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Preface

The family of statistical models known as Rasch models

started with a simple model for responses to questions in

educational tests presented together with a number of

related models that the Danish mathematician Georg Rasch

referred to as models for measurement. Since the beginning

of the 1950s the use of Rasch models has grown and has

spread from education to the measurement of health status.

This book contains a comprehensive overview of the

statistical theory of Rasch models.

Because of the seminal work of Georg Rasch [RAS 60] a

large number of research papers discussing and using the

model have been published. The views taken of the model

are somewhat different. Some regard it as a measurement

model and focus on the special features of measurement by

items from Rasch models. Other publications see the Rasch

model as a special case of the more general class of

statistical models known as item response theory (IRT)

models [VAN 97]. And, finally, some regard the Rasch model

as a statistical model and focus on statistical inference

using these models.

The statistical point of view is taken in this book, but it is

important to stress that we see no real conflict between the

different ways that the model is regarded. The Rasch model

is one of the several measurement models defined by Rasch

[RAS 60, RAS 61] and is, of course, also an IRT model. And

even if measurement is the only concern, we need observed

data and statistical estimates of person parameters to

calculate the measures.

The statistical point of view is thus unavoidable. From this

point of view, the sufficiency of the raw score is crucial and,

following in the footsteps of Georg Rasch and his student

Erling B. Andersen, we focus on methods depending on the



conditional distribution of item responses given the raw

score. The relationship between Rasch models and the

family of multivariate models called graphical models [WHI

90, LAU 96] is also highlighted because this relationship

enables analysis and modeling of properties like local

dependence and non-differential item functioning in a very

transparent way.

The book is structured as follows: Part I contains the

probabilistic definition of Rasch models; Part II describes

estimation of item and person parameters; Part III is about

the assessment of the data-model fit of Rasch models; Part

IV contains applications of Rasch models; Part V discusses

how to develop health-related instruments for Rasch

models; and Part VI describes how to perform Rasch

analysis and document results.

The focus on the Rasch model as a statistical model with a

latent variable means that little will be said about other IRT

models, such as the two parameter logistic (2PL) model and

the graded response model. This does not reflect a strong

“religious” belief, that the Rasch model is the only

interesting and useful IRT or measurement model, but only

reflects our choice of a point of view for this book.

The book owes a lot to discussions at a series of

workshops on Rasch models held in Stockholm (Sweden,

2001), Leeds (UK, 2002), Perth (Australia, 2003), Skagen

(Denmark, 2005), Vannes (France, 2006), Bled (Slovenia,

2007), Perth (Australia, 2008 and 2012), Copenhagen

(Denmark, 2010) and Dubrovnik (Croatia, 2011). Many of

the authors have taken part and have helped create an

atmosphere where topics relating to the Rasch model could

be discussed in an open, friendly and productive manner.

The participants do not agree on everything and do not

share all the points of views expressed. However, everyone

agrees on the importance of Rasch’s contributions to



measurement and statistics, and it is fair to say that this

book would not exist if it had not been for these workshops.

Karl Bang CHRISTENSEN, Svend KREINER and Mounir

MESBAH

Copenhagen, November 2012
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PART 1

Probabilistic Models

Introduction

This part introduces the models that are analyzed in the

book. The Rasch model was originally formulated by Georg

Rasch for dichotomous items [RAS 60]. This model is

described in Chapter 1, where different parameterizations

are also introduced. The sources of polytomous Rasch

models are less clear. Georg Rasch formulated a quite

general polytomous model where each item measures

several latent variables [RAS 61]. However, this model has

seen little use. Later, several authors [AND 77, AND 78, MAS

82] formulated models where items with more than two

response categories measure a single underlying latent

variable.
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Chapter 1

The Rasch Model for

Dichotomous Items

1.1. Introduction
The family of statistical models, which is known as Rasch

models, was first introduced with a simple model for

responses to dichotomous items (questions) in educational

tests [RAS 60]. It was presented together with a number of

related models that the Danish mathematician Georg Rasch

called models for measurement. Since then, the family of

Rasch models has grown to encompass a number of

statistical models.

1.1.1. Original formulation of

the model

All Rasch models share a number of fundamental properties,

and we introduce this book with a brief recapitulation of the

very first Rasch model: the Rasch model for dichotomous

items. This model was developed during the 1950s when

Georg Rasch got involved in educational research. The

model describes responses to a number of items by a

number of persons assuming that responses are

stochastically independent, depending on unknown items

and person parameters. In Rasch’s original conception of

the model (see Figure 1.1), the structure of the model was

multiplicative. In this model, the probability of a positive



response to an item depends on a person parameter ξ and

an item parameter δ in such a way that the probability of a

positive response to an item depends on the product of the

person parameter and the item parameter.

Figure 1.1. The Rasch model 1952/1953

If we refer to the response of person v to item i as Xvi and

code a positive response as 1 and a negative response as 0,

the Rasch model asserts that

[1.1] 

where both parameters are non-negative real numbers. It

follows from [1.1] that

[1.2] 

The interpretation of the parameters in this model is

straightforward: the probability of a positive response

increases as the parameters increase toward infinity. In

educational testing, the person parameter represents the

ability of the student and the item parameter represents the

easiness of the item: the better the ability and the easier

the item, the larger the probability of a correct response to

the item. In health sciences, the person parameter could

represent the level of depression whereas the item

parameters could represent the risk of experiencing certain

symptoms relating to depression.

EXAMPLE 1.1.– Consider the following dichotomous items

intended to measure depression:



1) Did you have sleep disturbance every day for a period

of two weeks or more?

2) Did you have a loss or decrease in activities every day

for a period of two weeks or more?

3) Did you have low self-esteem every day for a period of

two weeks or more?

4) Did you have decreased appetite every day for a

period of two weeks or more?

Items like these appear in several questionnaires.

According to the Rasch model, responses to these items

depend on the level of depression measured by the ξ

parameter and on four item parameters δ1–δ4. In a recent

study, the item parameters were found to be 2.57, 1.57,

0.52 and 0.48, respectively [FRE 09, MES 09]. The

interpretation of these numbers is that sleep disturbance is

the most common and loss of appetite is the least common

of the four symptoms. To better understand the role of the

item parameters, we have to look at the relationships

between the probabilities of positive responses to two

questions. This is shown in Table 1.1, where it can be seen

that the ratio between the two item parameters is the odds

ratio (OR) comparing the odds of encountering the

symptoms described by the items irrespective of the level of

depression ξ of the persons. This interpretation should be

familiar to persons with a working knowledge of

epidemiological methods. According to the Rasch model, the

level of depression does not modify the relative risk of the

symptoms. In the theory of Rasch models, this is sometimes

called no item-trait interaction.

Table 1.1. Response probabilities for two items when the

person parameter is ξv



EXAMPLE 1.2.– Since the item parameters for the first two

items are 2.57 and 1.57, we see that the odds ratio relating

the risk of loss of or reduction of activities to the risk of

sleep disturbances is equal to 1.57/2.57 = 0.613. Because

of the symmetry in formula [1.1] the same argument applies

to comparisons of persons. Table 1.2 considers the risk of

encountering a specific symptom for each of two persons

with different levels of depression. As for the items, we

interpret the ratio between the person parameters as the

odds ratio comparing the risk for person two to the risk for

person one.

Table 1.2. Response probabilities for an item with an item

parameter equal to δi

To measure the level of depression, we have to estimate

the parameter ξ based on observed item responses.

However, this parameter is not identifiable in absolute terms

because the probabilities [1.1] depend on the product of the

person and item parameters. Multiplying all person

parameters by a constant к and dividing all item parameters

by the same constant results in a reparameterized model

[1.3] 



[1.4] 

with exactly the same formal structure and the same

probabilities as the original model, and where the odds ratio

comparing response probabilities for the two persons is the

same as in Table 1.2. To identify the parameters, we

consequently have to impose restrictions on the

parameters. The standard way of doing this is to fix the

parameters such that the product of the item parameters is

equal to one. The parameters of the depression items above

were fixed in this way. Another way that may be more

natural for an epidemiologist would be to select a reference

item where the item parameter is equal to one. The item

parameters for other items are then interpretable as ORs

comparing the item to the reference item (see Table 1.1).

Because of the symmetry in formula [1.1], similar

arguments apply to the person parameters, that is requiring

that the product of the person parameters be equal to one

or fixing the value for a single (reference) person. All these

parameterizations are valid and characterized by invariant

ratios of both the person parameters and item parameters.

Multiplication of quantitative measurements with a

constant corresponds to a change of unit of the

measurement scale on which the values are measured.

Because ratios of person parameters are the same for all

choices of a measurement unit, the measurement scale on

which ξ is measured is a ratio scale. This argument was very

important for Georg Rasch who repeatedly stressed the

similarity with measurement in physics, stating [RAS 60]

If for any two objects we find a certain ratio of their

accelerations produced by one instrument, then the same

ratio will be found for any other instruments.

Measurement using Rasch models is relative rather than

absolute. We can use estimates of ξ to compare the level of

depression for two persons, but we cannot use a single ξ



measure to say that a person has a high or a low level of

depression. Michell [MIC 97] claims that “scientific

measurement is properly defined as the estimation of the

ratio of some magnitude of a quantitative attribute to a unit

of the same attribute” and also points out that

measurement is relative rather than absolute depending on

the choice of unit.

One further aspect of Rasch models is worth mentioning.

Persons and items are completely symmetrical in the sense

that there is no major difference between inference on item

parameters and inference on person parameters using the

simple model [1.1]. However, in the majority of applications,

we will not exchange persons and items. The main purpose

of constructing depression items like those discussed above

is to measure a trait or the property of persons, whereas the

risks associated with the four symptoms are of no special

significance being only the means to the ends. Typically,

covariates like age, gender and socioeconomic status are

attached to people but not to items. Hence, conceptually

there is a big difference between persons and items.

1.1.2. Modern formulations of

the model

Over time, as the use of the model spread from educational

testing to other research areas, the formal representation

and the terminology associated with the model got

changed. Today, the model is typically written as an additive

logistic model, replacing ξ by θ = log(ξ) and δ by β = −

log(δ). Furthermore, the unobservable (latent) nature of the

person parameter is acknowledged by stating that Θv is a

latent variable and θv is the unobserved realization of Θv

and formulating the model in terms of the conditional

probabilities



[1.5] 

and thus

[1.6] 

In the above formulation, βi is called an item threshold

parameter or an item location parameter. The logit function

logit(p) = log(p/(1 − p)) of the probability of a positive

response is

[1.7] 

and therefore θv and βi are often said to be on a logit scale.

This terminology is not justifiable because the logit is a

function of probabilities and we could argue that it is the

difference between θv and βi that is measured on a logit

scale, similarly as probabilities are measured on a

probability scale, but the name is popular and probably

difficult to avoid. The two different representations of the

model, [1.1] and [1.5], are mathematically equivalent.

During statistical analysis of data by the Rasch model, it

does not matter whether you use one or the other

representation.

The scale on which θ is measured is often claimed to be an

interval scale. This is not difficult to understand because

changing the unit of the original ratio scale measure and

then taking logarithms to get the value of θ after the change

of the unit of ξ means changing the origin of the scale on

which ξ is measured. When the unit on the multiplicative ξ

scale is arbitrary, it follows that the origin on the θ scale is

also arbitrary.

The symmetry of persons and items in the Rasch models

and the fact that the probabilities in the Rasch models

depend on the difference between person and item

parameters show that items and persons are measured on



the same scale. An item threshold can be interpreted as the

person parameter value for which the probability of a

positive response equals 0.5.

EXAMPLE 1.3.– The thresholds of the depression items are

β1 = − log(2.57) = −0.94, β2 = − log(1.57) = −0.45, β3 =

− log(0.52) = 0.65 and β4 = − log(0.48) = 0.73. Because

the multiplicative parameters are restricted such that the

product is equal to one, it follows that the sum of item

thresholds is equal to zero (disregarding rounding error).

Again, the risk of suffering from sleep disturbances is larger

than the risk of loss of appetite, and the threshold of sleep

disturbances is lower than the threshold of loss of appetite.

Finally, the assumption that the complete matrix consists

of stochastically independent item responses has been

replaced by the assumption that the set of item responses

for a person is jointly conditionally independent given the

variable Θv

[1.8] 

where Xv = (Xv1, …, Xvk) and x = (x1, …, xk). Of course,

responses from different persons are also considered to be

independent.

The assumption of joint conditional independence means

that any subset of item responses is jointly independent

given Θv and therefore items are pairwise conditionally

independent; but the reverse is not true, meaning that

pairwise conditional independence does not imply joint

conditional independence. We will return to this topic in

section 1.9.

1.1.3. Psychometric properties

Viewed as a statistical model, the latent variable Θ in the

model [1.5] can be characterized as a random effect



explaining the covariation among items. In statistical

models with random effects, we are rarely interested in the

actual value of the random effect variables, and in this

sense, the Rasch model is a different kind of model. The

main purpose of the model is to estimate either the θv

values or functions of the θv values.

On the basis of this, it is more useful to describe the Rasch

model as a member of the class of statistical models known

as item response theory (IRT) models [VAN 97]. Before we

proceed to the discussion of the statistical features of the

Rasch model, we summarize a number of requirements of

IRT models that also apply to items from the Rasch model.

1.1.3.1. Requirements of IRT

modelsmodels

Unidimensionality: The Rasch model [1.5] is a

unidimensional latent trait model since Θ is a single scalar.

Had Θ been a vector of variables, we would have said that

the model is multidimensional.

Monotonicity: Because the probability [1.5] of a positive

response to an item is a monotonously increasing function

of θ, we say that the items satisfy the requirement of

monotonicity.

Homogeneity: For any value of θ, the ordering of the item

in terms of the probabilities is the same. Therefore, the set

of items is called homogeneous. In the context of an

educational test, this means that the easiest item is easiest

for everybody.

Local independence: The assumption that item responses

are conditionally independent given Θ is called by

psychometricians the assumption of local independence.

Consistency: Psychometricians call a set of positively

correlated items a consistent set of items. Because

unidimensionality, monotonicity and local independence



imply that all monotonously increasing functions of item

responses – including the items in themselves – are

positively correlated [HOL 86], it follows that items from

Rasch models are consistent.

Absence of differential item functioning (DIF): Note, that

the Rasch model only contains two types of variables: the

latent variable and the items. When used, it is implicitly

assumed that the model applies to all persons within a

specific population (often called a specific frame of

reference) and that partitioning into subpopulations does

not change the model. If the frame of reference contains

both men and women, it is assumed that the model [1.5]

and the set of item parameters are the same for both men

and women. This property is called the property of no DIF.

Criterion validity: The results concerning positive

correlations among functions of items extend to

relationships with other variables: if an exogenous variable

is positively correlated with the latent variable; if items are

unidimensional, monotonous and locally independent; and if

there is no DIF, it follows that the exogenous variable must

be positively correlated to all monotonous functions of the

items, including the total score on all items. This result lies

behind the psychometric notion of criterion validity.

Criterion-related construct validity: The ultimate

requirement of measurement by items from IRT models is

that the measurement is construct valid. Construct validity

can be defined in several ways, for example by reference to

an external nomological network of variables that theory

insists are related to Θ [CRO 55], or by requirements of the

way in which item responses depend on Θ. Rosenbaum

collects all these points of views in a definition of criterion-

related construct validity [ROS 89]. According to

Rosenbaum, indirect measurement by a set of item

responses is criterion-related construct valid if the

requirements unidimensionality, monotonocity, local



independence and absence of DIF are met by the items.

Therefore, we claim that measurement by Rasch model

items is construct valid.

1.2. Item characteristic

curves
The functions θ  P(Xvi = 1|Θv = θ) are called item

characteristic curves (ICCs). Figure 1.2 shows the item

characteristic curves of the four depression items under the

Rasch models. In addition to being monotonous, those

curves never cross. IRT models with this property are called

double monotonous IRT models. In fact, the curves are not

only double monotonous but also parallel.

Figure 1.2. Item characteristic curves for four depression

items under the Rasch model. Thresholds are −0.94 (1),

−0.45 (2), 0.65 (3) and 0.74 (4)

Because the items are double monotonous, the rank of the

items with respect to the probabilities of positive responses

to items is the same for all values of θ. At all levels of θ, the



probability of a positive response to item two is smaller than

the probability of a positive response to item one, but larger

than the probability of a positive response to item three.

Items from Rasch models are therefore homogeneous.

1.3. Guttman errors
Homogeneity is closely related to the notion of Guttman

errors. Let Xva and Xvb be two item responses and assume

that βa < βb. We say that a Guttman error occurs when a

person has a positive response to the item with the largest

threshold and a negative response to the other item, Xva =

0 and Xvb = 1. Analyses of Guttman errors play an

important role in IRT models with homogeneous double

monotonous items.

In Rasch models, the risk of Guttman errors depends on

both item and person parameters. The closer the thresholds

of the two items a and b, the larger the risk of a Guttman

error. The larger the numerical value of the person

parameter, the smaller the risk of a Guttman error. The risk

of Guttman errors for pairs of depression items across the

level of depression is shown in Figure 1.3.

Figure 1.3. The risk of Guttman errors among responses to

items 1 and 2 (1), items 3 and 4 (2) and items 1 and 4 (3)



1.4. Test characteristic

curve
From the score probabilities, it is easy to calculate the

expected (mean) score of R for different values of ξ. These

are called true scores and the function describing the true

score as a function of θ = log(ξ) is called the test

characteristic curve (TCC). The TCC for the four depression

items is shown in Figure 1.4. Note that the TCC is not linear.

1.5. Implicit assumptions
In statistical terms, the requirement of no DIF can best be

described as the requirement that item responses (Xv1, …,

Xvk) are conditionally independent of all exogenous

variables (Zv1, …, Zvk) given Θ. The absence of DIF is a

fundamental validity assumption in psychometrics. The

Rasch model shares this assumption, but only as an implicit

assumption, because the exogenous variables do not enter

this model at all. Similarly, the Rasch model also shares the


