biology to understand the complicated biochemical processes involved in plasma interaction with
living tissues.

While an understanding of the mechanisms by which non-thermal plasma interacts with living systems
has begun to emerge only recently, a significant number of journal publications and even reviews focused
on plasma medicine have appeared during the last 5-10 years. Several prestigious journals have published
special issues dedicated to the topic, the new Plasma Medicine journal has been recently inaugurated,
multiple world symposiums have created special sessions in this new field and plasma medical workshops
have been organized in the USA, Germany, France, Korea, Japan, China and other countries. Four successful
International Conferences on Plasma Medicine (ICPM) took place during the last 7 years in the USA,
Germany and France; the 5th ICPM is planned to be held in Japan. Finally, the International Society on
Plasma Medicine has been organized to coordinate the efforts of physicist, chemists, biologists, engineers,
medical doctors and representatives of the industry working in this new field.

Despite the tremendous interest in plasma medicine, no single monograph has published in this field. There
is no book where recent developments in plasma medicine, both technological and scientific, are described
in a fashion accessible to the highly interdisciplinary audience of doctors, physicists, biologists, chemists
and other scientists, university students and professors, engineers and medical practitioners. This is exactly
the goal of the present Plasma Medicine book. The book is written for numerous scientists and medical
practitioners, students, professors and industrial professionals who are involved today in plasma medicine.

When writing the book, we kept in mind the multidisciplinary nature of the field of plasma medicine.
Physicists, chemists and engineers should be able to learn the different terminology of their biologist and
medical practitioner partners, and vice versa. The book is beneficial to sides and should promote more
effective development of the field of plasma medicine. The subject of plasma medicine has recently been
included in the academic curriculum of universities, and we hope that the book will be helpful in this regard
to students (as well as professors) involved in plasma-medical education.

Plasma Medicine consists of 11 chapters; Chapters 1-5 are focused on the fundamentals of plasma
medicine and Chapter 6-11 are focused on applied plasma medicine.

Chapter 1 introduces the subject of plasma medicine. Chapter 2 describes the fundamental physical and
chemical processes in plasmas relevant to its interaction with living tissues, providing a basic introduction to
plasma medicine. Chapter 3 describes fundamental biology relevant to an understanding of the major principles
of plasma interaction with living tissues. This topic covers the basic biological and medical introduction to
plasma medicine, and will help physicists and engineers understand that even simple living organisms are
much more complicated than electric devices. Chapter 4 describes plasma physics and engineering of the
systems and devices relevant for medical applications. This chapter covers physical, chemical and engineering
aspects of major electric discharges used for plasma—medical applications. In chapter 5, a description of the
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biophysical and biochemical mechanisms of plasma interaction with living tissues is provided. This chapter
enables an understanding of the kinetics of plasma interaction with eukaryotic and prokaryotic cells, starting
from gas phase and surface processes stimulated by active plasma species and including the consequent
biochemical processes inside the cells.

Chapters 6 and 7 describe plasma sterilization of inanimate surfaces, as well as plasma sterilization of
water and air. These chapters cover multiple applications of different low-pressure and atmospheric-pressure
non-thermal discharges for disinfection and sterilization of different surfaces (e.g. medical instruments, food,
space-crafts etc.); natural, drinking and industrial water; and large-volume air flows. Chapter 8 is focused
on plasma-induced cauterization and blood coagulation. Plasma control of blood composition and relevant
plasma treatment of blood diseases is also discussed in this chapter. Chapter 9 describes plasma treatment
and healing of different wounds and diseases, in particular, plasma abatement of skin, dental and internal
infections, treatment and healing of wounds and plasma treatment of oncological (cancerous), gastrointestinal,
cardiovascular and other diseases. Chapter 10 describes plasma pharmacology, which suggests preliminary
plasma treatment of water or special organic or inorganic solutions. These plasma-treated solutions can then
be utilized for sterilization or healing purposes. The last chapter is focused on basic aspects of plasma-medical
tissue engineering. This topic covers major modern aspects of plasma treatment of biomaterials and plasma-
supported tissue engineering. This very important topic of applied plasma medicine is not directly related
to plasma interaction with living tissue. This part of modern plasma medicine is very interesting, significant
and relatively better developed (in particular, by our colleagues from University of Bari) than other branches;
only a concise review of the subject is provided in this book.

Instructors can access PowerPoint files of the illustrations presented within this text, for teaching, at
http://booksupport.wiley.com.

Alexander Fridman and Gary Friedman
Philadelphia
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Introduction to Fundamental and Applied
Aspects of Plasma Medicine

1.1 Plasma medicine as a novel branch of medical technology

New ideas bring new hopes: plasma medicine is definitely one of those. Recent developments in physics
and engineering have resulted in many important medical advances. The various medical technologies
that have been widely described in the existing literature include applications of ionizing radiation, lasers,
ultrasound, magnetism, and others. Plasma technology is a relative newcomer to the field of medicine.
Very recent exponential developments in physical electronics and pulsed power engineering have promoted
consequent significant developments in non-thermal atmospheric-pressure plasma science and engineering.
Space-uniform and well-controlled cold atmospheric-pressure plasma sources have become a reality, creating
the opportunity to safely and controllably apply plasma to animal and human bodies. This has instigated the
creation of a novel and exciting area of medical technolgy: plasma medicine.

Experimental work conducted at several major universities, research centers, and hospitals around the world
over the last decade demonstrates that non-thermal plasma can provide breakthrough solutions to challenging
medical problems. It is effective in sterilization of different surfaces including living tissues, disinfects large-
scale air and water streams, deactivates dangerous pathogens including those in food and drinks, and is
able to stop serious bleeding without damaging healthy tissue. Non-thermal plasma can be directly used
to promote wound healing and to treat multiple diseases including skin, gastrointestinal, cardiovascular,
and dental diseases, as well as different forms of cancer. It has also proven effective in the treatment of
blood, controlling its properties. Non-thermal discharges have also proven to be very useful in the treatment
of different biomaterials and in tissue engineering, tissue analysis and diagnostics of diseases. Research
indicates that non-thermal plasma may prove to be useful in pharmacology by changing properties of existing
drugs and creating new medicines. Non-thermal plasma, developed recently due to the rapid progress in
electronics, is clearly a promising new tool which should be provided to medical doctors to resolve medical
problems. Plasma medicine, the subject of this book, is a source of great interest today.

When talking about the novel plasma sources which it is possible to apply to human and animal bodies, as
well as for the treatment of cells and tissues in detailed biomedical experiments, we have to stress the safety
and controllability of these novel plasma devices. As an example, the floating-electrode dielectric barrier
discharge (FE-DBD) plasma source widely used for medical applications, in particular in Drexel University,
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Figure 1.1  Non-thermal short-pulsed 40 kV FE-DBD plasma sustained directly between a dielectric-coated
electrode and a human body (see color plate).

applies c. 30-40 kV directly to the human body (see one of the authors of this book in Figure 1.1). Obviously,
safety is the main issue in this case. Of no less importance is the controllability of the plasma parameters. The
uniform cold atmospheric-pressure plasmas as well as some other plasma-medical devices developed recently
can be effectively controlled; this is important not only for prescribing specific doses of medical treatment,
but also for investigation of the mechanisms of plasma-medical treatment. Without detailed understanding of
physical, chemical, and biomedical mechanisms, plasma tools have little chance of successful application in
medicine.

Non-thermal plasma is very far from thermodynamic equilibrium, which is discussed below. Such strongly
non-equilibrium medium can be very ‘creative’ in its interactions with biomolecules. As first demonstrated
in the 1950s by Stanley Miller (see Figure 1.2) and his colleagues from the University of Chicago, plasma is
even able to generate amino acids from methane and inorganics. It is very much possible that plasma, being a
strongly non-equilibrium and multi-parametric medium, can even be responsible for the creation of life itself.
Recent experiments prove that controllable changes of DNA after non-thermal plasma treatment are very
sensitive to plasma parameters. This explains the great importance of the controllability of plasma parameters
and a deep understanding of mechanisms for successful progress of plasma-medical science. The success
of plasma medicine requires a detailed understanding of physical, chemical, and biomedical mechanisms
of the strongly non-equilibrium plasma interaction with cells and living tissues. Without a fundamental
understanding, plasma medicine is at risk of become a modernized medieval magic (see Figure 1.3).

Plasma medicine is a multidisciplinary branch of modern science and technology. It embraces physics
(required to develop novel plasma discharges relevant for medical applications), medicine (to apply the
technology for not only in vitro but also in vivo testing), and last but not least biology (to understand the
complicated biochemical processes involved in plasma interaction with living tissues). While an understanding
of the mechanisms by which non-thermal plasma can interact with living systems has begun to emerge only
recently, a significant number of original journal publications and even reviews have appeared since the
mid-2000s. Several prestigious journals have published special issues dedicated to the plasma medicine, the
new Plasma Medicine journal has been recently launched, multiple world symposiums have created special
sessions in this new field, and plasma-medical workshops have been organized in the USA, Germany, France,
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Figure 1.2 In the 1950s, Stanley Miller of the University of Chicago synthesized amino acids in plasma from
methane and inorganic compounds (see color plate).

Figure 1.3 International Society for Plasma Medicine (ISPM) signifies crucial importance of deep and detailed
research focused on fundamental understanding of physical, chemical and biological bases of plasma medicine.
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Korea, Slovakia, and other countries. The most important world forum of plasma-medical research is the
International Conferences on Plasma Medicine (ICPM). Four of these biannual conferences have already
been successfully organized: ICPM-1 in Corpus Christi, Texas, USA; ICPM-2 in San-Antonia, Texas, USA;
ICPM-3 in Greifswald, Germany; and finally ICPM-4 in Orleans, France in 2012. Finally, the International
Society on Plasma Medicine was launched this year (2012) to coordinate the efforts of physicist, chemists,
biologists, engineers, medical doctors and representatives of the industry in the new field of plasma medicine.

Hopefully, this book will be helpful to this entire and very multidisciplinary group of researchers and
industry representatives. Plasma scientists and medical doctors speak different languages; they even have
two different meanings for the word ‘plasma’ itself. Plasma scientists, medical doctors and biologists often
have very different approaches to fundamental knowledge as well as practical applicability, but this book
recognizes that they are united by a mutual interest in this new field of plasma medicine and by the common
idea that development of plasma medicine brings new opportunities for treating human conditions.

1.2 Why plasma can be a useful tool in medicine

While the term ‘medicine’ in the title of the book does not require a special introduction, the term ‘plasma’
may require some elucidation (especially for medical practitioners). Plasma is an ionized gas and a distinct
fourth state of matter. ‘lonized’ means that at least one electron is not bound to an atom or molecule, converting
them into positively charged ions. As temperature increases, atoms and molecules become more energetic
and the state of matter transforms in the sequence: solid to liquid, liquid to gas and finally gas to plasma,
which justifies the label of ‘fourth state of matter’.

The free electric charges, electrons and ions make plasma electrically conductive (with magnitudes of
conductivity sometimes exceeding that of gold and copper), internally interactive, and strongly responsive
to electromagnetic fields. Ionized gas is defined as plasma when it is electrically neutral (electron density is
balanced by that of positive ions) and contains a significant number of electrically charged particles, sufficient
to affect its electrical properties and behavior. In addition to being important in many aspects of our daily
lives, plasmas are estimated to constitute more than 99% of the known universe.

The term ‘plasma’ was first introduced by Irving Langmuir in 1928 when the multi-component, strongly
interacting ionized gas reminded him of blood plasma; the term ‘plasma’ itself therefore has a strong relation
to medicine. This can however be confusing: for example, read the discussions regarding plasma treatment
of blood plasma in Chapter 8 of this book. Defining the term plasma, Irving Langmuir wrote: “Except near
the electrodes, where there are sheaths containing very few electrons, the ionized gas contains ions and
electrons in about equal numbers so that the resultant space charge is very small. We shall use the name
plasma to describe this region containing balanced charges of ions and electrons”. Plasmas occur naturally,
but can also be effectively produced in laboratory settings and in industrial or hospital operations, providing
opportunities for numerous applications including thermonuclear synthesis, electronics, lasers, fluorescent
lamps, cauterization and tissue ablation during surgeries, and many others. We remind the reader that most
computer and cell-phone hardware is based on plasma technology, not to forget about the plasma TV. In this
book, we will focus on the fundamental and practical aspects of plasma applications to medicine, biology, and
related disciplines, which represent today probably the most novel and exciting component of plasma science
and engineering. Plasma is widely used in practice today. Generally, plasma offers three major features which
are attractive for major practical applications.

1. Temperatures and energy densities of some plasma components can significantly exceed those in con-
ventional technologies. These temperatures can easily exceed the level of c. 10 000 K. For example, if
melted ceramics are needed to make relevant coatings, requiring temperatures above 3000 K, there is no
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choice but to use plasma. In medical settings, high temperatures and energy densities can be useful for
cauterization and tissue ablation during surgery, for example.

2. Plasmas are able to produce a very high concentration of energetic and chemically active species (e.g.,
electrons, positive and negative ions, atoms and radicals, excited atoms and molecules, as well as photons
that span wide spectral ranges). A high concentration of active species is crucial for important plasma
applications such as plasma-assisted ignition and combustion (probably the oldest plasma application) and
plasma generation of ozone for water cleaning. In medical settings, generation of the high concentration
of excited and reactive species can be useful for sterilization of surfaces, air, and water streams, as well
as for tissue engineering.

3. Plasma systems can be very far from thermodynamic equilibrium, providing an extremely high concen-
tration of the chemically active species while maintaining bulk temperatures as low as room temperature.
This feature determines exclusiveness of plasma use in microelectronics and semiconductor industries:
most elements of modern computers, cell phones, television equipment, cold lighting, and other elec-
tronic devices are manufactured using cold plasma technology. This important feature also determines
the wide application of cold plasma in treatment of polymers: most textiles for our clothes, photographic
paper, wrapping materials and so on are today plasma treated. In medical settings, the generation of
an extremely high concentration of the chemically active species, while maintaining bulk temperatures
as low as room temperature, can be useful for: non-thermal blood coagulation; corrections of blood
composition and properties; sterilization of skin and other living tissues; healing wounds; and treating
diseases not effectively treated before.

The three specific plasma features described above permit significant intensification of traditional chemical
and biochemical processes, improvements in their efficiency, and often successful stimulation of chemical
and biochemical reactions that are not possible using conventional techniques.

1.3 Natural and man-made, completely and weakly ionized plasmas

Plasma comprises the majority of the mass in the known universe: the solar corona, solar wind, nebula, and
the Earth’s ionosphere are all plasmas. The most readily recognized form of natural plasma phenomenon in
the Earth’s atmosphere is lightning. The breakthrough experiments with this natural form of plasma were
performed long ago by Benjamin Franklin (Figure 1.4), which explains the special interest in plasma research
in the Philadelphia area where the authors of this book are based (Drexel Plasma Institute, Drexel University).

At altitudes of approximately 100 km, the atmosphere no longer remains non-conducting due to significant
ionization and formation of plasma by solar radiation. As one progresses further into near-space altitudes, the
Earth’s magnetic field interacts with charged particles streaming from the sun. These particles are diverted
and often become trapped by the Earth’s magnetic field. The trapped particles are most dense near the poles,
creating the beautifully rendered Aurora Borealis (Figure 1.5). Lightning and the Aurora Borealis are the
most common forms of natural plasmas observed on earth.

Natural and man-made or manufactured plasmas (generated in gas discharges) occur over a wide range
of pressures, electron temperatures, and electron densities (see Figure 1.6). Temperatures of manufactured
plasmas range from slightly above room temperature to temperatures comparable to the interior of stars, with
electron densities that span over 15 orders of magnitude. Most plasmas of practical significance, however,
have electron temperatures of 1-20 eV with electron densities in the range 10°~10'® cm~3 (high temperatures
are conventionally expressed in electron-volts, with 1 eV ¢. 11 600 K).

Not all particles need to be ionized in plasma; a common condition in plasma chemistry is for the gases to be
only partially ionized. The ionization degree (ratio of density of major charged species to that of neutral gas)
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Figure 1.4 Benjamin Franklin successfully performed the first experiments with the atmospheric plasma phe-
nomenon of lightning.

in conventional plasma-chemical systems is in the range 10~'—=10~*. When the ionization degree is close to
unity, such plasma is referred to as completely ionized plasma. Completely ionized plasmas are conventional
for thermonuclear plasma systems (tokomaks, stellarators, plasma pinches, focuses, etc.). When ionization
degree is low, the plasma is called weakly ionized plasma. Weakly ionized plasmas and the important chemical
and biochemical processes stimulated in such plasmas is the focus of this book.

Figure 1.5 Aurora borealis.
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Figure 1.6  General chart of plasma temperatures and densities.

Both natural and manufactured or man-made laboratory plasmas are quasi-neutral, which means that
concentrations of positively charged particles (positive ions) and negatively charged particles (electrons and
negative ions) are well balanced. Langmuir was one of the pioneers who studied gas discharges, and defined
plasma to be a region not influenced by its boundaries. The transition zone between the plasma and its
boundaries was termed the plasma sheath. The properties of the sheath differ from those of the plasma and
these boundaries influence the motion of the charge particles in this sheath. They form an electrical screen
for the plasma from influences of the boundary. Very important concepts group plasma physics, plasma
chemistry, and plasma medicine into two major classes — those of thermal and non-thermal plasmas — which
are discussed in the following section.

1.4 Plasma as a non-equilibrium multi-temperature system

Temperature in plasma is determined by the average energies of the plasma particles (neutral and charged)
and their relevant degrees of freedom (translational, rotational, vibrational, and those related to electronic
excitation). As multi-component systems, plasmas are therefore able to exhibit multiple temperatures. In
electric discharges common for plasmas generated in the laboratory, energy from the electric field is first
accumulated by the electrons through collisions; it is subsequently transferred from the electrons to the heavy
particles. Electrons receive energy from the electric field during their mean free path. During the following
collision with a heavy particle, they only lose a small portion of that energy (because electrons are much
lighter than the heavy particles). That is why electron temperature in plasma is initially higher than that of
heavy particles. Subsequently, collisions of electrons with heavy particles (Joule heating) can equilibrate their
temperatures unless time or energy are not sufficient for the equilibration (such as the situation in coronas
and pulsed discharges), or there is an intensive cooling mechanism preventing heating of the entire gas (as
for wall-cooled low-pressure discharges).
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Figure 1.7  Solar plasma.

The temperature difference between electrons and heavy neutral particles due to Joule heating in the
collisional weakly ionized plasma is conventionally proportional to the square of the ratio of the electric field
(E) to the pressure (p). Only in the case of small values of E/p, the temperatures of electrons and heavy particles
approach each other. This is a basic requirement for the so-called local thermodynamic equilibrium (LTE) in
plasma. Additionally, LTE conditions require chemical equilibrium as well as restrictions on the gradients.
The LTE plasma follows major laws of the equilibrium thermodynamics and can be characterized by a single
temperature at each point of space. lonization and chemical processes in such plasmas are determined by
temperature (and only indirectly by the electric fields through Joule heating). The quasi-equilibrium plasma
of this kind is usually called thermal plasma. In nature, thermal plasmas can be represented by solar plasma
(see Figure 1.7).

Numerous plasmas are sustained very far from the thermodynamic equilibrium and are characterized by
multiple temperatures related to different plasma particles and different degrees of freedom. The electron
temperature often significantly exceeds those of heavy particles (T, > Tp). Ionization and chemical processes
in such non-equilibrium plasmas are directly determined by electron temperature, and are therefore not very
sensitive to thermal processes and temperature of the gas. The non-equilibrium plasma of this kind is usually
referred to as non-thermal plasma. Non-thermal plasmas in nature are represented by the Aurora Borealis
(see Figure 1.5) as opposed to thermal plasmas which are represented by lightening.

Although the relation between different plasma temperatures in non-thermal plasmas can be complex,
it can be conventionally presented in the collisional weakly ionized plasmas as: T, > T, > T, =~ T; =~ Tj.
Electron temperature T is the highest in the system, followed by the temperature of vibrational excitation
of molecules 7. The lowest temperature is usually shared in plasma by heavy neutrals (T}, temperature of
translational degrees of freedom or simply bulk gas temperature), ions (7;), and rotational degrees of freedom
of molecules (7;). In many non-thermal plasma systems, electron temperature is c¢. 1 eV (c. 10 000 K), while
gas temperature is close to room temperature.

Non-thermal plasmas are usually generated either at low pressures, at lower power levels, or in a different
kind of pulsed discharge systems. The engineering aspects and application realms are quite different for
thermal and non-thermal plasmas. Thermal plasmas are usually more powerful (up to 30 MW and above),
while non-thermal plasmas are more selective and can be used in delicate applications without degrading the
surrounding environment. However, these diverse forms of ionized gases share many common characteristics.
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It is interesting to note that both thermal and non-thermal plasmas usually have the highest temperature (7. in
one case and T in the other) of the order of magnitude of 1 eV, which is c. 10% of the total energy required
for ionization (c. 10 eV). This reflects the general axiom formulated by Zeldovich and Frank-Kamenetsky for
atoms and small molecules in chemical kinetics: the temperature required for a chemical process is typically
c. 10% of the total required energy, which is the Arrhenius activation energy. Plasma temperatures can be
somewhat identified as the ‘down payment’ for the ionization process (since a similar rule i.e. that of 10% is
usually applied to calculate a down payment for a mortgage).

Thermal and non-thermal plasmas have their own specific niches for biological and medical applications.
High temperatures and high energy densities typical of thermal plasmas determine their applications for
cauterization and tissue ablation during surgeries. Such devices are widely used today in medical practice;
some of them even combine the above-mentioned features with tissue sterilization. Thermal plasma in air
is also very productive in the generation of NO, which determines its application in the so-called plasma-
induced NO-therapy effective in plasma treatment of wounds and different diseases. Non-thermal plasma
permits the generation of an extremely high concentration of the chemically active species, while maintaining
bulk temperatures as low as room temperature. It determines the specific application niche of the non-thermal
plasma, which is usually: non-thermal blood coagulation and corrections of blood composition and properties;
sterilization of skin and other living tissues; sterilization of medical instruments and other fragile materials and
devices; processing of biopolymers; tissue engineering; and finally non-thermal plasma healing of wounds
and different diseases not effectively treated before.

1.5 Gas discharges as plasma sources for biology and medicine

Plasma medicine is based on a sequence of plasma-chemical and biochemical processes involving ionized
gases. A plasma source, which in most laboratory conditions is a gas discharge, therefore represents a physical
and engineering basis of the plasma medicine. For simplicity, an electric discharge as a plasma source in
general can be viewed as two electrodes inserted into a glass tube and connected to a power supply. The tube
can be filled with various gases or evacuated. As the voltage applied across the two electrodes increases,
the current suddenly increases sharply at a threshold voltage required for sufficiently intensive electron
avalanches. If the pressure is low (of the order a few Torr) and the external circuit has a large resistance to
prohibit a large current, a glow discharge develops. This is the low-current high-voltage discharge widely
used to generate non-thermal plasmas. A similar discharge is the basis of operation for fluorescent lamps,
a common plasma discharge device. The glow discharge can be considered as a major example of the low-
pressure non-thermal plasma sources (see Figure 1.8). Low-pressure plasma discharges can be effective as
UV sources or sources of some active species for sterilization. They can be also effective for the treatment of
biopolymers and in tissue engineering. It should be mentioned that, to keep treatment areas clean from the
products of erosion of electrodes, low-pressure plasma-medical technologies are often based on electrode-less
low-pressure plasma sources such as low-pressure radio-frequency plasma sources.

Historically, some important developments in the area of plasma medicine probably started with the work
on surface treatment and subsequent surface interactions with cells (e.g. the work carried out by the groups of
Riccardo D’ Agostino, Pietro Favia and Michael Wertheimer) and sterilization using low-pressure non-thermal
plasma (e.g. the work carried out by the group led by Michel Moisan).

Most plasma-medical applications require operation at atmospheric pressure, therefore use of atmospheric-
pressure plasma discharges. Igor Alexeff and Mounir Laroussi were some of the first researchers to employ
atmospheric-pressure plasma for sterilization, while Eva Stoffels was probably one of the first to apply such
discharges directly to cells. Dr. Richard Satava, who managed various projects at the Defense Advanced
Research Projects Agency (DARPA), helped develop initial applications of non-thermal plasma in medicine
in the United States.
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Figure 1.8 Clow discharge.

Probably the simplest example of such discharges is the corona discharge (see Figure 1.9). A non-thermal
corona discharge occurs at high pressures (including atmospheric pressure) in regions of sharply non-uniform
electric fields. The field near one or both electrodes must be stronger than in the rest of the gas. This occurs
near sharp points, edges or small diameter wires. These tend to be low-power plasma sources, limited by
the onset of electrical breakdown of the gas. However, it is possible to circumvent this restriction through

Figure 1.9  Corona discharge.



