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Preface

This book is about the dynamics of vibro-impact oscillators. Vibro-impact systems extensively
exist in engineering and physics. Such vibro-impact systems possess the continuous charac-
teristics as continuous dynamical systems and discrete characteristics by impact discontinuity.
Such properties require an appropriate development of discrete maps for such vibro-impact
systems to investigate the corresponding complex motions. The rich dynamical behaviors in
vibro-impact systems drew the authors’ attention on nonlinear dynamical systems. In addi-
tion, a better understanding of such vibro-impact systems helps one study nonlinear dynamical
systems with discontinuity in engineering and physics.

In 1964, Professor Weiwu Deng experimentally studied the lathe vibration reduction through
impact dampers, which originated from the flutter reduction of airplane wines in Russia in
the 1930s. Professor Deng found the optimal vibration reduction of the lathes is between 0.6
and 0.8 of the impact restitution coefficient with potential maximum energy dissipation. To
further understand the dynamical mechanism of such impact dampers and extend applications
in engineering, in 1987 Professor Deng invited the first author to work on this problem with
him. After literature survey and experimental setup, it was crucial to develop an appropriate
mathematical model to describe the impact dampers and to catch all possible complex motions.
Since then, the first author has been working on this topic. Herein he would like to share
what his group observed during the past 30 years with other scientists and engineers in
vibro-impact systems.

This book mainly focussed on analytical prediction and physical mechanisms of complex
motions in vibro-impact systems. After literature survey, in the next two chapters, the theory
for nonlinear discrete systems is presented from the recent development of the first author
primarily, including the Ying-Yang theory of discrete dynamical systems based on the positive
and negative maps in discrete dynamical systems. The complete dynamics of nonlinear discrete
dynamical systems is discussed and applied to one- and two-dimensional discrete systems,
and a geometric method is discussed for the fractality and complexity of chaos in discrete
dynamical systems. From the recent development of the first author, in Chapter 4, the theory
of discontinuous dynamical systems is presented as a foundation of studying the dynamics
of vibro-impact systems. In Chapter 5, bouncing ball dynamics is discussed as one of the
simplest problems in vibro-impact systems to show the corresponding physical motions in
this simple model. The dynamics for bouncing initiation and impacting chatter vanishing with
stick motion is presented for the first time, which is significant in engineering application.
After discussing the bouncing ball with the single map, a simple version of an impact damper
is presented in Chapter 6 to show how to develop the complex periodic motions analytically.



x Preface

The motion switching from one motion to another is discussed through the gazing phenomena.
In Chapter 7, the nonlinear dynamics of the Fermi oscillator is discussed as an application in
physics. The methodology presented in this book can be applied to other vibro-impact systems
in general, and discontinuous dynamical systems in science and engineering.

Finally, the authors would like to thank their family’s support for this work, and this book is
also dedicated to Professor Weiwu Deng as a good teacher, colleague and friend. The authors
hope the materials presented herein will prove durable in the field of science and engineering.

Albert C. J. Luo
Yu Guo

Edwardsville, Illinois, USA



1
Introduction

This book is about the dynamics of vibro-impact oscillators. Vibro-impact systems extensively
exist in engineering. Such vibro-impact systems possess the continuous characteristics such
as continuous dynamical systems and discrete characteristics by impact discontinuity. Such
properties require an appropriate development of discrete maps for such vibro-impact systems
to investigate the corresponding complex motions. In this book, a systematic way will be devel-
oped through a few simple vibro-oscillators in order to understand the physics of vibro-impact
systems in engineering. Before discussing the nonlinear dynamical phenomena and behaviors
of vibro-impact oscillators, the theory for nonlinear discrete systems will be presented, and
the complete dynamics of nonlinear discrete dynamical systems will be presented, which will
be applied to one- and two-dimensional discrete systems, and the a geometric method will be
presented to determine the fractality and complexity of chaos in discrete dynamical systems.
The theory of discontinuous dynamical systems will be presented as a base from which to study
vibro-impact dynamics in engineering. Bouncing ball dynamics will be analytically discussed
first and the physical motions shown in a simple model. To understand the chaotic dynamics
of a bouncing ball, complex motions in a bouncing ball will be discussed. After discussing the
bouncing ball with the single map, a simple version of an impact damper will be presented to
show how to develop the complex periodic motions analytically. The Fermi-accelerator will be
discussed in detail for application. In this chapter, a brief review about the discrete and discon-
tinuous dynamical systems will be given first, and a brief history of Fermi-oscillators and vibro-
impact oscillators will be presented. The book layout and the chapter summary will be given.

1.1 Discrete and Discontinuous Systems

A brief view of recent developments in discrete dynamical systems and discontinuous dynam-
ical systems will be presented herein.

1.1.1 Discrete Dynamical Systems

Consider an n-dimensional discrete dynamical system defined by an implicit vector function
f : D → D on an open set D ⊂ �n, where the vector function is f = ( f1, f2, . . . , fn)

T ∈ �n
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2 Vibro-impact Dynamics

and variable vector is xk = (xk1, xk2, . . . , xkn)
T ∈ D. For xk, xk+1 ∈ D, there is a discrete rela-

tion as

f(xk, xk+1, p) = 0 (1.1)

with a parameter vector p = (p1, p2, . . . , pm)T ∈ �m.
From the aforementioned discrete dynamical system, nonlinear algebraic equations are

used to describe relations between two states of dynamical systems in phase space. Using such
discrete relations, if one of two states is given, the rest can be determined but is not unique
because the relations are given by nonlinear algebraic equations. In other words, if a final
state is given, one can find multiple initial states to satisfy such nonlinear algebraic equations.
On the other hand, if an initial state is given, one can find multiple final states to satisfy the
nonlinear algebraic equations. For a specific set of parameters, it is very difficult to find the
multiple initial or final states globally. One often uses the roughly estimated values as guessed
values with linearization to resolve this puzzle. Such a computation can be done locally by
the computer. For global behaviors, the discrete states in nonlinear discrete systems become
more chaotic.

The nonlinear discrete systems are obtained from the nonlinear difference equations of
dynamical systems. The complex dynamical behaviors in such nonlinear discrete systems are
observed through the cascade of stable solutions. May (1976) used a one-dimensional discrete
map to describe the dynamical processes in biological, economic and social science. The
Henon map in the discrete-time dynamic system was introduced by Henon (1976) to simplify
the three-dimensional Lorenz equations as a Poincare map, and chaos in such a discrete
system was observed numerically by Henon. Such numerical results stimulated more attention
on the Henon map. Feigenbaum (1978, 1980) discussed the universal behaviors of one-
dimensional systems and qualitatively determined the universal constants for chaos. Marotto
(1979) mathematically proved the existence of chaotic behaviors of the Henon map for certain
parameters. Curry (1979) used Lyapunov characteristic exponent and frequency spectrum
to measure the chaotic behaviors of the Henon map. Collet, Eckmann, and Koch (1981)
presented a generalized theory of period-doubling bifurcations in high-dimensional dynamical
systems. Cvitanovic, Gunaratne, and Procaccia (1988) investigated topologic properties and
multifractality of the Henon map. Luo and Han (1992) presented a geometric approach for the
period doubling bifurcation and multifractality of a general one-dimensional iterative map.
Gallas (1993) numerically investigated the parameter maps for the Henon map. Zhusubaliyev
et al. (2000) did the bifurcation analysis of the Henon map and presented a more detailed
parameter map. The aforementioned investigations were based on the numerical computation.
Gonchenko, Meiss, and Ovsyannikov (2006) discussed the three-dimensional Henon map
generated from a homoclinic bifurcation. Hruska (2006) developed a numerical algorithm to
model the dynamics of a polynomial diffeomorphism of C2 on its chain recurrent set, and
applied this algorithm to the Henon map. Gonchenko, Gonchenko, and Tatjer (2007) studied
the bifurcation behaviors of periodic solutions of the generalized Henon map, and proved the
existence of infinite cascades of periodic solutions in a generalized Henon map. Lorenz (2008)
adopted a random searching procedure to determine the parameter maps of periodic windows
embedded in chaotic solutions of Henon map. Luo (2005a) investigated the mapping dynamics
of periodic motions in a non-smooth piecewise system. Luo (2010) presented the Ying-Yang
theory in nonlinear discontinuous dynamics. The solutions in nonlinear discrete dynamical



Introduction 3

systems can be divided into the “Yang”, “Ying”, and “Ying-Yang” states. Thus one can obtain
the complete solution states for all the parameter regions. Luo and Guo (2010) discussed the
complete dynamics of a discrete dynamical system with a Henon map.

Consider a one-dimensional map,

P : xk → xk+1 with xk+1 = f (xk, p) (1.2)

where p is a parameter vector. To determine the period-1 solution (fixed point) of equation
(1.2), substitution of xk+1 = xk into equation (1.2) yields the periodic solution xk = x∗

k . The
stability and bifurcation of the period-1 solution is presented:

(i) Pitchfork bifurcation (period-doubling bifurcation)

dxk+1

dxk
= df (xk, p)

dxk

∣
∣
∣
∣
xk=x∗

k

= −1. (1.3)

(ii) Tangent (saddle-node) bifurcation.

dxk+1

dxk
= df (xk, p)

dxk

∣
∣
∣
∣
xk=x∗

k

= 1. (1.4)

With two conditions and fixed points xk = x∗
k , the critical parameter vector p0 on the cor-

responding parameter manifolds can be determined. The two kinds of bifurcation for one-
dimensional iterative maps are depicted in Figure 1.1. The pitchfork bifurcation involves an
infinite cascade of period doubling bifurcations with universal scalings. An exact renormal-
ization theory for period doubling bifurcation was developed in terms of a functional equation
by Feigenbaum (1978), and Collet and Eckmann (1980). Helleman (1980a, 1980b) employed
an algebraic renormalization procedure to determine the rescaling constants. f (xk, p) has a
quadratic maximum at xk = x0

k . If chaotic solution ensues at p∞ via the period-doubling bifur-
cation, the function xk+1 = f (xk, p∞) is rescaled by a scale factor α and self-similar structure
exists near xk = x0

k . Under the transition to chaos, the period doubling bifurcation can be
discussed where two renormalization procedures are presented, that is, the renormalization

p

kx

1
p

p

kx
1

p

(a) (b)

Figure 1.1 Bifurcation types: (a) period-doubling and (b) saddle-node
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group approach via the functional equation method outlined by Feigenbaum (1978) and the
algebraic renormalization technique described by Helleman (1980a, 1980b).

For two-dimensional invertible maps, the transition from regular motion to chaos takes
place via a series of cascades of period-doubling bifurcations. Collet and Eckmann (1980)
introduced an exact renormalization method for this situation. However, this exact method
is not convenient to use for solving the practical problems. Therefore, Mackay (1983) and
Helleman (1980a, 1980b, 1983) have developed a simple analytical approach to renormalize
the period doubling bifurcation sequences of the two-dimensional iterative map. This method
is similar to the algebraic renormalization technique of one-dimensional iterative map as
presented before. For details, the reader can refer to the work of Eckmann and his co-workers.
For a conservative system, Eckmann (1981) developed an exact renormalization procedure
(see also Collet, Eckmann and Koch, 1981). Greene et al. (1981) carried out a more complete
study of two-dimensional Hamiltonian maps.

1.1.2 Discontinuous Dynamical Systems

Discontinuous dynamical systems extensively exist in engineering. For instance, in mechanical
engineering, there are two common and important contacts between two dynamical systems,
that is, impact and friction. For example, gear transmission systems possess impact and
frictions as a typical example. Such gear transmission systems are used to transmit power
between parallel shafts or to change direction. During the power transmission, a pair of two
gears forms a resultant dynamical system. Each gear has its own dynamical system connected
with shafts and bearings. Because two subsystems are without any connection, the power
transmission is completed through the impact and frictions. Because both subsystems are
independent of each other except for impacting and sliding together, such two dynamical
systems have a common time-varying boundary for impacts, which cause domains for the two
dynamical systems to be time varying.

In the early investigation, a piecewise stiffness model was used to investigate dynamics of
gear transmission systems. Such a dynamical system is discontinuous, but the corresponding
domains for vector fields of the dynamical system are time-independent. For instance, den
Hartog and Mikina (1932) used a piecewise linear system without damping to model gear
transmission systems, and the symmetric periodic motion in such a system was investigated.
For low-speed gear systems, such a linear model gave a reasonable prediction of gear-tooth
vibrations. With increasing rotation speed in gear transmission systems, vibrations and noise
become serious. Ozguven and Houser (1988) gave a survey on the mathematical models of
gear transmission systems. The piecewise linear model and the impact model were two of the
main mechanical models to investigate the origin of vibration and noise in gear transmission
systems. Natsiavas (1998) investigated a piecewise linear system with a symmetric tri-linear
spring, and the stability and bifurcation of periodic motions in such a system were analyzed
by the variation of initial conditions. From a piecewise linear model, the dynamics of gear
transmission systems were discussed in Comparin and Singh (1989), and Theodossiades and
Natsiavas (2000). Pfeiffer (1984) presented an impact model of gear transmissions, and the
theoretical and experimental investigations on regular and chaotic motions in the gear box
were carried out in Karagiannis and Pfeiffer (1991).

To model vibrations in gear transmission systems, Luo and Chen (2005) gave an analytical
prediction of the simplest, periodic motion through a piecewise linear, impacting system. In
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addition, the corresponding grazing of periodic motions was observed, and chaotic motions
were simulated numerically through such a piecewise linear system. From the local singularity
theory in Luo (2005b), the grazing mechanism of the strange fragmentation of such a piecewise
linear system was discussed by Luo and Chen (2006). Luo and Chen (2007) used the mapping
structure technique to analytically predict arbitrary periodic motions of such a piecewise lin-
ear system. In this piecewise linear model, it was assumed that impact locations were fixed,
and the perfectly plastic impact was considered. Separation of the two gears occurred at the
same location as the gear impact. Compared with the existing models, this model can give a
better prediction of periodic motions in gear transmission systems, but the related assump-
tions may not be realistic for practical transmission systems because all the aforementioned
investigations are based on a time-independent boundary or a given motion boundary. To
consider the dynamical systems with the time-varying boundary, Luo and O’Connor (2007a,
2007b) proposed a mechanical model to determine mechanism of impacting chatter and stick
in gear transmission systems. The analytical conditions for such impacting chatter and stick
were developed.

In mechanical engineering, the friction contact between two surfaces of two bodies is an
important connection in motion transmissions (for example, clutch systems, brake systems)
because two systems are independent except for friction contact. Such a problem possesses
time-varying boundary and domains. For such a friction problem, den Hartog (1931) inves-
tigated the periodic motion of the forced, damped, linear oscillator contacting a surface with
friction. Levitan (1960) investigated the existence of periodic motions in a friction oscillator
with a periodically driven base. Filippov (1964) discussed the motion existence of a Coulomb
friction oscillator, and presented a differential equation theory with discontinuous right-hand
sides. The differential inclusion was introduced via the set-valued analysis for the sliding
motion along the discontinuous boundary. Discontinuous differential equations with differ-
ential inclusion were summarized in Filippov (1988). However, the Filippov’s theory mainly
focused on the existence and uniqueness of solutions for non-smooth dynamical systems with
differential inclusion. A few approximate treatments of the discontinuous dynamical systems
were presented. Such a differential equation theory with discontinuity is difficult to apply to
practical problems. Luo (2005b) developed a general theory to handle the local singularity of
discontinuous dynamical systems. To determine the sliding and source motions in discontinu-
ous dynamical systems, the imaginary, sink and source flows were introduced in Luo (2005c).
The detailed discussions can be referred to Luo (2006, 2009a, 2011b).

On the other hand, Hundal (1979) used a periodic, continuous function to investigate the
frequency-amplitude response of such a friction oscillator. Shaw (1986) used the Poincaré
mapping to investigate non-stick, periodic motions of a friction oscillator. Feeny (1992)
presented a mechanical model to discuss the non-smoothness of the Coulomb friction oscillator.
To verify the mechanical model, Feeny and Moon (1994) investigated chaotic dynamics of
a dry-friction oscillator experimentally and numerically. Feeny (1996) gave a systematical
discussion of the nonlinear dynamical mechanism of stick-slip motion of friction oscillators.
Hinrichs, Oestreich, and Popp (1997) discussed the nonlinear phenomena in an impact and
friction oscillator under external excitations (also see, Hinrichs, Oestreich, and Popp, 1998).
Natsiavas (1998) presented an algorithm to numerically determine the periodic motion and the
corresponding stability of piecewise linear oscillators with viscous and dry friction damping
(also see, Natsiavas and Verros, 1999). Ko et al. (2001) investigated the friction-induced
vibrations with and without external excitations. Andreaus and Casini (2002) gave a closed
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form solution of a Coulomb friction-impact model without external excitations. Thomsen and
Fidlin (2003) gave an approximate estimate of response amplitude for stick-slip motion in
a nonlinear friction oscillator. Kim and Perkins (2003) investigated stick-slip motions in a
friction oscillator via the harmonic balance/Galerkin method. Li and Feng (2004) investigated
the bifurcation and chaos in a friction-induced oscillator with a nonlinear friction model.
Pilipchuk and Tan (2004) investigated the dynamical behaviors of a 2DOF mass-damper-
spring system contacting on a decelerating rigid strip with friction. Awrejcewicz and Pyryev
(2004) gave an investigation on frictional periodic processes by acceleration or braking of
a shaft-pad system. Hetzler, Schwarzer, and Seemann (2007) considered a nonlinear friction
model to analytically investigate the Hopf-bifurcation in a sliding friction oscillator with
application to the low frequency disk brake noise.

In the aforesaid investigations, the conditions for motion switchability to the discontinuous
boundary were not considered. Luo and Gegg (2006a) used the local singularity theory of Luo
(2005b, 2006) to develop the force criteria for motion switchability on the velocity boundary
in a harmonically driven linear oscillator with dry-friction (also see, Luo and Gegg, 2006b).
Through such an investigation, the traditional eigenvalue analysis may not be useful for motion
switching at the discontinuous boundary. Lu (2007) used the shooting method to show the
existence of periodic motions in such a friction oscillator. Luo and Gegg (2007a, 2007b, 2007c)
discussed the dynamics of a friction-induced oscillator contacting on time-varying belts with
friction. Many researchers still considered the friction model to analyze the disk brake system
(for example, Hetzler, Schwarzer, and Seemann, 2007). Luo and Thapa (2007) proposed a
new model to model the brake system consisting of two oscillators, and the two oscillators
are connected through a contacting surface with friction. Based on this model, the nonlinear
dynamical behaviors of a brake system under a periodical excitation were investigated.

The other developments in a non-smooth dynamical system should be addressed herein.
Feigin (1970) investigated the C-bifurcation in piecewise-continuous systems via the Floquet
theory of mappings, and the motion complexity was classified by the eigenvalues of map-
pings, which were referred to recent publications (for example, Feigin, 1995; di Bernardo
et al., 1999). The C-bifurcation is also termed as the grazing bifurcation by many researchers.
Nordmark (1991) used “grazing” terminology to describe the grazing phenomena in a simple
impact oscillator. No strict mathematical description was given, but the grazing condition (that
is, the velocity dx/dt = 0 for displacement x) in such an impact oscillator was obtained. From
Luo (2005b, 2006, 2009a, 2011b), such a grazing condition is a necessary condition only. The
grazing is the tangency between an n-D flow curve of the discontinuous dynamical systems
and the boundary surface. From a differential geometry point of view, Luo (2005a) gave
the strict mathematic definition of the “grazing”, and the necessary and sufficient conditions
of the general discontinuous boundary were presented (also see, Luo, 2006, 2009a, 2011b).
Nordmark’s result is a special case. Nusse and Yorke (1992) used the simple discrete mapping
from Nordmark’s impact oscillator and showed the bifurcation phenomena numerically. Based
on the numerical observation, the sudden change bifurcation in the numerical simulation is
called the so-called border-collision bifurcation. So, the similar discrete mappings in dis-
continuous dynamical system were further developed. Especially, Dankowicz and Nordmark
(2000) gave a discontinuous mapping in a general way to investigate the grazing bifurcation,
and the discontinuous mapping is based on the Taylor series expansion in the neighborhood
of the discontinuous boundary. Following the same idea, di Bernardo, Budd, and Champneys
et al. (2001a, 2001b), di Bernardo, Kowalczyk, and Nordmark (2002) developed a normal form
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to describe the grazing bifurcation. In addition, di Bernardo et al. (2001c) used the normal form
to obtain the discontinuous mapping and numerically observed such a border-collision bifur-
cation through such a discontinuous mapping. From such a discontinuous mapping and the
normal form, the aforementioned bifurcation theory structure was developed for the so-called,
co-dimension one dynamical system.

The discontinuous mapping and normal forms on the boundary were developed from the
Taylor series expansion in the neighborhood of the boundary. However, the normal form
requires the vector field with the Cr-continuity and the corresponding convergence, where
the order r is the highest order of the total power numbers in each term of normal form. For
piecewise linear and nonlinear systems, the C1-continuity of the vector field cannot provide
enough mathematical base to develop the normal form. The normal form also cannot be used
to investigate global periodic motions in such a discontinuous system. Leine, van Campen,
and van de Vrande (2000) used the Filippov theory to investigate bifurcations in nonlinear
discontinuous systems. However, the discontinuous mapping techniques were employed to
determine the bifurcation via the Floquet multiplier. More discussion about the traditional
analysis of bifurcation in non-smooth dynamical systems can be found in Zhusubaliyev and
Mosekilde (2003). From recent research, the Floquet multiplier also may not be adequate
for periodic motions involved with the grazing and sliding motions in non-smooth dynamical
systems. Therefore, Luo (2005b) proposed a general theory for the local singularity of non-
smooth dynamical systems on connectable domains (also see, Luo, 2006, 2009a, 2011b). From
recent developments in Luo (2008a, 2008b, 2008c), a generalized theory for discontinuous
systems on time-varying domains was presented in Luo (2009a). Further development of
discontinuous dynamical systems can be found in Luo (2011b). Such a theory will be used in
vibro-impact systems.

1.2 Fermi Oscillators and Impact Problems

The Fermi acceleration oscillator was first presented by Fermi (1949), which was used to
explain the very high energy of the cosmic ray. Since then, such an oscillator has been
extensively investigated to interpret many physical and mechanical phenomena. Ulam (1961)
pointed out the statistical properties of a particle in the Fermi oscillator. Zaslavskii and
Chirikov (1964) gave a comprehensive study of the Fermi acceleration mechanism in the one-
dimensional case. Lieberman and Lichtenberg (1972) discussed the stochastic and adiabatic
behavior of particles accelerated by periodic forcing, and the analysis was based on the
model presented by Zaslavskii and Chirikov (1964). The corresponding stability of periodic
motion was discussed. Such results can be found in Lieberman and Lichtenberg (1992).
Pustylnikov (1978) discussed the reducibility of the non-autonomous system in the normal
form in the neighborhood of an equilibrium point, and gave a detailed description of the
Fermi-acceleration mechanism (also see, Pustylnikov, 1995). Jose and Cordery (1986) studied
a quantum Fermi-accelerator consisting of a particle moving between a fixed wall and a periodic
oscillator. Celaschi and Zimmerman (1987) made an experimental investigation into observing
the period-doubling route to chaos for a one-dimensional system with two parameters. Kowalik,
Franaszek, and Pieranski (1988) made an experimental investigation into the chaotic behaviors
of a ball in the bouncing ball system, and used the Zaslavski mapping to give an analysis.
Luna-Acosta (1990) investigated the dynamics of the Fermi accelerator subject to a viscous
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friction. Warr et al. (1996) determined experimentally the probability distribution function
for a single-particle vibrating in one dimension. Saif et al. (1998) studied the dynamics
of both classical and quantum Fermi acceleration oscillators and determined the dynamical
localization of position and momentum for a modulation amplitude. Lopac and Dananic
(1998) investigated chaotic dynamics and energy conservation in a gravitationally driven Fermi
accelerator. Bouchet, Cecconi, and Vulpiani (2004) presented a simple stochastic system to
generate anomalous diffusion of both position and velocity for the Fermi accelerator. Ladeira
and da Silva (2008) completed scaling analysis on a Fermi-Ulam simplified accelerator, and
Leonel, McClintock, and da Silva (2004) discussed the effect of a time-dependent perturbation
on a Fermi accelerator model using the discrete dynamical systems. Leonel and McClintock
(2006) discussed the influence of dissipation on a simplified Fermi-Ulam accelerator model.
Leonel and de Carvalho (2007) presented the Fermi accelerator model with inelastic collisions
through a two-dimensional nonlinear area-contracting map. Karlis et al. (2007) investigated
the Fermi acceleration of an ensemble of non-interacted particles in two stochastic two-
moving walls in the Fermi-Ulam model. Leonel, da Silva and Kampherst (2004) discussed
the dynamical properties of a prototype for the Fermi acceleration through two nonlinear
terms. Kamphorst, Leonel, and da Silva (2007) numerically studied the energy change of a
particle bouncing in a time-varying billiard. Leonel and Livorati (2008) presented the average
velocities behavior on a dissipative Fermi acceleration model with a scaling approach and the
scaling characteristics of a breathing circular billiard was investigated by Ladeira and da Silva
(2008). All the aforesaid investigations were based on the one motion state with impact. The
motion switching was not considered.

Similar studies of impacting systems have also been carried out because impact is an im-
portant phenomenon in mechanical engineering. For instance, Holmes (1982) investigated
the dynamics of repeated impacts of a ball with a sinusoidal vibrating table. It was assumed
that the mass of the ball is much smaller than the mass of the table, and the ball and table
always impact at the same position. Bapat and Popplewell (1983) investigated the asymptot-
ically stable periodic motions of a ball in an impact-pair. Shaw and Holmes (1983) studied
harmonic, sub-harmonic and chaotic motions of a single-degree of freedom nonlinear oscil-
lator and analyzed the corresponding bifurcations. Whiston (1987) studied the steady-state,
vibro-impacting responses of a one-dimensional, harmonically excited, linear oscillator. Bapat
(1988) used the Fourier series and perturbation method to determine the stability regions of
two equi-spaced impacts and motion of an impact-pair under prescribed periodic displace-
ment. Nordmark (1991) studied the singularities caused by grazing impact in a single degree
of freedom impact oscillator. Foale and Bishop (1992) discussed a forced linear oscillator with
instantaneous impacts at one or two stops. Budd and Dux (1994) investigated the chattering
behavior of a periodically forced, single-degree-of-freedom impact oscillator with a restitu-
tion law for each impact. Foale (1994) tried to determine bifurcations in a sinusoidally driven
impact oscillator analytically. Bapat (1995) studied the motion of an inclined impact damper
with friction and collision on both sides. Luo and Han (1996) presented a reasonable model
to investigate the dynamical behaviors of a bouncing ball with a sinusoidally vibrating table.
Luo (2002) investigated the stability and bifurcation of unsymmetrical periodic motions in
a horizontal impact oscillator with a periodic excitation. Giusepponi, Marchesoni, and Bor-
romeo (2004) discussed the randomness of motion of the bouncing ball on a sinusoidally
vibrating table. Luo (2004) discussed the stability, saddle-node and period-doubling bifurca-
tions for the LR model motion in a horizontal impact oscillator. Luo (2005a) presented the
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mapping dynamics of periodic motions in a non-smooth piecewise system. To understand the
complexity in discontinuous dynamical systems, Luo (2005b, 2006) developed a theory of the
non-smooth dynamical systems on connectable and accessible sub-domains. Luo and Chen
(2006) applied such a theory to investigate the grazing bifurcations and periodic motions in
an idealized gear transmission system with impacts. Luo and Gegg (2006a, 2006b) used such
a theory to develop the force criteria of stick and non-stick motion in harmonically forced,
friction-induced oscillators. Luo (2007) discussed switching bifurcations of a flow to the sep-
aration boundary. Luo and Rapp (2007) used the switching bifurcations to study the switching
dynamics of flows from one domain into another adjacent domain in a periodically driven,
discontinuous dynamical system. Luo and O’Connor (2009a, 2009b) discussed the dynamics
mechanism of impact chatters and possible stick motions in a gear transmission system. It
was observed that the moving boundaries are controlled by other dynamical systems. The
dynamics mechanism of impact chatters and possible stick motions in a gear transmission
system were investigated. In the gear model, the two boundaries are movable. However, the
Fermi-acceleration oscillator possesses static and time-varying boundaries in phase space for
impacts and motion switching. In existing investigations on the Fermi-acceleration oscillator
or impact oscillators, the dynamical systems are not switched except for impacts. From the
above discussion, the vibro-impact dynamics is extensively used in engineering and physics.
The mechanical mechanisms and motion complexity of vibro-impact oscillators need to be
understood. In this book, vibro-impact dynamics will be presented.

1.3 Book Layout

To help readers easily read this book, the main contents are summarized as follows.
In Chapter 2, basic concepts of nonlinear discrete systems will be presented. The local and

global theory of stability and bifurcation for nonlinear discrete systems will be discussed.
The stability switching and bifurcation on specific eigenvectors of the linearized system at
fixed points under specific periods will be presented. The higher singularity and stability for
nonlinear discrete systems on the specific eigenvectors will be presented.

In Chapter 3, the theory of the complete dynamics based on positive and negative discrete
maps will be discussed. The basic routes of periodic solutions to chaos will be presented. The
complete dynamics of a discrete dynamical system with the Henon map will be discussed
briefly for a better understanding of the complete dynamics of nonlinear discrete systems. The
self-similarity and multifractality of chaos generated by period-doubling bifurcation will be
discussed via a geometrical approach, and a discrete system with the logistic map will be used
to discuss the fractality. Finally, the complete dynamics of the logistic map will be discussed
analytically to show many branches of periodic solutions to chaos via period-doubling, which
is much richer than numerical simulations.

In Chapter 4, a general theory for the passability of a flow to a specific boundary in
discontinuous dynamical systems will be presented from Luo (2011b). The G-functions for
discontinuous dynamical systems will be introduced, and the passability of a flow from a
domain to an adjacent one will be discussed. The full and half sink and source flows to the
boundary will be presented with the help of real and imaginary flows. The passability of a flow
to the boundary will be discussed in discontinuous dynamical systems, and the corresponding
switching bifurcations between the passable and non-passable flows will be presented.
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In Chapter 5, the nonlinear dynamics of a ball bouncing on a periodically oscillating table
will be discussed as the simplest example of vibro-impact systems. The analytical solutions
of period-1 and period-2 motions of the bouncing ball will be presented and the analytical
condition of the corresponding stability and bifurcation will be presented. From mapping
structures, the analytical prediction of the period-m motions will be discussed. From the
theory of discontinuous dynamical systems, the analytical condition of the initialization of a
ball bouncing on the vibrating table will be presented, and the impact chatter of the bouncing
ball on the oscillating table will be discussed. The bouncing ball presented herein is also to
show how to construct discrete maps in practical problems.

In Chapter 6, domains and boundaries for complex dynamics of impact pairs will be in-
troduced first from impact discontinuity. The analytical periodic motions for simple impact
sequences in impact pairs will be discussed, and the conditions of stability and bifurcations of
such periodic motions will be developed. From generic impact mappings, the mapping struc-
tures for motions with complex impact sequences will be discussed. However, the switching
complexity of motion is from grazing, and the stick motion vanishing is a key to induce impact
motions in the impact pair. Thus, analytical conditions for stick and grazing motions will be
discussed. The periodic motions and the corresponding stability and bifurcation in such an
impact pair will be discussed. Parameter maps with different motions will be presented for a
better view of motions with different parameters.

In Chapter 7, in order to understand the nonlinear dynamics of a flow from one domain
to another domain, mapping dynamics of discontinuous dynamics systems will be presented,
which is a generalized symbolic dynamics. Using the mapping dynamics, one can determine
periodic and chaotic dynamics of discontinuous dynamical systems, and complex motions can
be classified through mapping structure. The mechanism of motion switching of a particle
in such a generalized Fermi oscillator will be discussed through the theory of discontinuous
dynamical systems, and the corresponding analytical conditions for the motion switching will
be presented. The mapping structures for periodic motions will be discussed, and such periodic
motions in the Fermi oscillator will be discussed analytically. From the analytical prediction,
parameter maps of regular and chaotic motions will be presented for a global view of motions
in the Fermi oscillator.



2
Nonlinear Discrete Systems

In this chapter, a theory for nonlinear discrete systems will be presented. The local and
global theory of stability and bifurcation for nonlinear discrete systems will be discussed. The
stability switching and bifurcation on specific eigenvectors of the linearized system at fixed
points under a specific period will be presented. The higher order singularity and stability for
nonlinear discrete systems on the specific eigenvectors will be presented.

2.1 Definitions

Definition 2.1 For �α ⊆ �n and � ⊆ �m with α ∈ Z, consider a vector function fα : �α ×
� → �α which is Cr(r ≥ 1)-continuous, and there is a discrete (or difference) equation in a
form of

xk+1 = fα(xk, pα ) for xk,xk+1 ∈ �α,k ∈ Z and pα ∈ �. (2.1)

With an initial condition of xk = x0, the solution of equation (2.1) is given by

xk = fα(fα(· · · (fα
︸ ︷︷ ︸

k

(x0, pα ))))

for xk ∈ �α,k ∈ Z and p ∈ �.

(2.2)

(i) The difference equation with the initial condition is called a discrete dynamical system.
(ii) The vector function fα(xk, pα ) is called a discrete vector field on �α .

(iii) The solution xk for each k ∈ Z is called a flow of discrete system.
(iv) The solution xk for all k ∈ Z on domain �α is called the trajectory, phase curve or orbit

of the discrete dynamical system, which is defined as

� = {xk | xk+1 = fα(xk, pα ) for k ∈ Z and pα ∈ �} ⊆ ∪α�α. (2.3)

(v) The discrete dynamical system is called a uniform discrete system if

xk+1 = fα(xk, pα ) = f(xk, p) for k ∈ Z and xk ∈ �α. (2.4)

Vibro-impact Dynamics, First Edition. Albert C. J. Luo and Yu Guo.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Figure 2.1 Maps and vector functions on each sub-domain for discrete dynamical system

Otherwise, this discrete dynamical system is called a non-uniform discrete system.

Definition 2.2 For the discrete dynamical system in equation (2.1), the relation between
state xk and state xk+1 (k ∈ Z) is called a discrete map if

Pα : xk
fα−→ xk+1 and xk+1 = Pαxk (2.5)

with the following properties:

P(k,l) : xk

fα1,fα2,...,fαl−−−−−−−→ xk+l and xk+l = Pαl ◦ Pαl−1 ◦ · · · ◦ Pα1 xk (2.6)

where

P(k;l) = Pαl ◦ Pαl−1 ◦ · · · ◦ Pα1 . (2.7)

If Pαl = Pαl−1 = · · · = Pα1 = Pα , then

P(α;l) ≡ P(l)
α = Pα ◦ Pα ◦ · · · ◦ Pα (2.8)

with

P(n)
α = Pα ◦ P(n−1)

α and P(0)
α = I. (2.9)

The total map with l-different sub-maps is shown in Figure 2.1. The map Pαk with the relation
function fαk (αk ∈ Z) is given by equation (2.5). The total map P(k,l) is given in equation (2.7).
The domains �αk (αk ∈ Z) can fully overlap each other or can be completely separated without
any intersection.

Definition 2.3 For a vector function in fα ∈ �n, fα : �n → �n. The operator norm of fα is
defined by

||fα|| =
∑n

i=1
max

||xk||≤1,pα

| fα(i)(xk, pα )|. (2.10)

For an n × n matrix fα(xk, pα ) = Aαxk and Aα = (aij)n×n, the corresponding norm is defined
by

||Aα|| =
n

∑

i, j=1

|aij|. (2.11)
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Definition 2.4 For �α ⊆ �n and � ⊆ �m with α ∈ Z, the vector function fα(xk, pα ) with
fα : �α × � → �n is differentiable at xk ∈ �α if

∂fα(xk, pα )

∂xk

∣
∣
∣
∣
(xk,p)

= lim
�xk→0

fα(xk + �xk, pα ) − fα(xk, pα )

�xk
. (2.12)

∂fα
/

∂xk is called the spatial derivative of fα(xk, pα ) at xk, and the derivative is given by the
Jacobian matrix

∂fα(xk, pα )

∂xk
=

[
∂ fα(i)

∂xk( j)

]

n×n

. (2.13)

Definition 2.5 For �α ⊆ �n and � ⊆ �m, consider a vector function f(xk, p) with f :
�α × � → �n where xk ∈ �α and p ∈ � with k ∈ Z. The vector function f(xk, p) satisfies
the Lipschitz condition

||f(yk, p) − f(xk, p)|| ≤ L||yk − xk|| (2.14)

with xk, yk ∈ �α and L a constant. The constant L is called the Lipschitz constant.

2.2 Fixed Points and Stability

Definition 2.6 Consider a discrete, dynamical system xk+1 = fα(xk, pα ) in equation (2.4).

(i) A point x∗
k ∈ �α is called a fixed point or period-1 solution of a discrete nonlinear system

xk+1 = fα(xk, pα ) under a map Pα if for xk+1 = xk = x∗
k

x∗
k = fα(x∗

k , p) (2.15)

The linearized system of the nonlinear discrete system xk+1 = fα(xk, pα ) in equation
(2.4) at the fixed point x∗

k is given by

yk+1 = DPα(x∗
k , p)yk = Dfα(x∗

k , p)yk (2.16)

where

yk = xk − x∗
k and yk+1 = xk+1 − x∗

k+1. (2.17)

(ii) A set of points x∗
j ∈ �α j (α j ∈ Z) is called the fixed point set or period-1 point set of the

total map P(k;l) with l-different sub-maps in nonlinear discrete system of equation (2.2) if

x∗
k+ j+1 = fα j′ (x

∗
k+ j, pα j′ )for j ∈ Z+ and j′ = mod( j, l) + 1;

x∗
k+ mod ( j,l) = x∗

k .
(2.18)

The linearized equation of the total map P(k;l) gives

yk+ j+1 = DPα j′ (x
∗
k+ j, pα j′ )yk+ j = Dfα j′ (x

∗
k+ j, pα j′ )yk+ j

with yk+ j+1 = xk+ j+1 − x∗
k+ j+1 and yk+ j = xk+ j − x∗

k+ j

for j ∈ Z+ and j′ = mod( j, l) + 1.

(2.19)
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Figure 2.2 A fixed point between domains �k and �k+1 for a discrete dynamical system

The resultant equation for each individual map is

yk+ j+1 = DP(k,l)(x∗
k , p)yk+ j for j ∈ Z+ (2.20)

where

DP(k,n)(x∗
k , p) =

∏1

j=l
DPα j (x

∗
k+ j−1, p)

= DPαl (x
∗
k+l−1, pαn ) · · · · · DPα2 (x

∗
k+1, pα2 ) · DPα1 (x

∗
k , pα1 ) (2.21)

= Df(αl )(x
∗
k+l−1, pαn ) · · · · · Df(α2 )(x∗

k+1, pα2 ) · Df(α1 )(x∗
k , pα1 ).

The fixed point x∗
k lies in the intersected set of two domains �k and �k+1, as shown in

Figure 2.2. In the vicinity of the fixed point x∗
k , the incremental relations in the two domains

�k and �k+1 are different. In other words, setting yk = xk − x∗
k and yk+1 = xk+1 − x∗

k+1, the
corresponding linearization is generated as in equation (2.16). Similarly, the fixed point of the
total map with n-different sub-maps requires the intersection set of two domains �k and �k+n,
there is a set of equations to obtain the fixed points from equation (2.18). The other values
of fixed points lie in different domains, that is, x∗

j ∈ � j ( j = k + 1, k + 2, . . . , k + n − 1), as
shown in Figure 2.3.

The corresponding linearized equations are given in equation (2.19). From equation (2.20),
the local characteristics of the total map can be discussed as a single map. Thus, the dynamical
characteristics for the fixed point of the single map will be discussed comprehensively, and the
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1αΩ
2αΩ

1αf

lαΩ

1
Pα

j
Pα

lαf

l
Pα

k l+x

kx

Figure 2.3 Fixed points with l-maps for discrete dynamical system
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fixed points for the resultant map are applicable. The results can be extended to any period-m
flows with P(m).

Definition 2.7 Consider a discrete, nonlinear dynamical system xk+1 = f(xk, p) in equation
(2.4) with a fixed point x∗

k . The linearized system of the discrete nonlinear system in the
neighborhood of x∗

k is yk+1 = Df(x∗
k , p)yk (yl = xl − x∗

k and l = k, k + 1) in equation (2.16).
The matrix Df(x∗

k , p) possesses n1 real eigenvalues |λ j| < 1 ( j ∈ N1), n2 real eigenvalues
|λ j| > 1 ( j ∈ N2), n3 real eigenvalues λ j = 1 ( j ∈ N3), and n4 real eigenvalues λ j = −1
( j ∈ N4). N = {1, 2, . . . , n} and Ni = {i1, i2, · · · , ini} ∪ ∅ (i = 1, 2, 3, 4) with im ∈ N (m =
1, 2, . . . , ni) and 	3

i=1ni = n. Ni ⊆ N∪ ∅, ∪3
i=1Ni = N, Ni ∩ Np = ∅ (p �= i).Ni = ∅ if ni = 0.

The corresponding eigenvectors for contraction, expansion, invariance, and flip oscillation are
{v j} ( j ∈ Ni) (i = 1, 2, 3, 4), respectively. The stable, unstable, invariant, and flip subspaces
of yk+1 = Df(x∗

k , p)yk in equation (2.16) are linear subspace spanned by {v j} ( j ∈ Ni) (i =
1, 2, 3, 4), respectively, that is,

�s = span

{

v j

∣
∣
∣
∣

(Df(x∗
k , p) − λ jI)v j = 0,

|λ j| < 1, j ∈ N1 ⊆ N ∪ ∅
}

;

�u = span

{

v j

∣
∣
∣
∣

(Df(x∗
k , p) − λ jI)v j = 0,

|λ j| > 1, j ∈ N2 ⊆ N ∪ ∅
}

;

�i = span

{

v j

∣
∣
∣
∣

(Df(x∗
k , p) − λ jI)v j = 0,

λ j = 1, j ∈ N3 ⊆ N ∪ ∅
}

;

�f = span

{

v j

∣
∣
∣
∣

(Df(x∗
k , p) − λ jI)v j = 0,

λ j = −1, j ∈ N4 ⊆ N ∪ ∅
}

.

(2.22)

where

�s = �s
m ∪ �s

o ∪ �s
zwith

�s
m = span

{

v j

∣
∣
∣
∣

(Df(x∗
k , p) − λ jI)v j = 0,

0 < λ j < 1, j ∈ Nm
1 ⊆ N ∪ ∅

}

;

�s
o = span

{

v j

∣
∣
∣
∣

(Df(x∗
k , p) − λ jI)v j = 0,

−1 < λ j < 0, j ∈ No
1 ⊆ N ∪ ∅

}

;

�s
z = span

{

v j

∣
∣
∣
∣

(Df(x∗
k , p) − λ jI)v j = 0,

λ j = 0, j ∈ Nz
1 ⊆ N ∪ ∅

}

(2.23)

�u = �u
m ∪ �u

owith

�u
m = span

{

v j

∣
∣
∣
∣

(Df(x∗
k , p) − λ jI)v j = 0,

λ j > 1, j ∈ Nm
2 ⊆ N ∪ ∅

}

;

�s
o = span

{

v j

∣
∣
∣
∣

(Df(x∗
k , p) − λ jI)v j = 0,

−1 < λ j, j ∈ No
2 ⊆ N ∪ ∅

}

;

(2.24)

where subscripts “m” and “o” represent the monotonic and oscillatory evolutions.
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Definition 2.8 Consider a discrete, nonlinear dynamical system xk+1 = f(xk, p) in equa-
tion (2.4) with a fixed point x∗

k . The linearized system of the discrete nonlinear system in
the neighborhood of x∗

k is yk+1 = Df(x∗
k , p)yk (yl = xl − x∗

k and l = k, k + 1) in equation
(2.16). The matrix Df(x∗

k , p) has complex eigenvalues α j ± iβ j with eigenvectors u j ± iv j

( j ∈ {1, 2, . . . , n}) and the base of vector is

B = {

u1, v1, . . . , u j, v j, . . . , un, vn
}

. (2.25)

The stable, unstable, center subspaces of yk+1 = Dfk(x∗
k , p)yk in equation (2.16) are linear

subspaces spanned by {u j, v j}( j ∈ Ni, i = 1, 2, 3), respectively. Set N = {1, 2, · · · , n} plus
Ni = {i1, i2, . . . , ini} ∪ ∅ ⊆ N ∪ ∅ with im ∈ N (m = 1, 2, . . . , ni) and 	3

i=1ni = n. ∪3
i=1Ni = N

with Ni ∩ Np = ∅(p �= i). Ni = ∅ if ni = 0. The stable, unstable, center subspaces of yk+1 =
Df(x∗

k , p)yk in equation (2.16) are defined by

�s = span

⎧

⎪⎨

⎪⎩

(u j, v j)

∣
∣
∣
∣
∣
∣
∣

r j =
√

α2
j + β2

j < 1,

(Df(x∗
k , p) − (α j ± iβ j)I)(u j ± iv j) = 0,

j ∈ N1 ⊆ {1, 2, . . . , n} ∪ ∅

⎫

⎪⎬

⎪⎭

;

�u = span

⎧

⎪⎨

⎪⎩

(u j, v j)

∣
∣
∣
∣
∣
∣
∣

r j =
√

α2
j + β2

j > 1,

(Df(x∗
k , p) − (α j ± iβ j)I)(u j ± iv j) = 0,

j ∈ N2 ⊆ {1, 2, . . . , n} ∪ ∅

⎫

⎪⎬

⎪⎭

;

�c = span

⎧

⎪⎨

⎪⎩

(u j, v j)

∣
∣
∣
∣
∣
∣
∣

r j =
√

α2
j + β2

j = 1,

(Df(x∗
k , p) − (α j ± iβ j)I)(u j ± iv j) = 0,

j ∈ N3 ⊆ {1, 2, . . . , n} ∪ ∅

⎫

⎪⎬

⎪⎭

.

(2.26)

Definition 2.9 Consider a discrete, nonlinear dynamical system xk+1 = f(xk, p) in equation
(2.4) with a fixed point x∗

k . The linearized system of the discrete nonlinear system in the
neighborhood of x∗

k is yk+1 = Df(x∗
k , p)yk (yl = xl − x∗

k and l = k, k + 1) in equation (2.16).
The fixed point or period-1 point is hyperbolic if no eigenvalues of Df(x∗

k , p) are on the unit
circle (that is, |λi| �= 1 for i = 1, 2, . . . , n).

Theorem 2.1 Consider a discrete, nonlinear dynamical system xk+1 = f(xk, p) in equation
(2.4) with a fixed point x∗

k . The linearized system of the discrete nonlinear system in the
neighborhood of x∗

k is yk+1 = Df(x∗
k , p)yk (y j = x j − x∗

k and j = k, k + 1) in equation (2.16).
The eigenspace of Df(x∗

k , p) (that is, � ⊆ �n) in the linearized dynamical system is expressed
by direct sum of three subspaces

� = �s ⊕ �u ⊕ �c. (2.27)

where �s, �u and �c are the stable, unstable, and center subspaces, respectively.

Proof: The proof can be found in Luo (2012c). �


